用户名: 密码: 验证码:
基于性能的非线性粘滞阻尼器消能减震结构设计与分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于性能抗震设计(Performance-Based Seismic Design, PBSD)的主要目的是使结构构件在不同地震水平下满足不同的性能目标要求。自20世纪90年代以来,美国、日本等发达国家逐步兴起了对基于性能抗震设计的研究,代表了新世纪工程结构抗震设计方法的发展新方向,现已成为21世纪各国建筑抗震设计规范修订的主流方向。
     另外,随着近30年来结构振动控制理论的不断发展,耗能减振技术已逐渐发展成为一种日益成熟的工程减振技术,为实现耗能减振结构基于性能抗震设计提供了一条新的途径。
     粘滞阻尼器是一种典型的被动控制装置,因其具有对温度的不敏感性以及能在较宽频域范围内使结构保持线性反应等诸多优势,使其在土木工程领域被广泛认可。粘滞阻尼器作为一种无需外部能源输入提供控制力的被动控制装置,吸收和耗散地震作用输入结构的大部分能量,从而保护主体结构的安全。
     本文将基于性能的抗震设计理论引入非线性粘滞阻尼器消能减震结构中,根据我国2009年11月出版的《建筑抗震设计规范》(送审稿)对建筑抗震性能设计的相关规定,借鉴日本隔震结构协会编写的《被动减震结构设计·施工手册》中粘滞阻尼器减震结构设计方法,建立了基于性能的非线性粘滞阻尼器消能减震结构抗震设计原则和分析方法。设计过程包括:选定减震性能目标,确定目标位移降低率;建立主结构(未装设阻尼器结构)等效单质点体系的减震性能曲线;将确定的黏滞阻尼器损失刚度比和等效支承构件刚度比应用于主结构,确定主结构各楼层的黏滞阻尼器参数。
     根据本文方法对一装设非线性粘滞阻尼器的8层钢筋混凝土框架结构进行了抗震性能的计算分析,同时利用SAP2000有限元分析软件对该减震结构进行了时程分析。与传统方法相比,本文方法计算简单、直观,容易实现。分析结果也说明装设粘滞阻尼器后地震对结构的作用大大降低,结构的地震反应明显减小,容易实现性能控制目标。
The main purpose of Performance-Based Seismic Design (PBSD) is to make structure components to satisfy different function requirements in different seismic levels. Since 1990s, the study on PBSD had rised gradually in the United States, Japan and other developed countries, it represents the new development direction of the seismic design of engineering structures in the new century, and it has become the mainstream of the revise on the code for seismic sesign of buildings in each country in the 21st century.
     In addition, for 30 years with the development of structural vibration control theory, energy dissipation technology has gradually become an increasingly mature engineering vibration technology, it provides a new way to achieve Performance-Based Seismic Design based on the energy dissipation structure.
     Viscous damper is a typical kind of passive control devices, it is widely recognized in the civil engineering field, because it is not sensitive to the temperature and can keep the main structure in the linear stage within a broad frequency band besides other advantages. As a passive control device without needing external energy input, viscous damper absorbs and dissipates the most energy of the seismic input. Thus it can protect the safety of the main structure.
     Based on the relevant provisions on Performance-Based Seismic Design in Draft Code for Seismic Design of Buildings for approval which was issued in November 2009(Hereinafter referred to as " Draft Code for Seismic"), and the design method for structures with viscous dampers in Design and Construction Manual for Passively Controlled Buildings by Japan Society of Seismic Isolation, performance-based seismic design approach and analysis method for structures with viscous dampers are proposed. First, select performance target and determine the objective reduction ratio of displacement. Second, establish the performance curve for the equivalent single degree of freedom system of the main structure. Third, apply the loss stiffness ratio of the damper and the stiffness ratio of the equivalent supporting components to the main structure and determine the parameters of viscous dampers of each story.
     A 8-story reinforced concrete frame with nonlinear viscous dampers is analyzed by the proposed method. Simultaneously, time history analysis on this structure is also performed by SAP2000, the commercial finite element analysis software. Comparision indicates the proposed method is simple, straight-forward, and easy to perform. The results also show that the seismic action and structural response are obviously decreased after installing viscous dampers and the seismic performance objective is easily realized.
引文
[1]周福霖.工程结构减震控制[M].北京:地震出版社,1997.
    [2]吴波,李惠.建筑结构被动控制的理论与应用[M].黑龙江:哈尔滨工业大学出版社,1997.
    [3]王优龙,魏琏等.隔震技术的应用与发展[M].北京:地震出版社,1997.
    [4]中华人民共和国国家标准《建筑抗震设计规范》(GB50111-2001)[S].北京:中国建筑工业出版社,2001.
    [5]刘季.中国结构控制研究状况[J].哈尔滨建筑大学学报,1993,26(4):1-11.
    [6]武田寿一.建筑隔震、防震与控振[M].北京:中国建筑工业出版社,1997.
    [7]周云.耗能减震理论与设计[M].哈尔滨建筑大学出版社,1996.
    [8]Kelly J M, Skinner R I, Heine A J.Mechanics of Energy Absorption in Special Devices for Use in Earthquake Structures[J]. National Society for Earthquake Engineering. 1972,5(3):63-88.
    [9]周云,徐彤.耗能减震技术的回顾与前瞻[J].力学与实践,2000,22(5):1-7.
    [10]周云,刘季.新型耗能(阻尼)减震器的开发与研究[J].地震工程与工程振动,1998,18(1):71-77.
    [11]Pall A S,Pall R. Friction-Dampers Used for Seismic Control of New and Existing Building in Canada[A]. Proceedings of ATC-17-1 on Seismic Isolation, Passive Energy Dissipation and Active Control[C].1993,2:675-686.
    [12]Makris N, Constantinou. M.C. Viscous Damper:Testing, Modeling and Application in Vibration of Seismic Isolation[J]. NCEER Rep, State Univ of New York at Baffalo, Baffalo,N.Y,1990.
    [13]Douglas P. Taylor, Michael C. Constantinou. Fluid Dampers for Applications of Seismic Enemy Dissipation and Seismic Isolations[EB/CL].
    [14]ATC. Seismic evaluation and retrofit of concrete buildings.In:V01.1, ATC40, Applied Technology Council.Redwood City:1996,50-109.
    [15]Federal Emergency Management Agency. Guidelines and Commentary for the Seismic Rehabilitation of Buildings. FEMA273&274.1998,226-304.
    [16]T.T.Soong G.F.Dargush. Passive Energy Dissipation Systems in Structural Engnieering[M].北京:科学出版社,2005.
    [17]周云.粘滞阻尼器减震结构设计[M].武汉:武汉理工大学出版社,2006.
    [18]欧进萍,丁建华.油缸间隙式阻尼器理论与试验研究[J].地震工程与工程振动,1999,19(4):82-89.
    [19]叶正强,李爱群,程文瀼等.采用粘滞流体阻尼器的工程结构减振设计研究[J].建筑结构学报,2001,22(4):61-66.
    [20]杨国华,李爱群,徐幼麟.工程结构粘滞流体阻尼器减震新技术及其应用[J].东南大学学报,2002,32(3):466-473.
    [21]杨国华,李爱群,程文瀼等.工程结构粘滞流体阻尼器的减振机制与控振分析[J].东南大学学报,2001,21(1):57-61.
    [22]翁大根,卢著辉,徐斌等.粘滞阻尼器力学性能试验研究[J].世界地震工程,2002,18(4):30-34.
    [23]北京金土木软件技术有限公司,中国建筑标准设计研究院编著.SAP2000中文版使用指南[M].北京:人民交通出版社,2006.
    [24]彭俊生,罗永坤,彭地.结构动力学、抗震计算与SAP2000应用[M].成都:西南交通大学出版社,2007.
    [25]SEAOC Vision 2000. Performance-based seismic design[R]. Report prepared by Structural Engineers Association of California, Sacramento, CA,1995.
    [26]ATC-40. Seismic Evaluation and Retrofit of Concrete Buildings[R]. Applied Tevhnology Council, California,1996.
    [27]王亚勇.我国2000年抗震设计模式规范展望[J].建筑结构,1999,31(6):32-36.
    [28]王亚勇.我国2000年工程抗震设计模式规范基本问题研究综述[J].建筑结构学报,2000,21(1):2-4.
    [29]笠井和彦,伊藤浩资,渡辺厚.等価线形化手法による质点弹塑性构造の最大応答予测法[J].日本建筑学会构造系论文集,2003,571:53-62.
    [30]Tsai C S. Temperature effect of viscoelastic dampers during earthquake[J]. ASCE Journal of Structures Engineering,1994,120(2):394-409.
    [31]Tsai C S, Lee H H. Application of viscoelastic dampers to high-rise building[J]. ASCE Journal of Structures Engineering,1993,119(4):1222-1233.
    [32]杨浦,李东,李英民等.抗震结构静力弹塑性分析(Push-over)方法的研究进展[J].重庆建筑大学学报,2000,22(Sup.):87-92.
    [33]中华人民共和国国家标准《建筑抗震设计规范》(送审稿)[S].北京:中国建筑工业出版社,2009.
    [34]蒋通译.《被动减震结构设计·施工手册》[M].北京:中国建筑工业出版社,2005.
    [35]郭子雄,吕西林,王亚勇.建筑结构抗震变形验算中层间弹性位移角限值的研讨[J].工程抗震,1998,2:1-6.
    [36]蒋通,贺磊.非线性粘滞阻尼器消能结构减振效果分析[J].世界地震工程,2005,21(2):57-63.
    [37]蒋通,贺磊.非线性粘滞阻尼器消能结构设计方法探讨[J].世界地震工程,2007, 23(1):134-140.
    [38]尹华伟,汪梦甫,周锡元.结构静力弹塑性分析方法的研究和改进[J].工程力学,2003,20(8):45-49.
    [39]李应斌,刘伯权,史庆轩.基于结构性能的抗震设计理论研究与展望[J].地震工程与工程振动,2001,21(4):73-79.
    [40]徐鸿铁,徐赵东,张兴虎.耗能减震控制的研究、应用与发展[J].西安建筑科技
    大学学报,2001,33(1):1-5,23.
    [41]王曙光,刘伟庆.消能支撑框架结构的非线性分析[J].地震工程与工程振动,2001,21(3):117-121.
    [42]叶政强,李爱群,徐幼麟.工程结构粘滞流体阻尼器减振新技术及其应用[J].东南大学学报.2002,32(3):466-473.
    [43]欧进萍,吴斌等.结构被动耗能减振效果的参数影响[J].地震工程与工程振动,1998,18(1):60-70.
    [44]贺磊.非线性粘滞阻尼器消能结构设计和分析方法研究[D].上海:同济大学,2005.
    [45]钱稼茹,张微敬,朱丹等.北京A380机库结构地震反应分析[J].土木工程学报,2008,41(2):9-16.
    [46]Lin Y Y, Tsai M H, Hwang J S, Chang K C. Direct displacement-based design for building with passive energy dissipation systems[J]. Engineering Structures,2003,25: 25-37.
    [47]张思海,梁兴文,邓明科.被动耗能减震结构基于能力谱法的抗震设计方法研究[J].土木工程学报,2006,39(7):26-32.
    [48]翁大根,卢著辉,徐斌等. 粘滞阻尼器力学性能试验研究[J].世界地震工程,2002,18(4):30-34.
    [49]周云,丁春花,邓雪松.基于性能的消能减震加固设计理论框架[J].工程抗震与加固改造,2005,27(5):45-49.
    [50]Kim J K, Choi H H. Displacement-based design of supplemental dampers for seismic retrofit of a framed structure[J]. ASCE Journal of Structural Engineering,2006, 132(6):873-883.
    [51]周锡元.建筑结构抗震设防策略思想的发展[J].工程抗震,1997(1):1-3.
    [52]Lee D, Taylor D P. Viscous damper development and future trends[J]. Struct.Des.Tall Build.,2002,10(5):11-20.
    [53]沈章春,王全凤.基于性能抗震设计理论与实用方法[J].四川建筑科学研究,2008,34(3):136-140.
    [54]Anil K. Chopra, Rakesh K. Goel.A modal pushover analysis procedure for estimating seismic demands for buildings[J]. Earthquake Engng Struct. Dyn.2002,31:561-582.
    [55]Sang Whan Han, Anil K. Chopra. Approximate incremental dynamic analysis using the modal pushover analysis procedure[J]. Earthquake Engng Struct. Dyn.,2006,35: 1853-1873.
    [56]Peter Fajfar. A Nonlinear Analysis Method for Performance-Based Seismic Design[J]. Earthquake Speactra,2000,16(3):573-592.
    [57]谢礼立.基于抗震性态设计思想的抗震设防标准[J].世界地震工程,2000,16(1):97-105.
    [58]小谷俊介.日本基于性能结构抗震设计方法的发展[J].建筑结构学报,2000,(6):3-9.
    [59]罗文斌,钱稼茹.钢筋混凝土框架基于位移的抗震设计[J].土木工程报,2003,(5):22-29.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700