用户名: 密码: 验证码:
松辽盆地肇41-州58区块断裂特征及其对油气成藏的控制作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
通过肇41-州58区块三维地震解释资料系统研究,详细分析断裂几何学特征,得到研究区垂向上主要发育下部和中部断层系,上部断层系极少。纵向上呈现多种组合模式,主要有“花状”组合模式和“堑垒”式组合模式。T11反射层发育多方位的断裂密集带,剖面上为‘似花状’和‘V字型’组合模式。T11反射层密集带宽,断裂规模小,带边断裂为部分扶杨油层密集带的边部断裂向上断至葡萄花油层。
     研究区断裂活动时期共有7期:早白垩世早期、泉头组沉积晚期~青山口组沉积早期、姚家组沉积时期、嫩江组一二段沉积时期,这四个时期为拉张时期;嫩江组末期、明水组末期和古近纪末期为三期强烈的挤压时期。断裂的形成演化先后经历了火石岭~营城组时期的伸展变形;登娄库组~嫩一、二段沉积时期主要发生张扭变形;嫩三段~第四系时期受NWW向压扭应力场作用主要发生反转变形。
     依据断裂形成时期、变性特征(伸展、张扭和走滑)及形成演化机制,可知研究区共发育6种类型断裂系统:断陷期形成的断裂、拗陷期形成的断裂、反转期形成的断裂、断陷期形成拗陷期持续活动的断裂、断陷期形成拗陷期和反转期均持续活动的断裂、拗陷期形成反转期持续活动的断裂。断陷期形成拗陷期和反转期均活动的断层、拗陷期形成反转期活动的断层为葡萄花油层的主要油源断层类型。
     在断裂系统划分的基础上,利用研究区多口井数据,进行肇41-州58区块油分布规律及油藏类型研究,得到油藏类型主要有断块油藏、断层遮挡油藏和断层—岩性油藏三种类型。
     依据断裂系统划分结果、油藏类型及其分布规律以及断层对油气的控制作用将肇41-州58区块断层相关圈闭划分为3种类型:即断块圈闭、断层遮挡圈闭和断层—岩性圈闭。
     通过断裂对油气成藏的控制作用,肇41-州58区块油气成藏与分布特征,将断裂控藏模式分为三种类型,即源内垂向运移断层遮挡控藏模式、源内先垂向后砂体侧向运移断层遮挡控藏模式和源外垂向运移断层遮挡藏模式。
By the study of information system of three-dimensional seismic interpretation in Zhao 41 - 58 block, detailed analysis of the geometry of the fracture, the study area has developed the lower vertical and central fault system, the upper part of the fault system is minimal. Presents a variety combination mode in vertical, there are mainly "flower" combined mode and the "cut-base" type of combined models. T11 reflective layer developed multi-directional fault zone, on the profile there are 'like flower-like' and 'V shaped' combination model. Fault dense belt is wide on T11 reflective layer, scale of faults is small, and the faults on the edge of the belt is that some faults on the edge of fault condensed belts of F,y oil layer up to P oil layer.
     Fault activity period in the study area during the total 7: Early Cretaceous、Late K1q~early K2qn sedimentary period、K2y sedimentary period, K2n1、K2n2 sedimentary period,they are a period of extension ; final K2n sedimentary period、final K2m sedimentary period、final E2y sedimentary period for the three strong squeeze. Faults has gone through the formation and evolution of extensional deformation of K1h~K1sh sedimentary period; mainly transtensional deformation of K1d~K2n1、K2n2 sedimentary period; K2n3~the fourth line was stressed by NWW Field reversal occurs mainly deformation.
     According to the formation period, the variability features (extension, transtensional and strike-slip) and the formation and evolution mechanism of the fault ,the study area shows that a total of 6 types of fault systems development: the faults formed in faulted period , the faults formed in depression period, the faults formed in reversal period ,the faults formed in faulted period and continuous actives in depression period, the faults formed in faulted period and continuous actives in depression and reversal period, the faults formed in depression period and continuous actives in reversal period. The faults formed in faulted period and continuous actives in depression and reversal period and the faults formed in depression period and continuous actives in reversal period are mainly source fault types in P oil layer.
     Based on the division of the fault system, through the data of several wells in the study area, to study the the oil distribution and reservoir type of Zhao 41– Zhou 58 block , and the reservoir type mainly are fault block oil reservoir, fault seal oil reservoir and fault - lithology oil reservoir .
     According to the results of fault system classified, and the distribution of reservoir type and the controlling function of faults to oil and gas will classified the fault-related traps of Zhao 41– Zhou 58 block of to two categories and four types: the fault block trap, the fault sealing trap, the fault-lithologic trap.
     Though the controlling function of faults to the oil accumulation and the characteristic of oil accumulation and distribution of Zhao 41– Zhou 58 block, reservoir controlling mode of the fault can be divided into three types, namely, the vertical migration and fault sealing reservoir controlling mode in oil source area, the vertical migration and sand lateral migration fault sealing reservoir controlling mode in oil source area, the vertical migration and fault sealing reservoir controlling mode outside of oil source area.
引文
[1] Shipton, Cowie. A Conceptual Model for the Origin of Fault Damage Zone Structures in High-porosity Sandstone[J].Journal of Structural Geology, 2003,25(3):333-344.
    [2] Antonellini, M,Aydin A. Effect of Faulting on Fluid Flow in Porous Sandstones:Petrophysical Properties[J].AAPG Bull,1994,78(3):355–377.
    [3]于丹.海塔盆地塔南凹陷断裂系统及其控藏机理研究[D].东北石油大学博士论文,2010,1-10.
    [4]王锐.十屋断坳区断裂系统对油气成藏的作用[J].天然气工业,2000,20(增刊):34-37.
    [5] Fisher Q J,Knipe R J.The Permeability of Faults Within Siliciclastic Petroleum Reservoirs of the North Sea and Norwegian Continential Shelf [J]. Marine and Petroleum Geology, 2001, 18: 1063~1081.
    [6] Lindsay, N G. Outcrop studies of shale smears on fault surfaces [J]. In:Murphy, F C, Walsh J J, Watterson J.(Eds.)[C], Special Publication of the International Association of Sedimentologists, 1993, 15: 113.
    [7] Bouvier J D, Kaars-Sijpesteijn C H, Kluesner D F, et al. Three-dimensional Seismic Interpretation and Fault Sealing Investigations, Nun River Field, Nigeria[J]. AAPG Bulletin, 1989,73: 1397~1414.
    [8] Fulljames J R,Zijerveld J J,Franssen RCMW.. Fault Seal Processes: Systematic Analysis of Fault Seals Over Geological and Production Time Scales [A]. In: Moller-Pedersen P K, Koestler A G (eds) Hydrocarbon Seals-importance for Exploration and Production [C]. Norwegian Petroleum Society, NPF Spec. Publ, 1997, 7:51-59.
    [9]沈传波,李祥权,杜学斌.流体包裹体在油田断裂研究中的某些应用[J].大庆石油地质与开发,2003,22(4):4~6.
    [10]付广,黄劲松,康德江,等.源断裂在油气成藏与分布中的作用研究——以贝尔凹陷布达特群潜山为例[J].石油物探,2006,45(5):459-463.
    [11]姜振学,庞雄奇,曾溅辉,等.油气优势运移通道的类型及其物理模拟实验研究[J].地学前缘,2005,12(4):507-516.
    [12]付广,孙永河,吕延防.输导通道类型对天然气聚集效率的影响[J].地质论评,2006,52(2):236-243.
    [13] Losh S,Walter L,Meulbroek P,et al. Reservoir Fluids and Their Migration Into the South Eugene Island Block 330 reservoirs, Offshore Louisiana[J]. AAPG Bull. 2002,86(8):1463-1488.
    [14]罗群,庞雄奇,姜振学.一种有效追踪油气运移轨迹的新方法—断面优势运移通道的提出及其应用[J].地质论评,2005,51(2):156-162.
    [15]姜振学,庞雄奇,曾溅辉,等.油气优势运移通道的类型及其物理模拟实验研究[J].地学前缘,2005,12(4):507-516.
    [16]吕延防,姜贵周.延吉盆地断裂特征及对油气分布的控制[J].断块油气田,1997,4(2):1-4.
    [17]姜素华,曾溅辉,李涛,等.断层面形态对中浅层石油运移影响的模拟实验研究[J].中国海洋大学学报,2005,35(2):245~248.
    [18]罗群.断裂控烃理论与油气勘探实践[J].地球科学——中国地质大学学报,2002,27(6):751-755.
    [19] Edward Prestholm and Olav Walderhaug, Synsedimentary, faulting in a Mesozoic Deltaic Sequence, Svallbard, Arctic Norway~fault Geometries, Faulting Mechanisms and Sealing Properties[J].AAPG Bulletin, 2000,8(4):505-510.
    [20] Ted Doughty P. Clay Smear Seals and Fault Sealing Potential of an Exhumed Growth Fault,Rio Grande Rift,New Mexico[J]. AAPG Bullitin,2003,87(3):427-444.
    [21] Smith DA. Theoretical consideration of sealing and nonsealing faults [J]. AAPG Bulletin,1966, 50:363~374.
    [22]史集建.滨北地区青一段泥岩超压形成演化及对断裂封闭作用研究[D].大庆石油学院硕士论文.2009,2-8.
    [23]陈发景,田世澄.压实与油气运移[M].武汉:中国地质大学出版社,1989,156~160.
    [24]李春光.东营凹陷断裂系统对油气藏分布的控制[J].石油与天然气地质,1994,15(1):87-93.
    [25] Hooper E. Fluid migration along growth fault in compacting sediments[J].Journal of PETROLEUM GEVLOGG, 1991,14(2):160-190.
    [26]付立新,王东林,肖玉永.伸展断层作用对油气二次运移的影响[J].石油大学学报(自然科学版).2000,24(4):71~74.
    [27]孙宝珊.铲(犁)式断裂控油模式概析[J].地质力学学报,1996,2(4):68~72.
    [28]贾东,卢华复,魏东涛,等.断弯褶皱和断展褶皱中的油气运移聚集行为[J].南京大学学报(自然科学),2002,38(6):747~755.
    [29] Hindle A D. Petroleum migration pathways and charge concentration: a three Dimensional Model [J]. AAPG Bulletin, 1997, 81: 1451~1481.
    [30]邓运华.张—扭断裂与油气运移分析—以渤海油区为例[J]..中国石油勘探,2004,2:33~37.
    [31]胡望水.松辽盆地T2断层系及青山口组早期伸展裂陷[J].石油勘探与开发,1995,22(2):8-12.
    [32]胡望水,王燮培.松辽盆地北部变换构造及其石油地质意义[J].石油与天然气地质,1994,15(2):164-172.
    [33]云金表,金之钧,殷进垠.松辽盆地继承性断裂带特征及其在油气聚集中的作用[J].大地构造与成矿学,2002,26(4):379-385.
    [34]迟元林,蒙启安,杨玉峰.松辽盆地岩性油藏形成背景与成藏条件分析[J].大庆石油地质与开发,2004,23(5):10-15.
    [35]武卫锋.三肇凹陷扶杨油层断裂系统及控藏机理研究[D].大庆石油学院博士论文,2008,1-8.
    [36]方纯昌.三肇凹陷葡萄花油层断裂对成藏的控制作用[D].大庆石油学院硕士论文, 2008,3-7.
    [37]朱德丰,吴相梅,张庆晨.松辽盆地构造演化对油气运聚及成藏的控制作用[R].大庆:大庆勘探开发研究院,2000:10-40.
    [38]袁红旗.松辽盆地北部宋芳屯地区葡萄花油层高分辨率层序地层学及砂体定量研究[D].大庆石油学院博士论文,2008:11-23.
    [39]殷进垠,刘和甫,迟海江.松辽盆地徐家围子断陷构造演化[J].石油学报,2002,23(2):26-29.
    [40]高瑞琪等.松辽盆地油气田形成条件与分布规律[M].石油工业出版社,1997.
    [41]付晓飞,宋岩,吕延防,等.塔里木盆地库车凹陷膏岩质盖层特征及与天然气保存[J].石油实验地质,2006,28(1):25~29.
    [42]罗晓容.断裂开启与地层中温压瞬态变化的数学模拟[J].石油与天然气地质,1999,20(1):1-6.
    [43]李宪梅,贾玉平,徐杰.辽河盆地中央凸起南部断裂特征与油气聚集关系[J].断块油气田,1998,5(3):11-15.
    [44]付晓飞,吕延防,孙永河.库车坳陷北带天然气聚集成藏的关键因素[J].石油勘探与开发,2004,31(3):22~25.
    [45]李建民.海塔盆地开发区块断裂系统及对油水关系控制作用[D].大庆石油学院博士论文,2010,55-63.
    [46]孙永河,韩钰萍,冯志鹏,等.海拉尔盆地贝尔凹陷断裂系统及其对油气运聚的控制作用[J].地质论评,2011,57(1):89-100.
    [47]孙永河.渤中坳陷新生代构造特征及其对油气运聚的控制[D].大庆石油学院博士论文,2008,49-66.
    [48]沙子萱.大庆长垣南部黑帝庙油层天然气成藏模式及主控因素研究[D].大庆石油学院硕士论文,2009,29-41.
    [49]张立含.三肇凹陷源区内外扶杨油层油成藏机制研究[D].东北石油大学博士论文,2010,62-70.
    [50] Clifton A E, Schlische R W, Withjack M O,et al. Influence of Rift Obliquity on Fault-Population Systematics: Results of Experimental Clay Models[J]. Journal of Structural Geology,2000,22(10):1491-1509.
    [51] Child C,Watterson J,Walsh J J. Fault Overlap Zones within Developing Normal FaultSystems[J].Journal of Geological Society of London,1995,152(3):535-549.
    [52] Higgins R I,Harris L B. The Effect of Cover Composition on Extensional Faulting Above Re-activated Basement Faults : Results from Analogue Modeling[J].Journal of Structural Geology,1997,19(1):89-98.
    [53] Shipton, Cowie. A Conceptual Model for the Origin of Fault Damage Zone Structures in High-porosity Sandstone[J].Journal of Structural Geology, 2003,25(3):333-344.
    [54] Jev B I, Kaars-Sijpersteijn C H, Peters M P A M,et al.Akaso Field,Nigeria:use of Intergrated 3-D Seismic,Fault Slicing,Clay Smearing,and RFT pressure data on fault trapping and dynamic leakage[J].AAPG Bulletin,1993,77(8):1389-1404.
    [55] Mark G.Roman and Roberto Linares. Fold-Evolution Matrices and Axial~surface Analysis of Fold~Bend Fold: Application to the Modina Anticline, Easten Cordillers, Colombia[J].AAPG Bulletin, 2000,84(6):741-746.
    [56] David A, Alan P, John A. Crossing Conjugate normal fault[J].AAPG Bulletin 2000,84,(10),1543-4547.
    [57] Constantin J,Peyaud J B,Verg_ely P,et al. Evolution of the Structural Fault Permeability in Argillaceous Rocks in A Polyphased Tectonic Context[J].Physics and Chemistry of the Earth,2004,29(1):25–41.
    [58] Marc Holland,Janos L. Urai,Wouter van der Zee,et al. Fault gouge Evolution in highly Overconsolidated Claystones[J]. Journal of Structural Geology, 2006,28(2):323–332.
    [59] Bashir A. Koledoye,Atilla Aydin,Eric May. A new process-based methodology for analysis of shale smear along normal faults in the Niger Delta[J].AAPG Bullitin. 2003,87(3):445~663.
    [60]陈书平,漆家福,王德仁,等.东濮凹陷断裂系统及变换构造[J].石油学报,2007,28(1):43-49.
    [61]罗群.断裂活动与油气藏保存关系研究[J].石油实验地质,2000,22(3),225-231.
    [62]孙永河,万军,付晓飞等.贝尔凹陷断裂演化特征及对潜山裂缝的控制[J].石油勘探与开发,2007,34(1) :316-322.
    [63] Yielding, J.A.Overland. Characterization of fault zone for reservoir modeling, a example from the Gollfalcs field, Norther North Sea[J].AAPG Bulletin, 1999,83(6):925-951.
    [64]张文华.关于断层在断陷盆地中对油气运聚作用的几点认识[J].现代地质,1994,8(2):45-67.
    [65]罗群,白新华.断裂控烃理论与实践—断裂活动与油气聚集研究[M].北京:中国地质大学出版社,1998.
    [66]付广,王有功.源外鼻状构造区油运移输导通道及对成藏的作用——以松辽盆地尚家地区为例[J].地质论评,2008,54(5):646-652.
    [67]王雅春,王胜男.源岩、超压和断裂空间匹配对三肇凹陷扶杨油层油成藏的控制作用[J].吉林大学学报(地球科学版),2009,39(4):656-661.
    [68]付广,吕延防,杨一鸣.我国大中型气田断裂输导天然气能力综合评价[J].地球学报,2007,28(4):382-388.
    [69] Kip Cerveny, Russell Davies, et al. Reducing Uncertainty With Fault-seal Analysis [J]. Oilfield Review, 2004, 38~51.
    [70]付广,王有功.三肇凹陷青山口组源岩生成油向下“倒灌”运移层位及其研究意义[J].沉积学报,2008,26(2):355-360.
    [71]付晓飞,平贵东,范瑞东,等.三肇凹陷扶杨油层油气“倒灌”运聚成藏规律研究[J].沉积学报,2009,27(3):558-566.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700