用户名: 密码: 验证码:
中低速磁浮列车传感器故障检测
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磁悬浮控制系统是整个磁浮交通系统的核心,悬浮传感器是悬浮控制系统的状态感知来源,悬浮传感器所采集数据的正确性直接影响悬浮的稳定性。因此,及时准确地检测出传感器故障,提高数据采集系统的可靠性,对于提高整车运行的安全性具有重要意义。本文以工程应用为背景,在对比分析各种故障检测方法的基础上,选择采用基于信号处理的方法进行传感器故障检测,分别应用Hilbert-Huang变换和自适应滤波的方法对不同故障条件下的信号进行了仿真分析和实验,主要做了以下具体工作:
     首先,在HHT方法定义的基础上,通过对传感器数据的分析以及和傅立叶变换、小波变换的对比说明了HHT方法在分析非平稳信号中的优越性。同时,对方法自身存在的不足作了改进和补充。在此基础上,对实际采集的传感器信号添加不同干扰,分别模拟乘性故障、加性故障和缓变故障,应用改进的HHT方法对各种故障条件下的信号进行了经验模态分解(EMD),对所得固有模态函数(IMFs)的幅值谱采用了滑动平均的方法提取其中的故障特征,针对不同故障信号的幅频特征及剩余信号的状态提出了对应的故障检测方法。对于HHT方法在传感器故障检测中的不足以及不适用的情况作了解释说明和补充。
     其次,在悬浮控制模型的基础上,分析了位置传感器探头输出之间的关系,在传感器输出特性相同的情况下提出用自适应滤波的方法提取位置传感器探头输出差值之间的相关系数,通过相关系数的变化情况判断故障发生的时刻、位置及类型,并通过仿真和单转向架实验说明了方法的有效性。
     最后,本文总结了全文的研究成果及不足之处,对故障检测技术在中低速磁浮列车传感器故障检测中未来的发展方向提出了展望。
Suspension control system is the kernel of the maglev vehicle system, and the sensors measure states of the suspension control system. Validity of the data from the sensors affects the stability of suspension directly. Thus, for improving the reliability of the data-gathering system and the security of maglev train, a timely and exact fault detect of the sensors is very important. Comparing kinds of fault detect methods, the signal-processing-based method was chosen to carry out. Separately, using the method of Hilbert-Huang transform(HHT, shortly) and self-adaptive filtering, signals under different fault conditions were simulated and analyzed. The main works of this paper are listed below.
     Firstly, based on the definition of HHT, the superiority of HHT in analyzing non-smooth signals was showed in applying the method to the sensor data-analyzing and comparing with Fourier transform and wavelet transform, and the deficiencies of the method itself were improved. On this ground, different disturbances were added into the normal signals to simulate the multiplication fault, the addition fault and the slow-changed fault, and then the improved HHT was applied to the simulant fault signals. After the empirical mode decomposition(EMD, shortly) of the signals and Hilbert transform of the intrinsic mode function(IMF, shortly) gained from the former step, fault characteristics were extracted from the amplitude spectrum and frequency spectrum, and the corresponded fault detection basing on the amplitude-frequency characteristics of the IMFs were presented. The deficiencies of HHT in fault detection of the sensors were also explained and supplemented.
     Secondly, based on the maglev control model, relations in the outputs of position sensors were analyzed, and the point of view which correlation coefficients among the differences of the outputs can be gained using self-adaptive filtering was put forward. The occurring time, location and form of the fault can be judged by the altering of the correlation coefficients. The results of simulations and experiments on the bogie of maglev train well proved the effectiveness of the method.
     Finally, the achievements and insufficiency of this paper were summarized, and the future of sensor fault detection in maglev train was prospected.
引文
[1]吴祥明.磁浮列车[M].上海:上海科学技术出版社, 2003.
    [2]陈贵荣,常文森.磁浮列车发展综述[J].国外道车辆, 1993, 1: 17-20.
    [3]张锟,李杰,常文森. EMS型磁浮列车模块的运动耦合研究[J].机车电传动, 2006, 28(3): 22-26.
    [4] Weiheng Zhu, Dao-Yi Zhu. Future Maglev in China and Beyond [A]. Maglev’2004 Proceedings [C], 2004, Vol. 1:256-268.
    [5] Willsky A S. A Survey of Design Methods for Failure Detection in Dynamic Systems[J]. Automatica, 1976, 12: 601-611.
    [6]周东华,王桂增.故障诊断技术综述[J].化工自动化及仪表, 1998, 25(1): 58-62
    [7] Frank P.M. Fault Diagnosis in Dynamic Systems Using Analytical and Knowledge-based Redundancy—A Survey and Some NewResults[J]. Automatica, 1990, 26(3): 459-474
    [8]叶银忠,潘日芳,蒋慰孙.动态系统的故障检测与诊断方法[J].信息与控制, 1986, 15(6):27-34.
    [9] Gertler J J. Fault Detection and Diagnosis in Engineering Systems[M]. Marcel Dekker, NewYork, 1998.
    [10]闻新,张洪钺,周露.控制系统的故障诊断和容错控制[M].北京:机械工业出版社, 1998.
    [11] S.Dash, V.Venkatasubramnian. Challenges in the Industrial Application of Fault Diagnosis Systems[J]. Computers and Chemical Engineering, 2000, 24: 785-791.
    [12] Patton R J, Chen J. Review of Parity Space Approaches to Fault Diagnosis for Aerospace System[J]. Journal of Guidance, Control and Dynamics, 1994, 17(2): 278-285.
    [13]吴今培.智能故障诊断技术的发展和展望[J].震动、测试与诊断, 1999, 19(2): 80-147.
    [14]刑琰,吴宏鑫,王晓磊,李智斌.航天器故障诊断与容错控制技术综述[J].宇航学报, 2003, 24(3): 221-226.
    [15]邱浩,王道波,张焕春.控制系统的故障诊断方法综述[J].航天控制, 2004, 22(2): 53-60.
    [16]李渭华,萧德云,方崇智.一种基于自适应滑动窗格性滤波算法的故障检测器[J].自动化学报, 1996, 22(2): 251-253.
    [17] Jiang J., Jia F. A Robust Fault Diagnosis Scheme Based on Signal Modal Estimation[J]. International Journal of Control, 1995, 62(2): 461-475.
    [18]叶昊,王桂增,方崇智.小波变换在故障检测中的应用[J].自动化学报, 1997, 23(6): 736-741.
    [19]叶昊,王桂增,方崇智,张永光,刘志军.一种基于小波变换的导弹运输车辆故障诊断方法[J].自动化学报, 1998, 24 (3): 301-306.
    [20]龙志强,吕治国.基于模糊综合评估的磁浮列车故障诊断系统[J].信息与控制, 2004, 33(2): 227-230.
    [21]龙志强,吕治国,常文森.基于模糊故障树的磁浮列车悬浮系统故障诊断[J].控制与决策, 2004, 19(2): 139-142.
    [22] Norden E. Huang. Introduction to The Hilbert Huang Transform and Its Related Mathematical Problems[M]. Chapter1: 1-25.
    [23] T. Kijewski-Correa, A. Kareem. Performance of Wavelet Transform and Empirical Mode Decomposition in Extracting Signals Embedded in Noise[J]. Journal of Engineering Mechanics, 2007, 7: 849-852.
    [24] Harishwaran Hariharan, Andreas Koschan, Besma Abidi, Andrei Gribok, Mongi Abidi. Fusion of Visible and Infrared Images Using Empirical Mode Decomposition to Improve Face Recognition[J]. IEEE, 2006: 2049-2052.
    [25] M Lemay, JM Vesin. QRST Cancellation Based on the Empirical Mode Decomposition[J]. Computers in Cardiology, 2006, 33: 561-564.
    [26] Patrick Flandrin, Gabriel Rilling ,Paulo Goncalves. Empirical Mode Decomposition as a Filter Bank[J]. IEEE Signal Processing Letters, 2003: 1-4.
    [27] Md.Khademul Islam Molla, Keikichi Hirose, Nobuaki Minematsu, Md.Kamrul Hasan. Pitch Estimation of Noisy Speech Signals using Empirical Mode Decomposition[J]. Interspeech, 2007: 1645-1648.
    [28]刘小峰,秦树人,柏林.基于小波包的经验模态分解法的研究及应用[J].中国机械工程, 2007, 18(7): 1201-1204.
    [29]郭晓静,吴小培.基于模态分解的Hilbert-Huang变换[J].宿州学院学报, 2006, 21(3): 135-138.
    [30] S.Sinclair, G. G.S.Pegram. Empirical Mode Decomposition in 2-D space and time: a tool for space-time rainfall analysis and nowcasting[J]. Hydrology and Earth System Sciences, 2005(9): 127-137.
    [31] Ming-Chya Wu, Chin-Kun Hu. Empirical mode decomposition and synchrogram approach to cardiorespiratory synchronization[J]. Physical Review, 2006, 051917:1-11.
    [32] Gabriel Rilling and Patrick Flandrin. One or Two Frequencies? The Empirical Mode Decomposition Answers[J]. IEEE Trans. on Signal ProcessingS, November 13, 2006:1-19.
    [33] Anna Linderhed. Adaptive Image Compression with Wavelet Packets andEmpirical Mode Decompositionl[M]. Linkoping, 2004.
    [34]周晨赓.几种信号分析方法对非线性、非平稳信号分析效果的比较[J].山东电子, 2003(4): 43-45.
    [35]颜彪,杨娟.关于希尔伯特变换的分析和研究[J].电气电子教学学报, 2004, 26(5): 27-30.
    [36]张贤达.现代信号处理[M].北京:清华出版社, 2002.
    [37]谢桂海,李浩,杨磊.非平稳数据处理方法与瞬时频率[J].军械工程学院学报, 2006, 18(6): 70-73.
    [38]杜修力,何立志,侯伟.基于经验模态分解(EMD)的小波阈值除噪方法[J].北京工业大学学报, 2007, 33(3): 265-272.
    [39]于伟凯,刘彬.基于EMD的时间尺度去噪方法的研究[J].计量技术, 2006, 11:12-15.
    [40]盖强,张海勇,徐晓刚. Hilbert-Huang变换的自适应频率多分辨分析研究[J].电子学报, 2005, 33(3): 563-564.
    [41]李鸿光,孟光.基于经验模式分解的混沌干扰下谐波信号的提取方法[J].物理学报, 2004 , 53(7): 2069-2073.
    [42]王春,彭东林. Hilbert-Huang变换及其在去噪方面的应用[J].仪器仪表学报, 2004, 25(4): 42-45.
    [43]王学敏,黄方林,陈政清. Hilbert-Huang变换在桥梁振动分析中的应用[J].道学报, 2005, 27(2): 80-84.
    [44]孙斌,周洪亮,张宏建,黄咏梅.基于Hilbert-Huang变换的涡街信号处理方法[J].浙江大学学报(工学版), 2005, 39(6): 801-804.
    [45]李建伟,许宝杰,韩秋实.非平稳振动信号分析中Hilbert-Huang变换的对比研究[J].机械强度, 2006, 28(2): 165-169.
    [46]李云天,高磊,赵妍.基于HHT的电力系统低频振荡分析[J].中国电机工程学报, 2006, 26(14): 24~30.
    [47]程军圣,于德介,杨宇.经典模态分解方法中内禀模态函数判据问题研究[J].中国机械工程, 2004, 15(20): 1861-1864.
    [48]陈平,李庆民,赵彤.瞬时频率估计算法研究进展综述[J].电测与仪表, 2006, 43(7): 1-7.
    [49]常鸣,袁慎芳.一种新型数字信号处理技术的研究[J].计算机测量与控制. 2005, 13(4): 356-259.
    [50]何旭,李鸿光.利用经验模式分解提高短时傅立叶变换分辨率[J].广西师范大学学报(自然科学版), 2005, 23(1): 1-4.
    [51]钟佑明,秦树人,汤宝平.一种振动信号新变换法的研究[J].振动工程学报,2002, 15(2): 233-238.
    [52]丁康,陈健林,苏向荣.平稳和非平稳振动信号的若干处理方法及发展[J].振动工程学报, 2003, 16(1): 1-10.
    [53]程发斌,汤宝平,何启源.虚拟式Hilbert - Huang变换信号分析仪的研制[J].重庆大学学报(自然科学版). 2007, 30(6): 1-5.
    [54]程军圣,于德介,杨宇.一种基于Hilbert-Huang变换和AR模型的滚动轴承故障诊断方法[J].系统工程理论与实践, 2004(10): 92-98.
    [55]黄海.扬声器非线性特性的Hilbert-Huang变换分析[J].浙江大学学报(工学版), 2005, 39(3): 385-391.
    [56]徐长发,李国宽.实用小波方法(第二版)[M].武昌:华中科技大学出版社, 2004.
    [57]刘海忠.小波变换和傅立叶变换在信号频率分析中的比较[J].天水师范学院学报. 2005,25(5): 29-30.
    [58]吴浩中,戴小文,王开文.小波变换在摆式列车倾摆控制系统故障诊断中的应用研究[J].机械强度, 2003, 25(1): 12-15.
    [59]林春丽,王克成,黄轶.小波变换与傅立叶变换在信号消噪中的对比研究[J].华北科技学院学报, 2005, 2(4): 80-82.
    [60] S. Mallat. A Wavelet Tour of Signal Processing[M]. Academic Press, 1998.
    [61]郑天翔,杨力华.经验模式分解算法的探讨和改进[J].中山大学学报(自然科学版), 2007, 46(11): 1-6.
    [62]陈忠,郑时雄. EMD信号分析方法边缘效应的分析[J].数据采集与处理, 2003, 1(18): 114-118.
    [63]邓拥军,王伟,钱成春. EMD方法及Hilbert变换中边界问题的处理[J],科学通报, 2001, 46(3): 257-263.
    [64]张健,冯志华,朱忠奎. EMD算法的位置敏感性分析[J],振动与冲击, 2007, 26(2): 21-24.
    [65]罗奇峰,石春香. Hilbert-Huang变换理论及其计算中的问题[J].同济大学学报, 2003, 31(6): 637-640.
    [66]刘霖雯,刘超,江成顺. EMD新算法及其应用[J].系统仿真学报, 2007, 19(2): 446-448.
    [67]黄海,陈祥献. Hilbert-Huang变换应用中的预处理方法研究[J].浙江大学学报(工学版), 2007, 41(3): 431-435.
    [68]盖广洪.经验模态分解的一种改进算法[J].西安交通大学学报, 2004, 38(11): 1199-1202.
    [69]楼梦麟,黄天立.正交化经验模式分解方法.同济大学学报(自然科学版),2007, 35(3): 293-298.
    [70]吴浩中,王开文.小波包-神经网络在摆式列车倾摆控制系统故障诊断中的应用[J].交通运输工程学报, 2003, 3(2): 27-30.
    [71]何振亚.自适应信号处理[M].北京:科学出版社, 2002.
    [72]陈尚勤,李晓峰.快速自适应信息处理[M].北京:人民邮电出版社, 1993.
    [73]王布宏,郭英.频域LMS算法在语音消噪中的应用[J].空军工程大学学报(自然科学版), 2008, 1(3): 64-67.
    [74]舒歌群.弹性波主动控制中LMS算法的最佳收敛系数问题研究[J].振动工程学报, 2004, 17(1): 108-111.
    [75]白晶,尹怡欣,郝智红,孙和平.基于变论域的变步长LMS算法[J].北京科技大学学报, 2009, 31(1): 108-111.
    [76]李秉实.频域自适应数字滤波器LMS算法的研究[J].重庆邮电学院学报, 1993, 15(1): 7-15.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700