用户名: 密码: 验证码:
长距离矿浆管道输送过程检测与控制关键技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
长距离矿浆管道输送方式具有输送能力大、耕地占用少、不受气候条件限制、节能减排等许多优点。随着对偏远地区矿产资源需求的增加,长距离矿浆管道输送的应用日益广泛。然而矿浆管道输送过程中可能出现淤积、堵塞,严重磨损等问题,矿浆管道输送流速等重要参数的测控是解决上述问题的关键技术。我国已建的长距离矿浆管道输送测控系统多由外国公司提供专有设计与关键技术。现已应用的技术不能确保所有工况下矿浆管道输送流速的准确检测,复杂工况下矿浆管道输送过程的控制水平亟待提高。本论文依托国家科技支撑计划课题《复杂地形矿浆管道输送安全运行关键技术问题研究》,将矿浆管道输送工艺技术与测控技术两个研究领域融合在一起,通过理论分析与试验研究相结合,旨在提供矿浆管道输送系统在复杂工况下准确的智能检测与自动控制的关键技术。主要研究工作与创新点包括以下几个方面:
     1、分析了长距离复杂地形矿浆管道输送工艺流程及参数,研究了管道输送特性。提出了管道输送过程混杂控制系统框架,分析了输送过程混杂控制中的难点。通过管道输送流速控制各环节的建模,及输送管道动态模型的分析,说明了长距离管道输送流速控制具有非线性、参数时变、多输入、多输出、强耦合的传递延迟特性,提出并建立了连续方式的输送流速控制流程模型。
     2、通过理论与实验,研究了矿浆管道输送中单一采用电磁流量计检测流速产生虚假数据的原因。确定与提取了与矿浆输送流速相关的特征量:差压波动系数、流量波动系数等,分析其与流速的相关性。提出了一种多传感器数据融合与识别的矿浆流速检测技术。将FCMAC结合AdaBoost应用于流速值的虚假数据识别,提出了改进的AdaBoost-FCMAC识别算法作为虚假数据识别器,根据从多个传感器提取的特征对检测的流速数据进行真假辨别和修正处理。通过试验验证该技术能实现复杂工况下的流速准确实时检测。
     3、针对工业多泵站管道批量输送方式工况频繁变化的复杂过程,提出了基于复合逆控制的仿人多模态输送流速控制器。分析了仿人多模态控制器从特征辨识到多模态控制输出的映射关系,给出了全工况的推理过程。针对某一特定工况段,分析了管道输送流速调节系统可逆性,采用小波神经网络建立其逆模型,说明了复合逆控制的实现。通过计算机仿真和试验等方式验证了控制器的性能,证明控制结构与算法的有效性。
     4、研究了具有特殊瞬态特性的带浆停泵再启动过程。为了确保输送系统能从故障后特殊工况下安全启动,分析了启动过程的输送系统各部分启动特性和控制规律。提出了一种智能识别与切换控制的带浆再启动控制方法,经过智能识别诊断,采用预定基准值与调节值相结合,实现了变步长与变增量的阶梯式再启动控制。通过试验基地带浆停泵再启动试验,验证了所研究的方法可确保管道输送系统在长时间停泵后实现安全稳定运行。
     5、在模拟我国某长距离管线特征建立的复杂地形浆体管道输送试验基地上,开发了工业标准级的基于混杂递阶思想的全工况智能测控系统。测控系统完成了多传感器融合检测与智能控制方法实用化应用;进行矿浆管道输送特性与参数的实验研究,实现了模拟工业化的不同条件下全自动化的多泵矿浆输送测控,验证了提出控制算法的稳定性和鲁棒性。
     本论文所提出的智能测控技术解决了矿浆管道输送流速准确检测的难题,实现了强干扰及特殊工况下矿浆管道输送的稳定控制,具有创新性与工程实用价值以及推广应用前景。
     论文最后对主要创新研究成果进行了总结,展望下一步研究工作。
Long-distance slurry pipeline transportation has many advantages over other transportation technologies, such as larger capacity, less land use, less reliance on climate conditions, more energy saving and reduced emission. With the increase in demand for mineral resource in suburban areas, the need for long-distance slurry pipeline also rises significantly. However, during the slurry pipeline transportation process, sedimentation, blockage and severe wear may easily occur. Accurately detecting and controlling the velocity of the slurry flow is key to solving these problems. At present, most of the established slurry pipeline transportation systems in our country are provided by foreign companies. However, the current technology cannot ensure accurate detection of the slurry flow velocity under all circumstances. In addition, automation control under various complicated conditions needs to be improved. This study is part of the National Science and Technology Support Program Project, titled "Research on the key technologies of the secure operation of slurry pipeline in complex terrains". It focuses on the detection and control issues pertaining to the long-distance slurry pipeline transportation process and aims to provide solutions for the accurate intelligence detection and control of the transportation system under complex conditions. The main findings are summarized below.
     1. This thesis analyzes the process flows and parameters of the long-distance slurry pipeline, studies the characteristics of slurry pipeline transportation.The key points in the slurry pipeline transportation process control are analyzed, Pipeline transportation process hybrid control system framework is proposed. Through the modeling of each section of pipeline flow control and the dynamic model of pipeline, a continuous way of conveying velocity control of the process model is put forward and set up.The transportation velocity control system of the slurry pipeline is proved to be a transfer delay system with characteristics such as nonlinearity, time varying, multi-input multi-output and strong coupling.
     2. Through reviewing theories and conducting experiments, the disturbance of using the electromagnetic flow meter to measure flow velocity of the slurry pipeline transportation is analyzed. A detection system of slurry flow velocity based on multi-sensor information integration is developed. The characteristic parameters related to the slurry flow velocity are determined and extracted, such as pressure difference fluctuation factor, flow fluctuation factor and etc. The correlations between these parameters and the slurry flow velocity are analyzed. Based on the features extracted from multiple sensors, AdaBoost is combined with FCMAC to identify the facticity of flow velocity data. An improved AdaBoost-FCMAC recognition algorithm as false data identifier is proposed. The experiment results confirm that this method can achieve accurate and real-time detection of slurry flow velocity under complex operating mode.
     3. The operating modes of the actual process of the industrial multi-pump station pipeline transportation change very frequently. Hence, human-simulated multi-mode controller structure and algorithm based on the complex inverse control with Application to the flow velocity control for Slurry Pipeline are proposed. The deduction process from feature recognition to total output of human-simulated multi-mode control is presented. The reversibility of the pipeline flow adjustment system is analyzed, and the inverse control model based on wavelet neural network is constructed. The flow velocity complex NPID inverse control is proposed. The results of experiments and simulation have confirmed the high performance of this algorithm, and the validity of the control structure and algorithm.
     4. The restart technology after slurry pipeline transportation system failure is investigated. In order to ensure the slurry pipeline transportation system can safety re-start from the special working conditions, the start characteristics of transmission system parts and control laws are analyzed. Switching control based on intelligent recognition is designed to meet the requirements of slurry restarting. Through the intelligent recognition and diagnosis of system status, restarting with gain-varying and step-varying by means of switching control is realized by using the combination of expecting standard value and adjustment value. The experiment results show that the automatic restarting of slurry by means of switching control based on intelligent recognition is safe and stable even after a long-term pump-stop.
     5. On a simulated experimental base of long-distance slurry pipeline transportation in our country, the whole operating mode intelligent measurement and control system of industry standard based on complex step idea is developed. The practical application of the measurement and control system based on multi-sensor fusion and intelligent control method is achieved. The transportation characteristics and parameters of slurry pipeline are studied, and the simulation of automatic multi-pump slurry pipeline transportation control on different industrialization conditions is achieved. The robustness and stability of the proposed method are then verified.
     The proposed intelligent measurement and control technique in this thesis can resolve the difficulty of accurately detecting the flow velocity of slurry transportation, and achieve stable control under strong disturbance and special operating modes. The findings of this research are innovative and have engineering practical value. There are also good prospects in their extended applications.
     Finally, the main innovative research results are summarized, and further study directions are discussed.
引文
[1]邹伟生,袁海燕,罗绍卓.长距离管道输送发展现状及在矿山的应用前景.金属材料与冶金工程,2009,37(1):57-60
    [2]Sahu G.K. Handbook of Piping Design. New Delhi:New Age International,1998, 3-8
    [3]Amit G.Slurry Pipelines:An Economic Solution to Transportation of Minerals and Materials.ASME 2013 India Oil and Gas Pipeline Conference.2013,9850-9855
    [4]赵利安.大颗粒浆体管内流动规律:[辽宁工程技术大学博士学位论文].阜新:辽宁工程技术大学,2011
    [5]安健.利用管控一体化优势打造绿色节能运输通道.(全国冶金自动化信息网2008年会论文).2012-06-26,6-18
    [6]大红山管道公司.坚持科技创新开创管道输送美好未来.云南科技管理,2009(4):58-59
    [7]丁宏达.90年代中国浆体管道输送的新发展.桂林:第二届中日浆体输送技术交流会,1998,56-60
    [8]丁宏达等.世界上浆体管道输送原理与工程系统设计.长沙:中国金属学会浆体输送学术委员会,1992,336-369
    [9]Weidong G, Yu G, Li Z. Design of Data Acquisition and Monitoring System Used in Complex Terrain Long Distance Pipeline Transportation of Iron Ore. Advances in Intelligent and Soft Computing,2012,129,151-155
    [10]郭晓瑛,路艳斌,郑娟.国内外长输管道SCADA系统标准现状.油气储运,2011,30(2):156-159
    [11]李佳霖,薄中波.管道自动化控制系统步入国产化时代.石油管道报/2013年/5月/28日/第001版,1-3
    [12]昆明钢铁控股有限公司运用信息技术提升科技创新推进两化融合打造绿色节能运输通道.两化融合促进节能减排试点示范企业经验交流材料汇编.2012,15,1-34
    [13]刘军.基于智能控制技术输油泵系统控制研究:[西安理工大学博士学位论文].西安:西安理工大学,2006
    [14]刘训才,王志会,寿国华.瓮福磷矿管道输送技术新特点.化工矿物与加工,2013,(8):32-38
    [15]Vaclav M. Research developments in pipeline transport of settling slurries. Powder Technology,2005,156(1):43-51
    [16]于志永,赵利安.美国煤浆体管道检测方法的新进展.管道技术与设备,2005,(5):13-15
    [17]Katherine A, Lauren B, Cedric B, et al. Detection of oversized material in a hydro-transport slurry pipe using a non-invasive acoustic method. Powder Technology,2009,190(3):361-371.
    [18]邹伟生等.差压式密度测量装置与测量方法.中国.GO1N9/26,CN101644652.(2010-02-10)
    [19]谭超.基于多传感器融合的两相流参数测量方法:[天津大学博士学位论文].天津:天津大学,2009
    [20]Jeanmeure L F C, Dyakowski T, Zimmerman W B J and Clark W. Direct flow-pattern identification using electrical capacitance tomography Experimental Thermal and Fluid Science. IEEE Trans,2002,26(6-7):763-773
    [21]Priss J, Klevtsov I. Strength Calculation of slurry disposal pipeline. Annals of DAAAM & Proceedings,2011,1175-1176
    [22]林宗虎,王栋,王树众,等.多相流的近期工程应用趋向.西安交通大学学报,2001,35(9):886-890
    [23]周云龙,孙斌,李洪伟.多相流参数检测理论及其应用.北京:科学出版社,2010
    [24]邢娟,张涛.利用涡街流量计测量油水两相流流量.仪器仪表学报,2009,30(4):882-885
    [25]王永洲.浆液型电磁流量计在煤化工行业中的应用经验.煤矿现代化2010,95(2):91-92
    [26]Christian F I, Aldo T. Uncertainties in key transport variables in homogeneous slurry flows in pipelines. Minerals Engineering,2012,32:54-59
    [27]Kang D H, Ahn Y C, Byun D, et al. Advanced electromagnetic magnetic flowmetry for slug flow:numerical signal prediction and calibration. International Journal of Multiphase Flow,2004,6(30):585-614
    [28]安建,普光跃,黄朝兵,等.铁精矿管道输送中固体运量的智能计量.金属矿山,2010,(2):114-116
    [29]赵学义,路鹤,吴森.高浓度粘稠物料管道输送系统压力测试及其装置.仪器仪表学报,2006,27(6):1454-1456
    [30]Jian A, Jiande W, Guangyue P, et al. A Kind of Pressure Detection Method in Long Distance Ore Slurry Pipeline.2010 3rd International Symposium on Knowledge Acquisition and Modeling,2010,196-198
    [31]Lahiri.S.K, Ghanta.K.C. Regime identification of slurry transport in pipelines: A novel modelling approach using ANN & differential evolution. Chemical Industry and Chemical Engineering Quarterly,2010,16(4):329-343
    [32]刘军,刘丁,钱富才,等.基于模糊神经网络大容量输油泵多变量控制.控制理论与应用,2005,22(6):961-964
    [33]袁运栋,姜海斌,蔡丽君,等.模糊智能控制技术在库鄯线输油主泵控制中的应用.西安石油学院学报(自然科学版),2003,18(5):58-60.
    [34]闭治跃,王庆丰,唐建中.挖泥船泥浆管道输送流速的自适应预估控制.控制理论与应用,2009,26(3):309-312
    [35]薛天铸.尖山铁矿第二条浆体输送管道调试研究.矿冶工程,2008,28(4):10-12
    [36]兰浩.胶凝原油屈服特性及环道启动过程研究:[中国石油大学博士学位论文].北京:中国石油大学,2010
    [37]白晓宁,胡寿根.浆体管道的阻力特性及其影响因素分析.流体机械,2000,28(11),26-30
    [38]曹斌.复杂条件下颗粒物料管道水力输送机理试验研究:[中央民族大学博士学位论文].北京:中央民族大学,2013
    [39]Lin C T, Lee C S G. Reinforcement structure/parameter learning for neural-network-based fuzzy logic control systems. IEEE Transactions on Fuzzy Systems,1994,2(1):46-63
    [40]Thomas M A. Intelligent "control" applications in the Process industries. Annual Reviews in Control,2002,26(1):75-86
    [41]Grabowski P Z, Kazmierkowski M P. A simple direct-torque neuro-fuzzy control of PWM-inverter-fed induction motor drive. IEEE Trans on Industrial Electronics,2000,47(4):863-870
    [42]柴天佑,丁进良,王宏,等.复杂工业过程运行的混合智能优化控制方法.自动化学报,2008,34(5):505-515
    [43]才建,宫敬,李小平.输油管道过渡过程最优控制策略.中国石油大学学报(自然科学版),2008,32(2):58-64
    [44]Wood D J. Waterhammer Analysis-Essential and Easy(and Efficient), American Society of Civil Engineers,2005,131(8):1123-1131
    [45]Azamathulla H, Ahmad Z. Estimation of Critical Velocity for Slurry Transport through Pipeline Using Adaptive Neuro-Fuzzy Interference System and Gene-Expression Programming. J. Pipeline Syst. Eng. Pract,2013,4(2),131-137
    [46]Lahiri.S.K, Ghanta.K.C. Artificial neural network model with the parameter tuning assisted by a differential evolution technique:The study of the hold up of the slurry flow in a pipeline. Chemical Industry and Chemical Engineering Quarterly,2009,15(2):103-117
    [47]Lahiri.S.K, Ghanta.K.C. Development of an artificial neural network correlation for prediction of hold-up of slurry transport in pipelines. Chemical Engineering Science,2008,63(6):1497-1509
    [48]闭治跃,王庆丰,唐建中.挖泥船泥浆管道输送工况点的在线动态优化方法.机械工程学报,2009,45(9):93-99
    [49]韩延成,高学平.长距离调水工程最优控制数学模型.水利水电技术,2006,36(10):62-66
    [50]秦亮,练继建,万五一.长距离输水系统的神经网络模型研究.水利水电技术,2003,34(9):1-4
    [51]Lahiri.S.K, Ghanta.K.C. Minimize power consumption in slurry transport. Hydrocarbon processing,2008, (12):112-118
    [52]钱桂华,曹惜.浆体管道输送设备实用选型手册.北京:冶金工业出版社,1995
    [53]徐艳兵.高压长距离输送技术在尖山铁矿应用现状管道.矿山机械,2008,36(9):48-51
    [54]罗绍卓.长距离浆体管道瞬变流研究及其计算软件开发:[湖南大学硕士学位论文].长沙:湖南大学,2011,50-54
    [55]王绍周.管道运输工程.北京:机械出版社,2004,234-246
    [56]Sumer M. Peker, Serife S. Helvaci. Solid-Liquid Two Phase Flow-2008. Bornova:Elsevier publications,2008,39-49
    [57]Durand R. The hydraulic transportation of coal and solid materials in pipes. London:Colloquium of National Coal Board,1952
    [58]李鹏程,韩文亮,田龙.高浓度管道输送参数计算模型的研究.金属矿山,2004,4:60-66
    [59]Yang J D, Wu R Q. On basic equation of water hammer. Journal of Hydrodynamics,1996,8(2):62-71
    [60]Derammelaere, R.H. Martinson, J.M. Energy dissipation in long-distance slurry pipelines. Carlton South:Australasian Institute of Mining and Metallurgy,2010, 3533-3545
    [61]邹伟生,罗绍卓,陈爱黎.铁精矿浆体管道输送特性研究.金属材料与冶金工程,2010,38(3):45-48
    [62]倪晋仁,黄湘江.高浓度固液两相流的运动特性研究.水利学报,2002,(7):8-14
    [63]瓦斯普等.固体物料的浆体管道输送.黄河水利委员会译.北京:水利电力出版社,1980,33-36
    [64]陆海,尹军,袁一星.浆体的管道输送阻力机理及减阻技术.青岛理工大学学报,2011,32(5):90-95
    [65]赵利安,许振良.粗砂浆体水平管道流动水力坡度预测研究.水利水运工程学报,2013,1:71-75.
    [66]费祥俊.矿浆的物理特性与管道输送流速.管道技术与设备,2000,(1):1-4
    [67]邹伟生,吴桂凤,黄家祯.长距离浆体管道输送管壁磨蚀研究.矿冶工程,2004,24(2):1-3
    [68]夏建新,倪晋仁,黄家桢.锰结核在垂直管路输送过程中的压力损失.泥沙研究,2002,(4):23-28
    [69]张雪兰,孙西欢,李永业等.浅谈浆体管道输送阻力损失研究现状,山西水利,2011,(1):38-39
    [70]安建,王健等.长距离、高扬程固体物料输送管道压力分段控制系统的设计工矿自动化,2010,2:65-67
    [71]Alan B.Rethinking the matter of diaphragm pumps. Mechanical Engineering-CIME,2007,8:20-21
    [72]Stephen M. Mini compressor and combines rotary and diaphragm-pump technology. Machine Design,2006,78(7):24
    [73]Vivier S, Lemoine D; Friderich G. Optimal design of a high dynamic actuator for diaphragm pumps. Miami:IEEE Electric Machines and Drives Conference, 2009,1782-1787
    [74]Steve F. Slurry Pump Upgrades. Engineering & Mining Journal,2011,212(10): 62-69
    [75]凌学勤.往复式活塞隔膜泵的技术参数及核心技术.机电产品开发与创新,2006,19(5):45-47
    [76]刘东海,黄晓云.活塞隔膜泵与液动隔膜泵的流量脉动分析.液压与气动,2011,(11):71-73
    [77]李秀改.复杂工业过程新型控制方法-混杂系统控制理论的研究.化工自动化及仪表,2001,28(5):1-8
    [78]Bengt L, Michael T, Bo E, et al. Hybrid Systems in Process Control. IEEE Control Systems Magazine,1996,16(5):45-56
    [79]Tomlin C, Pappas G J, Sastry S. Conflict resolution for air traffic management: A study in multiagent hybrid systems. IEEE Trans on Automatic Control,1998, 43(4):158-160
    [80]莫以为,萧德云.混合动态系统及其应用综述.控制理论与应用,2002,19(1):2-9
    [81]张玲艳,邱水才,卢齐英,等.变频调速所致水击的关联控制模型研究.机床与液压,2010,39(19):30-32
    [82]白晓宁,胡寿根,张道方等.固体物料管道水力输送的研究进展与应用.水动力学研究与进展,2001,16(3):303-311
    [83]桂卫华,阳春华,陈晓方等.有色冶金过程建模与优化的若干问题及挑战.自动化学报,2013,39(3):197-207
    [84]黄松清.电压型变频器、三相交流异步电动机传动系统的稳定性.控制理论与应用,2005,22(2):223-228
    [85]李发海,王岩.电机与拖动基础(第2版).北京:清华大学出版社,1994,5-159
    [86]陈伯时,陈敏.交流调速系统.北京:机械出版社,1998,19-32
    [87]王丰瑞,郭蓉娟.长输气管道实时仿真与动态响应分析.科协论坛,2013,1:116-118
    [88]葛传虎,王桂增,叶昊.液体管道实时仿真与动态响应分析.化工学报,2008,59(7):1625-1631
    [89]郭北涛.电磁阀检测系统的研发及相关流体控制技术的研究:[东北大学博士学位论文].沈阳:东北大学,2010
    [90]贺尚红,钟掘.管道流体的瞬态仿真模型.中南工业大学学报,2000,31(2):173-176
    [91]韩文亮,王光谦,韩军.固液两相流管道水击防护措施的计算分析.管道技术与设备,2000,3:1-5
    [92]唐建中.绞吸式挖泥船疏浚作业优化与控制研究:[浙江大学博士学位论文].杭州:浙江大学,2007
    [93]刘军,刘丁,张光辉.输油泵模糊控制器的设计及优化.控制理论与应用,2003,20(3):394-398
    [94]师光飞,朱志华,陈辉等.耙吸式挖泥船泥浆与管道输送的建模与仿真.船海工程,2010,39(5):46-49
    [95]Cowper N T S, Cowper N T J, Thomas A D. Slurry pipelines:past, present and future. Australian Journal of Multi-Disciplinary Engineering,2009,7(2): 189-195
    [96]蔡保元,霍春源,钱锐.固体物料水力管道最佳输送流速的确定.机械工程 学报,2001,37(12):91-93
    [97]Burdukov A P, Konovalov V V, Popov V I, et al. Rheological properties and characteristics of hydraulic transportation and heat-mass exchange of coal-water fuels. Journal of Mining Science,2002,38(3):220-228
    [98]Heywood N, Alderman N J. Developments in slurry pipeline technologies. Chemical Engineering Progress,2003,12(4):36-43
    [99]张士林.沉降性矿浆速度与浓度分布耦合模型及迁移速度研究:[大连理工大学博士学位论文].大连:大连理工大学,2005
    [100]解海卫.粉煤灰浓浆管道流动特性与阻力特性的研究:[华北电力大学硕士学位论文].河北:华北电力大学,2004,53-57
    [101]吴湘福.矿浆管道输送技术的发展与展望.金属矿山,2000,(6):1-7
    [102]张雪兰,孙西欢,李永业等.浅析国内管道水力输送试验系统设计.山西水利,2011,(2):36-38
    [103]蔡武昌.液固两相流量测量方法和仪表选择.世界仪表与自动化,2001,5(6):42-46
    [104]Gabor V. Ultrasonic flowmeter basics. Sensors,1997,14(10):73-78
    [105]Brody W R, Meindl J D. Theoretical analysis of the CW Doppler ultrasonic flowmeter. IEEE Transactions on Biomedical Engineering,1974,21(3):183-192
    [106]Wenderhold W, Kunkel M, Eicke BM, et al. Continuous wave Doppler ultrasound for evaluation of vasomotor tone of the radial artery. European Journal of Ultrasound,1999,10(1):11-20
    [107]Christopher D A, Burns P N, Armstrong J, et al. A high frequency continuous-wave doppler ultrasound system for detection of blood flow in the microcirculation. Proceedings of the IEEE Ultrasonics Symposium,1995,2: 1493-1496
    [108]罗守南.基于超声多普勒方法的管道流量测量研究:[清华大学博士学位论文].北京:清华大学,2004
    [109]赵宇洋,张涛,Lucas G.多电极电磁流量计用于非轴对称流的测量.天津大学学报(自然科学与工程技术版),2013,46(6):59-64
    [110]王经卓.电磁流量计权函数的数值仿真与验证.仪器仪表学报,2009,30(1):132-137
    [111]金宁德,宗艳波,郑桂波,等.注聚井中电磁流量计测量特性分析.石油学报,2009,30(2):308-311
    [112]蔡武昌.流量仪表罕见的故障原因.自动化仪表,2002,23(2):27-30
    [113]刘永兵,陈纪忠,阳永荣.管道内液固浆液输送的数值模拟.浙江大学学报(工学版),2006,40(5):858-863
    [114]Bladon P. Situation assessment using graphical models. Proceedings of the Fifth International Conference,2002,2:886-893
    [115]潘泉,于昕,程咏梅,等.信息融合理论的基本方法与进展.自动化学报,2003,29(4):599-615
    [116]王微微,耿艳峰,黄志尧.应用数据融合方法辨识油气两相流流型.传感技术学报,2007,20(9):2128-2132
    [117]杨钢,王玉涛,陆增喜,等.多传感器数据融合技术在多相流参数测量中的应用.仪表技术与传感器,2005,(11):51-53
    [118]王耀南,李树涛.多传感器信息融合及其应用综述.控制与决策,2001,16(5):518-522
    [119]薛生虎,李东升,叶子弘等.基于多传感器融技术的PCR仪温度校准系统.仪器仪表学报,2011,32(6):1232-1237
    [120]XU L J, Xu J, DONG F, et al. On fluctuation of the dynamic differential pressure signal of Venturi meter for wet gas metering. Flow Measurement and Instrumentation,2003,14(4-5):211-217
    [121]JIA C, SHAN X, CUI Y, etal. Modeling and Simulation of Hydraulic Roll Bending System Based on CMAC Neural Network and PID Coupling Control Strategy. Journal of Iron and Steel Research, International,2013,20(10):17-22.
    [122]孙炜.智能神经网络的机器人控制理论方法研究:[湖南大学博士学位论文].长沙:湖南大学,2002
    [123]H. Yin, Y. Cao, H. Sun. Combining pyramid representation and AdaBoost for urban scene classification using high-resolution synthetic aperture radar images. IET Radar, Sonar and Navigation,2011,5(1):58-64
    [124]Joaquin T S,Carlos H E, Mercedes Fernandez-Redondo. Mixing aveboost and Conserboost to Improve Boosting Methods. Proceeding of International Joint Conference on Neural Networks,2007,672-677
    [125]李祖枢,涂亚庆.仿人智能控制.北京:国防工业出版社,2003,45-47
    [126]LIU J, LIU D, ZHANG G H. Design and optimization of fuzzy controller for petroleum pump system. Control Theory & Application,2003,20(3):394-398
    [127]王耀南.智能控制系统(第二版).长沙:湖南大学出版社,2006,40-310.
    [128]Li Z S, Wang G P. Schema theory and human simulated intelligent control. IEEE International Conference on Robotics, Intelligent Systems and Signal Processing,2003,1:524-530
    [129]YANG B. Dynamic Characteristic Parameter Setting Method for Human-simulated Intelligent Controller. Information and Control,2004,33(6):670-673
    [130]王培进,马文明.仿人智能控制原型算法的改进,烟台大学学报(自然科学与工程版),2008,21(1):61-65
    [131]盖晓华,刘叔军,张南纶.一种模糊HSIC特征模型新算法的分析与仿真.信息与控制,2009,38(2):239-255
    [132]Liu S J, Gai X H, Zhang N L. Research and simulation of anti-disturbance problem on improved characteristic model algorithm of HSIC. Journal of System Simulation,2008,20(11):2905-2908
    [133]王耀南,袁小芳,吴亮红.基于支持向量机的发电机组逆模型控制.仪器仪表学报,2008,29(2):256-260
    [134]Cabrera, J.B.D; Narendra, K.S. Issues in the application of neural networks for tracking based on inverse control. IEEE Transactions on Automatic Control, 1999,44(11):2007-2027
    [135]Fang J C, Ren Y. High-precision control for a single-gimbal magnetically suspended control moment gyro based on inverse system method. IEEE Transactions on Industrial Electronics,2011,58(9):4331-4342
    [136]Ardestani M M, Zhang X, Wang L, etal. Human lower extremity joint moment prediction:A wavelet neural network approach. Expert Systems with Applications,2014,41(9):4422-4433.
    [137]Xu L, Liu S. Study of short-term water quality prediction model based on wavelet neural network. Mathematical and Computer Modelling,2013, 58(3):807-813.
    [138]Wei S, Wang Y, Zuo Y. Wavelet neural networks robust control of farm transmission line deicing robot manipulators. Computer Standards & Interfaces, 2011,34(3):327-333
    [139]李媛.小波变换及其工程应用.北京:北京邮电大学出版社,2010,49-55
    [140]Cheng.D.C-H. A time-dependent property and how to measure it. Rheologica Acta,1986, (25):542-554
    [141]胡华.浆体管道输送动态粘弹效应及管路损伤分析.金属矿山,2005,(5):12-15
    [142]薛天铸.提高尖山铁精矿管道输送能力技术研究和生产实践.金属矿山,2004,4:422-424
    [143]张士林.浆体管道低速段水力坡度的研究.水力采煤与管道输,2011,(3):1-3
    [144]Tsukamoto H, Ohashi H. Instantaneous characteristics of a centrifugal pump during startup period. Journal of Fluids Engineering,1982,104(1):6-13
    [145]Lefebvre P J, Barker W P. Centrifugal Pump Performance During Instantaneous Operation. Journal of Fluids Engineering,1995,117(2):123-128
    [146]李志峰,吴大转,王乐勤等.离心泵启动过程瞬态特性的试验.排灌机械工程学报,2010,28(5):389-393
    [147]Ravindranathan M, Leitch R. Model Switching in Intelligent Control Systems. Artificial Intelligence in Engineering,1999,13(2):175-187
    [148]Rodriguez J.A, Romagmoli J.A, Goodwin G.C. Supervisory Multiple Regime Control. Journal of process control,2003,13(2):177-191
    [149]Hespanha J P, Liberzon D, Morse A S. Overcoming the Limitations of Adaptive Control by Means of Logic-Based Switching. Systems and Control Letters,2003, 49(1):49-65
    [150]Oggier G G,Grupo D E. AplicSwitching Control Strategy to Minimize Dual Active Bridge Converter Losses. IEEE Transactions on Power Electronics,2009, 24 (7),1826-1838
    [151]Mattia M, Gustavo C, and Lorenzo B. A Composite Semisupervised SVM for Classification of Hyperspectral Images. IEEE Trans. Geosci. Remote Sens,2009, 6(2):234-238
    [152]Lin C F, Wang S D. Fuzzy Support Vector Machines. IEEE Transactions on Neural Networks,2002,13(2):464-471
    [153]Gaonkar B, Davatzikos C. Analytic estimation of statistical significance maps for support vector machine based multi-variate image analysis and classification. Neurolmage,2013,78:270-283
    [154]Rahim N A, MP P, Adorn A. Adaptive Boosting with SVM Classifier for Moving Vehicle Classification. Procedia Engineering,2013,53:411-419
    [155]Alham N K, Li M, Liu Y, etal. A MapReduce-based distributed SVM ensemble for scalable image classification and annotation. Computers & Mathematics with Applications,2013,66(10):1920-1934
    [156]Hsu C,Lin C.A Comparison of Methods for Multiclass Support Vector Machines. IEEE Transactions on Neural Networks,2002,13(2):415-425
    [157]Martinez. J, Iglesias. C, Matias.J.M., etal. Solving the slate tile classification problem using a DAGSVM multiclassification algorithm based on SVM binary classifiers with a one-versus-all approach. Applied Mathematics and Computation,2014,230:464-472

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700