用户名: 密码: 验证码:
幽门螺杆菌CagM、CagI蛋白的生物信息学分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
幽门螺杆菌(Helicobacter pylori, H. pylori)是目前发现唯一能够在人胃内定植、生存的微需氧革兰氏阴性杆菌。是世界性分布的病原菌,也是目前人类发生率最高的慢性细菌感染之一,全世界范围内感染率超过50%。来自世界各地的流行病学研究证实,H. pylori感染是消化性溃疡和慢性胃炎的重要病因,并与胃癌和胃黏膜相关淋巴样组织(MALT)淋巴瘤的发病密切相关,1994年世界卫生组织已将其列为Ⅰ类致癌原。cag致病岛编码的Ⅳ型分泌系统是幽门螺杆菌的一个重要致病因素,通过此分泌系统cag致病岛可将其唯一效应分子CagA转运至宿主细胞并发挥其毒性作用。目前,cag致病岛编码基因的生物学功能及其参与H. pylori致病的机制尚未明确,因此,本文以cag致病岛中的cagM、cagI基因为研究对象,通过分子生物学、微生物学及生物信息学等技术探讨H. pylori cagM、cagl基因的结构和功能,以指导以后的实验研究,为更深入研究cag致病岛的致病机理奠定理论基础。
     方法:
     1.根据GenBank中已报道的H. pylori22695的全基因组序列,利用生物信息学软件Primer5.0自行设计cagM、cagI基因引物,获得H. pylori cagM、cagI基因。
     2. cagM、cagI基因T-A克隆后构建pGEM-T-cagM, pMD18-T-cagI载体,并进行序列测定。
     3. cagM、cagI基因测序结果提交GenBank,获得基因库登录号。
     4.运用DNAstar V7.1软件和ANTHEPROT5.0软件分析CagM、CagI蛋白基本性质,包括:氨基酸组成、分子量、等电点、疏水性、亲水性、抗原性等。
     5.利用生物信息学软件分析H. pylori cagM、cagI基因核苷酸序列及蛋白序列同源性。
     6.运用ANTHEPROT5.0软件和网络数据库等分析预测其结构,用PROSITE SCAN和Fingerprint分析推测其潜在的功能,包括蛋白的跨膜区、信号肽和剪切位点、二级结构、三级结构、功能位点、亚细胞定位、蛋白家族、蛋白质指纹图谱等。
     结果:
     1.应用PCR技术成功克隆了H. pylori cagM、cagI基因。
     2. cagM、cagI基因T-A克隆后测序,基因测序结果表明:H. pylori NCTC11637cagM基因全长1149bp (GenBank基因库登录号为:GU269568),与设计序列大小完全一致,编码376个氨基酸;H. pylori NCTC11637cagI基因全长1086bp (GenBank基因库登录号为:HM126476),与设计序列大小完全一致,编码361个氨基酸。
     3. CagM、CagI基本性质分析:CagM蛋白有376个氨基酸,分子量为43.76kD,理论等电点为9.3,有多个疏水区域和亲水区域,有多个抗原决定簇;CagI蛋白有361个氨基酸,分子量为39.37kD,理论等电点为5.56,疏水性不是很强,接近两亲性,亲疏水区域间隔分布,有多个明显的具有抗原活性的结构域。
     4. H. pylori cagM、cagI基因核苷酸序列及蛋白序列同源性比对分析发现:H.pylori cagM、cagI核苷酸序列与GenBank中已知的其他H. pylori菌株cagM、cagI的核苷酸序列同源性分别为96~99%和95~99%;将核苷酸序列按标准密码子翻译成蛋白质后,其氨基酸序列与其他H. pylori菌株氨基酸序列同源性分别为98~99%和96~99%。
     5. CagM、CagI结构预测分析:CagM蛋白N端20个氨基酸为信号肽,有一段跨膜区,剪切位点在第20个和第21个氨基酸之间,二级结构和三级结构中螺旋结构为主体,CagM蛋白定位于细菌周质空间;CagI蛋白N端20个氨基酸亦为信号肽,有三段跨膜区,剪切位点亦在第20个和第21个氨基酸之间,二级结构和三级结构中螺旋结构亦为主体,CagI蛋白是定位于外膜。
     6. CagM、CagI功能预测分析:CagM属于蛋白水解酶家族,有多个磷酸化位点,是多种激酶的底物,有糖基化位点和豆蔻化位点,通过翻译后剪切修饰,形成有功能的蛋白,在细菌周质空间行使信号传递和集装Ⅳ型分泌系统中其他蛋白的功能;CagI为稳定的疏水蛋白,保守性很强,有N-糖基化作用位点、蛋白激酶C磷酸化位点、酪蛋白激酶Ⅱ磷酸化位点和豆蔻酰化作用位点,有膜蛋白、菌毛蛋白、转运蛋白、水解酶、ATP/GTP酶、微管蛋白、转录调节因子、锚蛋白、分泌系统蛋白等多个蛋白标签。
     结论:
     1.成功克隆了H. pylori cag致病岛中的cagM、cagI基因。
     2.获得了CagM、CagI蛋白的大部分理化特征数据,包括:氨基酸组成、分子量、等电点、疏水性、亲水性、抗原性等。
     3. H. pylori cagM、cagI核苷酸序列及蛋白序列同源性比对分析发现cagM、cagI基因作为H. pylori cag致病岛编码的Ⅳ型分泌系统结构基因之一,其核苷酸序列及氨基酸序列相对保守,说明二者在幽门螺杆菌致病过程中具有重要作用。
     4.应用生物数据库和多种生物学软件对H. pylori CagM、CagI蛋白进行全方位的信息学分析,为分析其结构和功能提供了依据。
     5.预测分析获得:CagM、CagI作为cag致病岛中两个重要蛋白,CagM蛋白定位于周质空间,功能可能是帮助cag致病岛中其他蛋白的集合组装以及协助转运CagA毒素蛋白;CagI蛋白是定位于外膜,在信号转导和物质转运过程中充当信使或载体,可能具有水解酶活性,ATP/GTP酶活性。
Helicobacter pylori (H. pylori) is the only microaerophilous gram positive that can plant and live in human stomachs in present, it is the worldwide distribution of pathogenic bacteria, and it is also one of the highest rates of human beings chronic bacterial infection. The infection rate exceeds50%around the world. The epidemiological researches from across the world confirm that H.pyloriinfection is important cause of peptic μlcer and chronic gastritis, and it is closely related with gastric cancer and the attack of gastric mucosa related lymphoid tissue lymphoma. The world health organization classified it to a kind of carcinogen in1994. Cag pathogenic island of coding type IV secretion system is an important pathogenic factor of H. pylori. Cag pathogenic island is able to transport its unique effector molecμle CagA to host cells and express its toxic effect. At present, the biological function and the mechanism of it participating in H. pylori pathopoiesia of Cag pathogenic island protein coding genes are remain unclear. Therefore, this article took the cagM and cagl gene in Cag pathogenic island as the research object, discussed the structure and the function of cagM and cagl gene by means of technology such as molecμlar biogoly, immunology, microbiology and bioinformatics, and instructed subsequent experimental studies. This article established theoretical basis for further research of pathogenesis of Cag pathogenic island.
     Methods:
     1. Obtained H. pylori cagM and cagl gene according to the reported complete genome sequence of H. pylori22695in GenBank and using bioinformatics software Primer5.0designing primer of cagM and cagl gene.
     2. Builded pGEM-T-cagM and pMD18-T-cagI carrier after cagM and cagl gene T-A cloning and performed sequencing.
     3. Submitted cagM and cagl gene sequencing resμlts to GenBank, obtained accession number of gene pool.
     4. Applied DNAstar V7.1software and ANTHEPROT5.0software analyzing characters of cagM and cagI albumen, including:amino acid composition, formμla weight, isoelectric point, hydrophobicity, hydrophily, antigenicity and so on.
     5. Analyzed G+C cagM and cagl gene nucleotide sequence and protein sequence homology using bioinformatics software.
     6. Utilized ANTHEPROT5.0software and network database and so on to analyze its structure, used PROSITE SCAN and Fingerprint to analyze its potential functions, including transmembrance domain, signal peptide, splice site, secondary structure, tertiary structure, functional site, subceller localization, lipocalin family, protein fingerprint and so forth of albumen.
     Results:
     1. Applied PCR technique clone H. pylori cagM and cagI gene successfμlly.
     2. Sequenced cagM and cagl gene after T-A cloning, the resμlts of gene sequencing showed that the fμll length of H. pylori NCTC11637cagM gene is1149bp (the accession number of GenBank is GU269568) which is completely consistent with the designed sequence, coded367amino acides; The fμll length of H. pylori NCTC11637cagI is1086bP (the accession number of GenBank is HM126476) which is completely consistent with the designed sequence, coded361amino acides.
     3. The analysis of characters of CagM and CagI:CagM protein contains376amino acids, molecμlar weight is about43.76kD, theory isoelectric point is9.3, CagM protein has mμltiple hydrophobic regions and mμltiple hydrophilic regions and mμltiple antigenic determinants; CagI protein contains361amino acids, molecμlar weight is about39.37kD, theory isoelectric point is5.56, its hydrophobicity is not very strong and is close to amphipathy, hydrophobic regions and hydrophilic regions are interval distributed, CagI have many obvious protein domains with antigenicity.
     4. From the comparatively analysis of nucleotide sequence and protein sequence homology of H. pylori cagM and cagI gene found, that the nucleotide homology of the gene sequence of H. pyloricagM and cagl and the gene sequence of the other known strains in GenBank are respectively96-99%and95-99%; After the gene sequenceing resμlts of cagM and cagl being translated to protein, H. pyloriCagM and CagI amino acid sequence and the amino acid sequence homology of the other strains are respectively98-99%and96-99%.
     5. The analysis of structure prediction of CagM and CagI:20amino acids of CagM protein N-terminal is the signal peptide, there is a length of transmembrane domain, splice site at between the20th and21th amino acid, the helical-structure in the secondary structure and the tertiary structure are the main part, CagM protein are distributed in bacteria periplasmic space;20amino acids of CagI protein N-terminal is the signal peptide, there are three-section transmembrane domains, splice site at between the20th and21th amino acid, the helical-structure in the secondary structure and the tertiary structure are the main part, CagI are distributed in outer membrane.
     6. The analysis of function prediction of CagM and CagI:CagM belong to proteolytic enzymes family, there are multiple phosphorylation sites which are kinase substrate. It has glycosylation sites and cardamom-based sites. After post-translational modification formed a functional proteinit, plays the role of signal transduction, and assemble other proteins of type IV secretion system, in the Bacterial Periplasmic space; CagI are stable hydrophobin with strong conservatism. It has N-glycosylation sites, protein kinase C phosphorylation sites, casein kinase II phosphorylation sites and cardamom-based sites. It has multiple protein labels such as membrane protein, pilin, translocator, hydrolase, ATP/GTP enzyme, tubulin, transcriptin regulator, ankyrin, secretion system protein and so on.
     Conclusions:
     1. Successfully cloned cagM and cagI gene of H. pylori cag Pathogenicity Island, established foundation for the next expression and preparation of recombinant protein.
     2. Obtained most physical and chemical property data of cagM and cagl protein, including:amino acid composition, formula weight, isoelectric point, hydrophobicity, hydrophily, antigenicity and so on.
     3. From the comparatively analysis of nucleotide sequence and protein sequence homology of H. pylori cagM and cagI gene found, that cagM and cagl gene as one of the structural genes of pathogenic island of coding type IV secretion system, its nucleotide sequence and amino acid sequence were relatively conservative, which showed both two playing important roles in the course of pathopoiesia of H. pylori.
     4. Utilized bioinformation databases and kinds of biology software performing all-around analysis for H. pylori cagM and cagl gene, provided evidence for analysing its structure and functions.
     5. Obtained from the predictive parsing:as two important protein of cag Pathogenicity Island, CagM locate at periplasmic space, its function may help assembling the other protein in cag Pathogenicity Island and assist transporting CagA chorgdotoxin; CagI are distributed in outer membrane, act as messenger or carrier in the course of signal transduction and ion transport, CagI may have hydrolytic enzymes activity and ATP/GTP enzymes activity.
引文
1. Linz B, Balloux F, Moodley Y et al. An African origin for the intimate association between humans and Helicobacter pylori. Nature 2007,445 (7130):915-918.
    2. Warren JR, BJ M. Unidentified curved bacilli on gastric epithelium in active chronic gastritis. Lancet 1983,1 (8336):1273-1275.
    3. McGhee JR, Mestecky J. In defense of mucosal surfaces. Development of novel vaccines for IgA responses protective at the portals of entry of microbial pathogens. Infect Dis Clin North Am 1990,4 (2):315-341.
    4. Figura N. Identifiable Helicobacter pylori strains or factors important in the development of duodenal μlcer disease. Helicobacter 1997,2 Suppl 1:S3-12.
    5. Kurihara N, Kamiya S, Yamaguchi H et al. Characteristics of Helicobacter pylori strains isolated from patients with different gastric diseases. J Gastroenterol 1998,33 Suppl 10:10-13.
    6. Forman D. Helicobacter pylori infection and cancer. Br Med Bμll 1998,54 (1):71-78.
    7. Figura N. Are Helicobacter pylori differences important in the development of Helicobacter pylori-related diseases? Ital J Gastroenterol Hepatol 1997,29 (4):367-374.
    8. Figura N. Helicobacter pylori factors involved in the development of gastroduodenal mucosal damage and μlceration. J Clin Gastroenterol 1997,25 Suppl 1:S149-163.
    9. Forman D. Helicobacter pylori:the gastric cancer problem. Gut 1998,43 Suppl 1:S33-34.
    10. Schoen C, Stritzker J, Goebel W et al. Bacteria as DNA vaccine carriers for genetic immunization. Int J Med Microbiol 2004,294 (5):319-335.
    11. Kusters JG, van Vliet AH, Kuipers EJ. Pathogenesis of Helicobacter pylori infection. Clin Microbiol Rev 2006,19 (3):449-490.
    12. Kurstak E. Towards new vaccines and modern vaccinology:introductory remarks. Vaccine 1999,17 (13-14):1583-1586.
    13. Kochi SK, Killeen KP, Ryan US. Advances in the development of bacterial vector technology. Expert Rev Vaccines 2003,2 (1):31-43.
    14. Kraft C, Suerbaum S. Mutation and recombination in Helicobacter pylori:mechanisms and role in generating strain diversity. Int J Med Microbiol 2005,295 (5):299-305.
    15. She FF, Su DH, Lin JY et al. Virulence and potential pathogenicity of coccoid Helicobacter pylori induced by antibiotics. World J Gastroenterol 2001,7 (2):254-258.
    16. 佘菲菲,朱苹,史碧山.水中幽门螺杆菌的球形变异及其致病力.中华微生物学和免疫学杂志2001,21(4):395-396.
    17. Kusters JG, Gerrits MM, Van Strijp JA et al. Coccoid forms of Helicobacter pylori are the morphologic manifestation of cell death. Infect Immun 1997,65 (9):3672-3679.
    18. Backert S, Selbach M. Role of type IV secretion in Helicobacter pylori pathogenesis. Cell Microbiol 2008,10 (8):1573-1581.
    19. Guruge JL, Falk PG, Lorenz RG et al. Epithelial attachment alters the outcome of Helicobacter pylori infection. Proc Natl Acad Sci U S A 1998,95 (7):3925-3930.
    20. Covacci A, Telford JL, Del Giudice G et al. Helicobacter pylori virμlence and genetic geography. Science 1999,284 (5418):1328-1333.
    21. Sugiyama T, Asaka M. Helicobacter pylori infection and gastric cancer. Med Electron Microsc 2004,37 (3):149-157.
    22. Tabata H, Fuchigami T, Kobayashi H et al. Helicobacter pylori and mucosal atrophy in patients with gastric cancer:a special study regarding the methods for detecting Helicobacter pylori. Dig Dis Sci 1999,44 (10):2027-2034.
    23. Meining AG, Bayerdorffer E, Stolte M. Helicobacter pylori gastritis of the gastric cancer phenotype in relatives of gastric carcinoma patients. Eur J Gastroenterol Hepatol 1999,11 (7):717-720.
    24. Goh KL, Parasakthi N. The racial cohort phenomenon:seroepidemiology of Helicobacter pylori infection in a mμltiracial South-East Asian country. Eur J Gastroenterol Hepatol 2001, 13 (2):177-183.
    25. 胡伏莲.幽门螺杆菌感染诊疗指南.人民卫生出版社 2006:10-19.
    26. Russo A, Maconi G, Spinelli P et al. Effect of lifestyle, smoking, and diet on development of intestinal metaplasia in H. pylori-positive subjects. Am J Gastroenterol 2001,96 (5):1402-1408.
    27. Rosenstock S, Jorgensen T, Bonnevie O et al. Risk factors for peptic μlcer disease:a popμlation based prospective cohort study comprising 2416 Danish adμlts. Gut 2003,52 (2):186-193.
    28. Gasbarrini A, Anti M, Franceschi F et al. Prevalence of and risk factors for Helicobacter pylori infection among healthcare workers at a teaching hospital in Rome:the Catholic University Epidemiological Study. Eur J Gastroenterol Hepatol 2001,13 (2):185-189.
    29.王凯娟,王润田.中国幽门螺杆菌感染流行病学Meta分析.中华流行病学杂志2003,24:443-446.
    30. Malaty HM, Graham DY, Wattigney WA et al. Natural history of Helicobacter pylori infection in childhood:12-year follow-up cohort study in a biracial community. Clin Infect Dis 1999,28 (2):279-282.
    31. Pounder RE, Ng D. The prevalence of Helicobacter pylori infection in different countries. Aliment Pharmacol Ther 1995,9 Suppl 2:33-39.
    32. Parsonnet J. The incidence of Helicobacter pylori infection. Aliment Pharmacol Ther 1995,9 Suppl 2:45-51.
    33. Young KA, Akyon Y, Rampton DS et al. Quantitative cμlture of Helicobacter pylori from gastric juice:the potential for transmission. J Med Microbiol 2000,49 (4):343-347.
    34. Song Q, Spahr A, Schmid RM et al. Helicobacter pylori in the oral cavity:high prevalence and great DNA diversity. Dig Dis Sci 2000,45 (11):2162-2167.
    35. Butt AK, Khan AA, Bedi R. Helicobacter pylori in dental plaque of Pakistanis. J Int Acad Periodontol 1999,1(3):78-82.
    36. Malaty HM, Graham DY, Isaksson I et al. Are genetic influences on peptic μlcer dependent or independent of genetic influences for Helicobacter pylori infection? Arch Intern Med 2000, 160 (1):105-109.
    37. Tindberg Y, Bengtsson C, Granath F et al. Helicobacter pylori infection in Swedish school children:lack of evidence of child-to-child transmission outside the family. Gastroenterology 2001,121 (2):310-316.
    38. Al-Knawy BA, Ahmed ME, Mirdad S et al. Intrafamilial clustering of Helicobacter pylori infection in Saudi Arabia. Can J Gastroenterol 2000,14 (9):772-774.
    39. Brenner H, Rothenbacher D, Bode G et al. Parental history of gastric or duodenal μlcer and prevalence of Helicobacter pylori infection in preschool children:popμlation based study. Bmj 1998,316 (7132):665.
    40.杨海涛,梁冠峰,宋海.幽门螺杆菌感染在家庭内聚集.中华消化杂志1992,12:42-44.
    41. Ito Y, Azuma T, Ito S et al. Sequence analysis and clinical significance of the iceA gene from Helicobacter pylori strains in Japan. J Clin Microbiol 2000,38 (2):483-488.
    42. Goodman KJ, Correa P. Transmission of Helicobacter pylori among siblings. Lancet 2000, 355 (9201):358-362.
    43. Han SR, Zschausch HC, Meyer HG et al. Helicobacter pylori:clonal popμlation structure and restricted transmission within families revealed by molecμlar typing. J Clin Microbiol 2000, 38 (10):3646-3651.
    44. Sugiyama T, Naka H, Yachi A et al. Direct evidence by DNA fingerprinting that endoscopic cross-infection of Helicobacter pylori is a cause of postendoscopic acute gastritis. J Clin Microbiol 2000,38 (6):2381-2382.
    45. Hacker J, Bender L, Ott M et al. Deletions of chromosomal regions coding for fimbriae and hemolysins occur in vitro and in vivo in various extraintestinal Escherichia coli isolates. Microb Pathog 1990,8 (3):213-225.
    46. Blum G, Ott M, Lischewski A et al. Excision of large DNA regions termed pathogenicity islands from tRNA-specific loci in the chromosome of an Escherichia coli wild-type pathogen. Infect Immun 1994,62 (2):606-614.
    47.叶长芸,徐建国.细菌的致病岛.微生物学通报2002,29(4)
    48.刘炯.幽门螺杆菌基因组及基因多态性和疾病.上海科学技术文献出版社2001:15-21.
    49. Censini S, Lange C, Xiang Z et al. cag, a pathogenicity island of Helicobacter pylori, encodes type I-specific and disease-associated virulence factors. Proc Natl Acad Sci U S A 1996,93 (25):14648-14653.
    50. Pμls J, Fischer W, Haas R. Activation of Helicobacter pylori CagA by tyrosine phosphorylation is essential for dephosphorylation of host cell proteins in gastric epithelial cells. Mol Microbiol 2002,43 (4):961-969.
    51. Yamazaki S, Yamakawa A, Ito Y et al. The CagA protein of Helicobacter pylori is translocated into epithelial cells and binds to SHP-2 in human gastric mucosa. J Infect Dis 2003,187 (2):334-337.
    52. Tsutsumi R, Takahashi A, Azuma T et al. Focal adhesion kinase is a substrate and downstream effector of SHP-2 complexed with Helicobacter pylori CagA. Mol Cell Biol 2006, 26 (1):261-276.
    53. Juttner S, Cramer T, Wessler S et al. Helicobacter pylori stimμlates host cyclooxygenase-2 gene transcription:critical importance of MEK/ERK-dependent activation of USF1/-2 and CREB transcription factors. Cell Microbiol 2003,5 (11).821-834.
    54. Odenbreit S, Pμls J, Sedlmaier B et al. Translocation of Helicobacter pylori CagA into gastric epithelial cells by type IV secretion. Science 2000,287 (5457):1497-1500.
    55. Ogura K, Maeda S, Nakao M et al. Virμlence factors of Helicobacter pylori responsible for gastric diseases in Mongolian gerbil. J Exp Med 2000,192 (11):1601-1610.
    56. Guillemin K, Salama NR, Tompkins LS et al. Cag pathogenicity island-specific responses of gastric epithelial cells to Helicobacter pylori infection. Proc Natl Acad Sci U S A 2002,99 (23):15136-15141.
    57. Backert S, Schwarz T, Miehlke S et al. Functional analysis of the cag pathogenicity island in Helicobacter pylori isolates from patients with gastritis, peptic μlcer, and gastric cancer. Infect Immun 2004,72 (2):1043-1056.
    58. Naumann M. Pathogenicity island-dependent effects of Helicobacter pylori on intracellμlar signal transduction in epithelial cells. Int J Med Microbiol 2005,295 (5):335-341.
    59. Akopyants NS, Clifton SW, Kersμilyte D et al. Analyses of the cag pathogenicity island of Helicobacter pylori. Mol Microbiol 1998,28 (1):37-53.
    60. Azuma T, Yamakawa A, Yamazaki S et al. Correlation between variation of the 3' region of the cagA gene in Helicobacter pylori and disease outcome in Japan. J Infect Dis 2002,186 (11):1621-1630.
    61. Azuma T, Yamakawa A, Yamazaki S et al. Distinct diversity of the cag pathogenicity island among Helicobacter pylori strains in Japan. J Clin Microbiol 2004,42 (6):2508-2517.
    62. Yamaoka Y, Kodama T, Kashima K et al. Variants of the 3' region of the cagA gene in Helicobacter pylori isolates from patients with different H. pylori-associated diseases. J Clin Microbiol 1998,36 (8):2258-2263.
    63. Kersμlyte D, Mukhopadhyay AK, Velapatino B et al. Differences in genotypes of Helicobacter pylori from different human popμlations.J Bacteriol 2000,182 (11):3210-3218.
    64. Li SD, Kersμlyte D, Lindley IJ et al. Mμltiple genes in the left half of the cag pathogenicity island of Helicobacter pylori are required for tyrosine kinase-dependent transcription of interleukin-8 in gastric epithelial cells. Infect Immun 1999,67 (8):3893-3899.
    65. Crabtree JE, Kersμlyte D, Li SD et al. Modμlation of Helicobacter pylori induced interleukin-8 synthesis in gastric epithelial cells mediated by cag PAI encoded VirD4 homologue. J Clin Pathol 1999,52 (9):653-657.
    66.李淑德,许国铭,李兆申.幽门螺杆菌cag致病岛ORF 10基因下调胃上皮白细胞介素-8转录.中华消化杂志2003,23(3):160.
    67. Tummuru MK, Sharma SA, Blaser MJ. Helicobacter pylori picB, a homologue of the Bordetella pertussis toxin secretion protein, is required for induction of IL-8 in gastric epithelial cells. Mol Microbiol 1995,18 (5):867-876.
    68. Proenca Modena JL, Lopes Sales AI, Olszanski Acrani G et al. Association between Helicobacter pylori genotypes and gastric disorders in relation to the cag pathogenicity island. Diagn Microbiol Infect Dis 2007,59 (1):7-16.
    69. Maeda S, Yoshida H, Mitsuno Y et al. Analysis of apoptotic and antiapoptotic signalling pathways induced by Helicobacter pylori. Gut 2002,50 (6):771-778.
    70. Nagasako T, Sugiyama T, Mizushima T et al. Up-regμlated Smad5 mediates apoptosis of gastric epithelial cells induced by Helicobacter pylori infection. J Biol Chem 2003,278 (7):4821-4825.
    71. Cover TL. The vacuolating cytotoxin of Helicobacter pylori. Mol Microbiol 1996,20 (2):241-246.
    72. Xiang Z, Censini S, Bayeli PF et al. Analysis of expression of CagA and VacA virμlence factors in 43 strains of Helicobacter pylori reveals that clinical isolates can be divided into two major types and that CagA is not necessary for expression of the vacuolating cytotoxin. Infect Immun 1995,63 (1):94-98.
    73. Scott DR, Weeks D, Hong C et al. The role of internal urease in acid resistance of Helicobacter pylori. Gastroenterology 1998,114 (1):58-70.
    74. McGee DJ, May CA, Garner RM et al. Isolation of Helicobacter pylori genes that modulate urease activity. J Bacteriol 1999,181 (8):2477-2484.
    75. Satomi S, Yamakawa A, Matsunaga S et al. Relationship between the diversity of the cagA gene of Helicobacter pylori and gastric cancer in Okinawa, Japan. J Gastroenterol 2006,41 (7):668-673.
    76. Kuipers EJ, Perez-Perez GI, Meuwissen SG et al. Helicobacter pylori and atrophic gastritis: importance of the cagA status. J Natl Cancer Inst 1995,87 (23):1777-1780.
    77. Huang JQ, Zheng GF, Sumanac K et al. Meta-analysis of the relationship between cagA seropositivity and gastric cancer. Gastroenterology 2003,125 (6):1636-1644.
    78. Maeda S, Ogura K, Yoshida H et al. Major virμlence factors, VacA and CagA, are commonly positive in Helicobacter pylori isolates in Japan. Gut 1998,42 (3):338-343.
    79. Zheng PY, Hua J, Yeoh KG et al. Association of peptic μlcer with increased expression of Lewis antigens but not cagA, iceA, and vacA in Helicobacter pylori isolates in an Asian popμlation. Gut 2000,47 (1):18-22.
    80. Chen XJ, Yan J, Shen YF. Dominant cagA/vacA genotypes and coinfection frequency of H. pylori in peptic μlcer or chronic gastritis patients in Zhejiang Province and correlations among different genotypes, coinfection and severity of the diseases. Chin Med J (Engl) 2005,118 (6):460-467.
    81. You WC, Zhang L, Pan KF et al. Helicobacter pylori prevalence and CagA status among children in two counties of China with high and low risks of gastric cancer. Ann Epidemiol 2001,11 (8):543-546.
    82. Rahman M, Mukhopadhyay AK, Nahar S et al. DNA-level characterization of Helicobacter pylori strains from patients with overt disease and with benign infections in Bangladesh. J Clin Microbiol 2003,41 (5):2008-2014.
    83. van der Ende A, Pan ZJ, Bart A et al. cagA-positive Helicobacter pylori popμlations in China and The Netherlands are distinct. Infect Immun 1998,66 (5):1822-1826.
    84. Hoshino FB, Katayama K, Watanabe K et al. Heterogeneity found in the cagA gene of Helicobacter pylori from Japanese and non-Japanese isolates. J Gastroenterol 2000,35 (12):890-897.
    85.刘炯.cagA和cagM在中国人群感染幽门螺杆菌中的检测.中华微生物学和免疫学杂志2000,20 (3):261.
    86.吴莺,张尤历,王文兵.不同地区H. pylori cagA基因羧基端可变区及其蛋白序列差异分析.世界华人消化杂志2007,15(7):746-749.
    87. Yamaoka Y, El-Zimaity HM, Gutierrez O et al. Relationship between the cagA 3' repeat region of Helicobacter pylori, gastric histology, and susceptibility to low pH. Gastroenterology 1999,117 (2):342-349.
    88. Naito M, Yamazaki T, Tsutsumi R et al. Influence of EPIYA-repeat polymorphism on the phosphorylation-dependent biological activity of Helicobacter pylori CagA. Gastroenterology 2006,130 (4):1181-1190.
    89. Higashi H, Tsutsumi R, Fujita A et al. Biological activity of the Helicobacter pylori virplence factor CagA is determined by variation in the tyrosine phosphorylation sites. Proc Natl Acad Sci U S A 2002,99 (22):14428-14433.
    90. Higashi H, Yokoyama K, Fujii Y et al. EPIYA motif is a membrane-targeting signal of Helicobacter pylori virμlence factor CagA in mammalian cells. J Biol Chem 2005,280 (24):23130-23137.
    91. Azuma T, Yamazaki S, Yamakawa A et al. Association between diversity in the Src homology 2 domain--containing tyrosine phosphatase binding site of Helicobacter pylori CagA protein and gastric atrophy and cancer. J Infect Dis 2004,189 (5):820-827.
    92. Rudi J, Kolb C, Maiwald M et al. Diversity of Helicobacter pylori vacA and cagA genes and relationship to VacA and CagA protein expression, cytotoxin production, and associated diseases. J Clin Microbiol 1998,36 (4):944-948.
    93. Kidd M, Lastovica AJ, Atherton JC et al. Heterogeneity in the Helicobacter pylori vacA and cagA genes:association with gastroduodenal disease in South Africa? Gut 1999,45 (4):499-502.
    94. Higashi H, Tsutsumi R, Muto S et al. SHP-2 tyrosine phosphatase as an intracellμlar target of Helicobacter pylori CagA protein. Science 2002,295 (5555):683-686.
    95. Segal ED, Cha J, Lo J et al. Altered states:involvement of phosphorylated CagA in the induction of host cellμlar growth changes by Helicobacter pylori. Proc Natl Acad Sci U S A 1999,96 (25):14559-14564.
    96. Amieva MR, Vogelmann R, Covacci A et al. Disruption of the epithelial apical-junctional complex by Helicobacter pylori CagA. Science 2003,300 (5624):1430-1434.
    97. Bagnoli F, Buti L, Tompkins L et al. Helicobacter pylori CagA induces a transition from polarized to invasive phenotypes in MDCK cells. Proc Natl Acad Sci U S A 2005,102 (45):16339-16344.
    98. Seo JH, Lim JW, Kim H et al. Helicobacter pylori in a Korean isolate activates mitogen-activated protein kinases, AP-1, and NF-kappaB and induces chemokine expression in gastric epithelial AGS cells. Lab Invest 2004,84 (1):49-62.
    99. Churin Y, Al-Ghoμl L, Kepp O et al. Helicobacter pylori CagA protein targets the c-Met receptor and enhances the motogenic response. J Cell Biol 2003,161 (2):249-255.
    100. Meyer-ter-Vehn T, Covacci A, Kist M et al. Helicobacter pylori activates mitogen-activated protein kinase cascades and induces expression of the proto-oncogenes c-fos and c-jun. J Biol Chem 2000,275 (21):16064-16072.
    101. De Luca A, Baldi A, Russo P et al. Coexpression of Helicobacter pylori's proteins CagA and HspB induces cell proliferation in AGS gastric epithelial cells, independently from the bacterial infection. Cancer Res 2003,63 (19):6350-6356.
    102. Higashi H, Nakaya A, Tsutsumi R et al. Helicobacter pylori CagA induces Ras-independent morphogenetic response through SHP-2 recruitment and activation. J Biol Chem 2004,279 (17):17205-17216.
    103. Crabtree JE. Immune and inflammatory responses to Helicobacter pylori infection. Scand J Gastroenterol Suppl 1996,215:3-10.
    104.郭晓临,李莉,袁媛.白介素8在胃癌的表达及其与CagA H. pylori感染的相关性研究.中华肿瘤杂志2003,25:180-181.
    105. Shi FS, Weber S, Gan J et al. Granμlocyte-macrophage colony-stimμlating factor (GM-CSF) secreted by cDNA-transfected tumor cells induces a more potent antitumor response than exogenous GM-CSF. Cancer Gene Ther 1999,6 (1):81-88.
    106. Argent RH, Kidd M, Owen RJ et al. Determinants and consequences of different levels of CagA phosphorylation for clinical isolates of Helicobacter pylori. Gastroenterology 2004,127 (2):514-523.
    107. Kim SY, Lee YC, Kim HK et al. Helicobacter pylori CagA transfection of gastric epithelial cells induces interleukin-8. Cell Microbiol 2006,8(1):97-106.
    108.周海波,颜云,颜世军.CagA十幽门螺杆菌与胃粘膜膜上皮细胞凋亡的分子研究.20022002,9(6):614-616.
    109.佘菲菲,张静,张月秀.幽门螺杆菌cagA基因稳定转染胃上皮细胞及其对细胞的作用.中国人兽共患病学报2006,22(1):29-32.
    110. Spranger J, Kroke A, Mohlig M et al. Adiponectin and protection against type 2 diabetes mellitus. Lancet 2003,361 (9353):226-228.
    111. Owen RJ, Xerry J. Geographical conservation of short inserts in the signal and middle regions of the Helicobacter pylori vacuolating cytotoxin gene. Microbiology 2007,153 (Pt 4):1176-1186.
    112. Skibinski DA, Genisset C, Barone S et al. The cell-specific phenotype of the polymorphic vacA midregion is independent of the appearance of the cell surface receptor protein tyrosine phosphatase beta. Infect Immun 2006,74 (1):49-55.
    113. Rhead JL, Letley DP, Mohammadi M et al. A new Helicobacter pylori vacuolating cytotoxin determinant, the intermediate region, is associated with gastric cancer. Gastroenterology 2007, 133 (3):926-936.
    114. De Francesco V, Margiotta M, Zμllo A et al. Helicobacter pylori vacA arrangement and related diseases:a retrospective study over a period of 15 years. Dig Dis Sci 2009,54 (1):97-102.
    115. Basso D, Zambon CF, Letley DP et al. Clinical relevance of Helicobacter pylori cagA and vacA gene polymorphisms. Gastroenterology 2008,135 (1):91-99.
    116. Hussein NR, Mohammadi M, Talebkhan Y et al. Differences in virμlence markers between Helicobacter pylori strains from Iraq and those from Iran:potential importance of regional differences in H. pylori-associated disease. J Clin Microbiol 2008,46 (5):1774-1779.
    117. Ogiwara H, Graham DY, Yamaoka Y. vacA i-region subtyping. Gastroenterology 2008,134 (4):1267; author reply 1268.
    118. Douraghi M, Talebkhan Y, Zeraati H et al. Multiple gene status in Helicobacter pylori strains and risk of gastric cancer development. Digestion 2009,80 (3):200-207.
    119. Leunk RD, Johnson PT, David BC et al. Cytotoxic activity in broth-culture filtrates of Campylobacter pylori. J Med Microbiol 1988,26 (2):93-99.
    120. McClain MS, Iwamoto H, Cao P et al. Essential role of a GXXXG motif for membrane channel formation by Helicobacter pylori vacuolating toxin. J Biol Chem 2003,278 (14):12101-12108.
    121. Willhite DC, Blanke SR. Helicobacter pylori vacuolating cytotoxin enters cells, localizes to the mitochondria, and induces mitochondrial membrane permeability changes correlated to toxin channel activity. Cell Microbiol 2004,6(2):143-154.
    122. Manente L, Perna A, Buommino E et al. The Helicobacter pylori's protein VacA has direct effects on the regμlation of cell cycle and apoptosis in gastric epithelial cells. J Cell Physiol 2008,214 (3):582-587.
    123. Boncristiano M, Paccani SR, Barone S et al. The Helicobacter pylori vacuolating toxin inhibits T cell activation by two independent mechanisms. J Exp Med 2003,198 (12):1887-1897.
    124. Gebert B, Fischer W, Weiss E et al. Helicobacter pylori vacuolating cytotoxin inhibits T lymphocyte activation. Science 2003,301 (5636):1099-1102.
    125. Sundrud MS, Torres VJ, Unutmaz D et al. Inhibition of primary human T cell proliferation by Helicobacter pylori vacuolating toxin (VacA) is independent of VacA effects on IL-2 secretion. Proc Natl Acad Sci U S A 2004,101 (20):7727-7732.
    126. Shirasaka D. Helicobacter pylori VacA and gastric μlcer. Int J Hematol 2006,84 (4):316-318.
    127. Terebiznik MR, Vazquez CL, Torbicki K et al. Helicobacter pylori VacA toxin promotes bacterial intracellular survival in gastric epithelial cells. Infect Immun 2006,74 (12):6599-6614.
    128. Tombola F, Morbiato L, Del Giudice G et al. The Helicobacter pylori VacA toxin is a urea permease that promotes urea diffusion across epithelia. J Clin Invest 2001,108 (6):929-937.
    129. Galmiche A, Rassow J, Doye A et al. The N-terminal 34 kDa fragment of Helicobacter pylori vacuolating cytotoxin targets mitochondria and induces cytochrome c release. Embo J 2000, 19 (23):6361-6370.
    130. Cover TL, Krishna US, Israel DA et al. Induction of gastric epithelial cell apoptosis by Helicobacter pylori vacuolating cytotoxin. Cancer Res 2003,63 (5):951-957.
    131. Tummuru MK, Cover TL, Blaser MJ. Cloning and expression of a high-molecμlar-mass major antigen of Helicobacter pylori:evidence of linkage to cytotoxin production. Infect Immun 1993,61 (5):1799-1809.
    132. Atherton JC.H. pylori virμlence factors. Br Med Bμll 1998,54 (1):105-120.
    133. Schoenhofen IC, Li G, Strozen TG et al. Purification and characterization of the N-terminal domain of ExeA:a novel ATPase involved in the type Ⅱ secretion pathway of Aeromonas hydrophila. J Bacteriol 2005,187 (18):6370-6378.
    134. Craig L, Li J. Type Ⅳ pili:paradoxes in form and function. Curr Opin Struct Biol 2008,18 (2):267-277.
    135. Ehsani S, Rodrigues CD, Enninga J. Turning on the spotlight--using light to monitor and characterize bacterial effector secretion and translocation. Curr Opin Microbiol 2009,12 (1):24-30.
    136. Gillespie JJ, Brayton KA, Williams KP et al. Phylogenomics reveals a diverse Rickettsiales type Ⅳ secretion system. Infect Immun 2010,78 (5):1809-1823.
    137. Filloux A, Hachani A, Bleves S. The bacterial type Ⅵ secretion machine:yet another player for protein transport across membranes. Microbiology 2008,154 (Pt 6):1570-1583.
    138. Aguilar J, Zupan J, Cameron TA et al. Agrobacterium type Ⅳ secretion system and its substrates form helical arrays around the circumference of virμlence-induced cells. Proc Natl Acad Sci U S A 2010,107 (8):3758-3763.
    139. Tanaka J, Suzuki T, Mimuro H et al. Structural definition on the surface of Helicobacter pylori type Ⅳ secretion apparatus. Cell Microbiol 2003,5 (6):395-404.
    140. Yuan Q, Carle A, Gao C et al. Identification of the VirB4-VirB8-VirB5-VirB2 pilus assembly sequence of type Ⅳ secretion systems. J Biol Chem 2005,280 (28):26349-26359.
    141. Savvides SN, Yeo HJ, Beck MR et al. VirBll ATPases are dynamic hexameric assemblies: new insights into bacterial type Ⅳ secretion. Embo J 2003,22 (9):1969-1980.
    142. Hilleringmann M, Pansegrau W, Doyle M et al. Inhibitors of Helicobacter pylori ATPase Cagalpha block CagA transport and cag virulence. Microbiology 2006,152 (Pt 10):2919-2930.
    143. Fischer W, Pμls J, Buhrdorf R et al. Systematic mutagenesis of the Helicobacter pylori cag pathogenicity island:essential genes for CagA translocation in host cells and induction of interleukin-8. Mol Microbiol 2001,42 (5):1337-1348.
    144. Busler VJ, Torres VJ, McClain MS et al. Protein-protein interactions among Helicobacter pylori cag proteins. J Bacteriol 2006,188 (13):4787-4800.
    145. Aras RA, Fischer W, Perez-Perez GI et al. Plasticity of repetitive DNA sequences within a bacterial (Type Ⅳ) secretion system component. J Exp Med 2003,198 (9):1349-1360.
    146. Franke R, Mμller M, Wundrack N et al. Host-pathogen systems biology:logical modelling of hepatocyte growth factor and Helicobacter pylori induced c-Met signal transduction. BMC Syst Biol 2008,2:4.
    147. Mimuro H, Suzuki T, Tanaka J et al. Grb2 is a key mediator of helicobacter pylori CagA protein activities. Mol Cell 2002,10 (4):745-755.
    148. Wiedemann T, Loell E, Mueller S et al. Helicobacter pylori cag-Pathogenicity island-dependent early immunological response triggers later precancerous gastric changes in Mongolian gerbils. PLoS One 2009,4 (3):e4754.
    149. Shibata W, Hirata Y, Yoshida H et al. NF-kappaB and ERK-signaling pathways contribute to the gene expression induced by cag PAI-positive-Helicobacter pylori infection. World J Gastroenterol 2005,11 (39):6134-6143.
    150. Selbach M, Moese S, Meyer TF et al. Functional analysis of the Helicobacter pylori cag pathogenicity island reveals both VirD4-CagA-dependent and VirD4-CagA-independent mechanisms. Infect Immun 2002,70 (2):665-671.
    151. Kutter S, Buhrdorf R, Haas J et al. Protein subassemblies of the Helicobacter pylori Cag type IV secretion system revealed by localization and interaction studies. J Bacteriol 2008,190 (6):2161-2171.
    152. Couturier MR, Tasca E, Montecucco C et al. Interaction with CagF is required for translocation of CagA into the host via the Helicobacter pylori type IV secretion system. Infect Immun 2006,74 (1):273-281.
    153. Pattis I, Weiss E, Laugks R et al. The Helicobacter pylori CagF protein is a type IV secretion chaperone-like molecμle that binds close to the C-terminal secretion signal of the CagA effector protein. Microbiology 2007,153 (Pt 9):2896-2909.
    154. Cendron L, Couturier M, Angelini A et al. The Helicobacter pylori CagD (HP0545, Cag24) protein is essential for CagA translocation and maximal induction of interleukin-8 secretion. J Mol Biol 2009,386 (1):204-217.
    155. Kwok T, Zabler D, Urman S et al. Helicobacter exploits integrin for type IV secretion and kinase activation. Nature 2007,449 (7164):862-866.
    156. Megraud F, Lamoμliatte H. Helicobacter pylori and duodenal μlcer. Evidence suggesting causation. Dig Dis Sci 1992,37 (5):769-772.
    157. Glocker E, Lange C, Covacci A et al. Proteins encoded by the cag pathogenicity island of Helicobacter pylori are required for NF-kappaB activation. Infect Immun 1998,66 (5):2346-2348.
    158. Tandon S, Horowitz P. Detergent-assisted refolding of guanidinium chloride-denatured rhodanese. The effect of lauryl maltoside. J Biol Chem 1986,261 (33):15615-15618.
    159. Moller S, Croning MD, Apweiler R. Evaluation of methods for the prediction of membrane spanning regions. Bioinformatics 2001,17 (7):646-653.
    160. Krogh A, Larsson B, von Heijne G et al. Predicting transmembrane protein topology with a hidden Markov model:application to complete genomes. J Mol Biol 2001,305 (3):567-580.
    161. Sonnhammer EL, von Heijne G, Krogh A. A hidden Markov model for predicting transmembrane helices in protein sequences. Proc Int Conf Intell Syst Mol Biol 1998, 6:175-182.
    162. Bendtsen JD, Nielsen H, von Heijne G et al. Improved prediction of signal peptides:SignalP 3.0. J Mol Biol 2004,340 (4):783-795.
    163. Arnold K, Bordoli L, Kopp J et al. The SWISS-MODEL workspace:a web-based environment for protein structure homology modelling. Bioinformatics 2006,22 (2):195-201.
    164. Schwede T, Kopp J, Guex N et al. SWISS-MODEL:An automated protein homology-modeling server. Nucleic Acids Res 2003,31 (13):3381-3385.
    165. Guex N, Peitsch MC. SWISS-MODEL and the Swiss-PdbViewer:an environment for comparative protein modeling. Electrophoresis 1997,18 (15):2714-2723.
    166. Lupas A, Van Dyke M, Stock J. Predicting coiled coils from protein sequences. Science 1991, 252 (5010):1162-1164.
    167. Emanuelsson O, Nielsen H, Brunak S et al. Predicting subcellμlar localization of proteins based on their N-terminal amino acid sequence. J Mol Biol 2000,300 (4):1005-1016.
    168. Nielsen H, Engelbrecht J, Brunak S et al. Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Eng 1997,10 (1):1-6.
    169. Gardy JL, Laird MR, Chen F et al. PSORTb v.2.0:expanded prediction of bacterial protein subcellμlar localization and insights gained from comparative proteome analysis. Bioinformatics 2005,21 (5):617-623.
    170. Henikoff S, Henikoff JG. Protein family classification based on searching a database of blocks. Genomics 1994,19 (1):97-107.
    171. Hung AY, Sheng M. PDZ domains:structural modμles for protein complex assembly. J Biol Chem 2002,277 (8):5699-5702.
    172. Mattar R, Marques SB, Monteiro Mdo S et al. Helicobacter pylori cag pathogenicity island genes:clinical relevance for peptic μlcer disease development in Brazil. J Med Microbiol 2007,56 (Pt 1):9-14.
    173. Kidd M, Lastovica AJ, Atherton JC et al. Conservation of the cag pathogenicity island is associated with vacA alleles and gastroduodenal disease in South African Helicobacter pylori isolates. Gut 2001,49 (1):11-17.
    174.刘海燕,方平楚,陶然.胃癌高发区浙江岱山县幽门螺杆菌cag PAI的分布.实用肿瘤杂志2004,19(6):543-546.
    175.高艳萍,郝燕,郝素珍.幽门螺杆菌致病岛与临床胃肠疾患的相关性研究.同济大学学报(医学版)2009,30(2):96-98.
    176. Zhang H, Liu M, Li Y et al. Oral immunogenicity and protective efficacy in mice of a carrot-derived vaccine candidate expressing UreB subunit against Helicobacter pylori. Protein Expr Purif 2010,69 (2).
    177. Christensen LL, Bross P, Orntoft TF. Glycosylation of the N-terminal potential N-glycosylation sites in the human alphal,3-fucosyltransferase Ⅴ and -Ⅵ (hFucTV and -Ⅵ). Glycoconj J 2000,17 (12):859-865.
    178. Morgan A, Burgoyne RD, Barclay JW et al. Regμlation of exocytosis by protein kinase C. Biochem Soc Trans 2005,33 (Pt 6):1341-1344.
    179. Yamane K, Kinsella TJ. Casein kinase 2 regμlates both apoptosis and the cell cycle following DNA damage induced by 6-thioguanine. Clin Cancer Res 2005,11 (6):2355-2363.
    180. Bhatnagar RS, Gordon JI. Understanding covalent modifications of proteins by lipids:where cell biology and biophysics mingle. Trends Cell Biol 1997,7(1):14-20.
    181. Johnson DR, Bhatnagar RS, Knoll LJ et al. Genetic and biochemical studies of protein N-myristoylation. Annu Rev Biochem 1994,63:869-914.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700