用户名: 密码: 验证码:
低温气液两相弹状流流动特性和流场结构的实验及数值研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
低温气液两相流是低温工程中经常遇到的现象,例如低温管路中的火箭推进剂和液化天然气输送,以及高热流密度的芯片冷却。低温输送管路内不可避免的漏热将形成小气泡,小气泡相互碰撞合并进而生成Taylor气泡。这些Taylor气泡导致管路堵塞并将低温液体挤出管路形成喷发。回流的低温流体还会导致管路和阀门的结构损坏,并造成火箭发动机的气蚀。因此低温流体中Taylor气泡的形成、发展和合并是低温工程中的重要问题。
     在一定漏热条件下,管路内尚未发生间歇泉时,就会出现弹状流动,这已经对火箭发动机的安全运行造成极大隐患。因此,准确判断低温管路中Taylor气泡的形成位置非常重要。Taylor气泡周围的流场,尤其是尾迹区流场是Taylor气泡合并过程的关键因素,两个连续的Taylor气泡之间的相互作用过程取决于领先气泡的尾迹区流型。首先,不同的尾迹区流型(层流、过渡流或湍流)导致不同的合并速率,一些尾迹区流型甚至会阻止两个Taylor气泡的合并。因此,尾迹区的流型决定了弹单元中的Taylor气泡长度份额,进而影响低温气液两相弹状流的压降参数和空泡份额。其次,Taylor气泡尾迹区内的湍流强度决定了液弹中弥散气泡和液体的速度分布,也会影响两相流动的空泡份额。同时Taylor气泡头部区域的流场对Taylor气泡的上升速度有重要影响。综上所述,Taylor气泡周围流场的研究是低温气液两相弹状流中的重要课题,对低温系统的工作效率和安全运行都具有重要的科学意义和实用价值。
     在低温管路中,由漏热产生弥散气泡到Taylor气泡的形成,以及间歇泉的产生,这是一个整体的连续过程,其中对Taylor气泡的形成过程还缺乏统一的判据,而且该过程的研究尚未涉及管路内的流动结构对Taylor气泡形成的影响。对于低温气液两相弹状流研究,大多数研究限于宏观流动特征,如压降测量和图像研究。由于低温气液两相流中流场测量的难度较大,关于低温气液两相流中Taylor气泡周围流场的研究国内外未见报道,且尚没有建立针对低温气液两相流中Taylor气泡尾迹区流型的判据。低温流体的研究已经远落后于常温流体。
     本文以液氮为工质,对低温管路中由漏热产生的Taylor气泡的形成、运动和合并过程进行了实验和数值模拟研究。对漏热形成的低温气液两相流动中Taylor气泡的形成位置、长度和速度分布进行了可视化研究。使用PIV流场测量方法对低温液体中Taylor气泡周围流场进行了定量测量,使用POD数据分析方法对PIV测量结果进行了进一步分析,探讨了流场的湍流大尺度结构对Taylor气泡之间相互作用的影响、管路内湍流强度对Taylor气泡形成的影响,最后对对理想状态下,静止低温流体中单个Taylor气泡的运动特征和周围流场结构进行了数值模拟研究。具体如下:
     (1)建立了适用于低温气液两相流动的PIV测速和可视化测量相结合的实验平台。针对圆形截面管路中的图像畸变问题,建立了一种通用的可用于多层管壁情况下的直接校正方法。使用方形规则化网格进行验证,最大相对误差不超过3%。使用Fortran语言编制了通用校正程序。
     (2)利用上述实验台结合高速相机在多种倾角下,对多种管路内液氮沸腾形成的气液两相流动中Taylor气泡宏观特征进行了可视化研究。分析了多种倾角下Taylor气泡的合并过程,建立了跟随气泡和领先气泡速度与气泡间距的关系。已有的由常温流体得到的速度关系式不适用于液氮流体,普遍高估了本文实验结果,新建立的关系式和实验结果吻合较好。得到了Taylor气泡的形成位置、速度和长度份额分布与管路内径、倾角的关系。
     (3)使用所建实验台结合PIV实验手段得到了Taylor气泡周围流场结构。结果分析表明,常温流体中Taylor气泡尾迹区流型判定方法不再适用于液氮流体,传统理论认为当无量纲流体逆粘度数Nf>1500时,Taylor气泡尾迹区为湍流。在液氮流体中,当Nf数远大于这一临界值时,液氮流体中的Taylor气泡尾迹区仍然为过渡流和层流。
     (4)使用POD方法对PIV实验结果进行了进一步的分析,得到了尾迹区流场中湍流大尺度结构,解释了可视化实验中不同倾角下Taylor气泡合并过程,得到了改变Taylor气泡尾迹区的湍流大尺度结构可抑制Taylor气泡的合并的结论。
     (5)在PIV实验和可视化实验的基础上,考察了流场湍流强度、热流密度、管路内径和管路倾角等对Taylor气泡形成的影响,提出了无量纲气相速度vq。在此基础上,建立了液氮管路中由漏热形成的Taylor气泡的生成位置预测公式,公式预测结果与本文和文献中的实验结果相比最大误差在±20%以内。
     (6)使用VOF方法对静止液氮中,单个Taylor气泡运动的理想过程进行了数值模拟,得到了尾迹区流型转变过程、上升速度、尾缘几何特征等。与文献数据对比表明本文模型可信。得到了Taylor气泡尾迹区内层流、过渡流和湍流的流型转变过程,建立了适用于液氮流体中Taylor气泡尾迹区流型转变的判据,该结果也表明常温流体尾迹区流型判据不适用于液氮流体。
Cryogenic gas-liquid two-phase flow is usually encountered in cryogenicengineering such as pipe transportation of cryogenic liquid and high heat-fluxelectronic chip cooling. Due to the inevitable heat leak along the pipe, smallbubbles form from the boiling cryogenic liquid and coalesce to bullet shapedlarge bubbles (also named Taylor bubble) with almost the same diameter ofthe pipe. These Taylor bubbles cause pipe line blockage and extrude thecryogenic liquid from the pipe line, and could lead to the destruction of pipeand valve, and also cavitation erosion of rocket engine. Thus the Taylorbubble formation and evolution in the pipe line are the importantcharacteristics in cryogenic engineering.
     Cryogenic gas-liquid slug flow has already formed under some thermalconditions when there is no geysering phenomenon in the tube. This is hiddendanger for the safty operation of crogenic tubes. Thus the prediction forTaylor bubble formation is very important for the safe operation of cryogenictransportation tube.
     The flow field around Taylor bubble, especially the flow field in bubblewake has great influence on the flow parameters of cryogenic two-phase slugflow, and then affects the interaction of two consectutive Taylor bubbles.Firstly, the flow pattern in the leading Taylor bubble’s wake determines theinteraction between two adjacent Taylor bubbles. Different flow patterns(laminar, transition or turbulent) result in different bubble coalescence speedand rate, and some will prohibit the coalescence. Then the flow field inbubble wake affects the length fraction of gas slug in a slug unit. Finally itinfluences the pressure drop and void fraction in cryogenic two-phase flow.And the turbulence intensity in Taylor bubble wake defines the velocity ofdispersed bubbles in a liquid slug, the velocity of liquid phase and the distribution of void fraction. Meanwhile, the velocity field ahead of Taylorbubble is highly important for Taylor bubble velocity. Thus the present studyis meaningful for studying on these important parameters in cryogenicengineering.
     In cryogenic tube, the coalescence of dispersed vapor bubbles leads tothe formation of Taylor bubbles. And the continuous coalescence of Taylorbubbles leads to the geysering phenomenon. In this continuous process, thereis a lack of the criterion of Taylor bubble formation in cryogenic tube causedby heat leak. And the research about this process has not included the effect offlow structure on the formation of Taylor bubbles. For the cryogenictwo-phase slug flow, most studies are limited to the macroscopic properties,e.g. the pressure measurement or photographic study. However, moredeveloped investigation on the flow field in cryogenic two-phase slug flow isscarce. And little literature can be found to define the wake pattern of a Taylorbubble in cryogenic fluid. The critierion for defining the wake pattern ofcryogenic Taylor bubble has not been developed. In this particular field, theresearch in cryogenic engineering has fallen behind that focusing on ordinaryfluid.
     The purpose of the present study is to experimently and numericallyinvestigate the formation, motion and coalescence process of Taylor bubblecaused by heak leak in cryogenic tubes. The formation position, length andvelocity distribution of Taylor bubble are studied by vasulization technique.The flow field around Taylor bubble was obtained by PIV technique. Basedon PIV results, snapshot POD was introduced to reveal the effect of flowstructure on the interaction of Taylor bubbles, and the effect of turbulence onthe formation of Taylor bubble. At last, the motion of a single Taylor bubblein stagnant liquid nitrogen and the flow structure aound it were numericallyinvestigated. The main conclusions are summarized as follows:
     (1) An experimental system was built to investage the characteristics andthe flow field of cryogenic gas-liquid slug flow. A correction algorithm wasdeveloped for reconstructing the flow field based on ray tracing method,which showed the maximum error was3%by the uniform grid validation. Acorrection program was built using Fortran language.
     (2) The characteristics of Taylor bubble in cryogenic slug flow were studied, including the length, velocity and length fraction. The coalescenceprocess of Taylor bubble was analysed under different inclination angles. Thevelocity ratio of trailing and leading bubble as a function of bubble distancewas built based on the experimental data. The existing correlations fromordinary two-phase flow are no longer suitable for liquid nitrogen, andoverestimate the present result. The present correlation agrees well with theexperimental data. Further more, the formation position, velocity and lengthdistribution in different tubes and inclination angles were obtained.
     (3) The flow structure around Taylor bubble was obtained by PIVtechnique based on the present experimental system. The traditional criterionraised from water based fluid experiments is no longer applicable for liquidnitrogen. According to the traditional criterion, the occurrence of turbulentwake appears when the Nfnumber is larger than1500. However, in this study,both the transitional and laminar flow patterns are observed with the Nfnumbers much larger than1500.
     (4) The PIV experimental results were further analyzed by POD method.The large-scale structure of Taylor bubble wake was calculated to explain thecoalescence between consecutive Taylor bubbles. The coalescence processcan be inhibited by changing the large-scale structure of Taylor bubble wake.
     (5) Based on the PIV and visualization experiment, the effect ofturbulence intensity, heat flux, tube diameter and inclination angle on theformation of Taylor bubble was investigated. A new dimensionless gasvelocity vqwas introduced. On this basis, a correlation for predicting theformation position of Taylor bubble caused by heat leakage in liquid nitrogentube was developed. Compared with the experimental results of present studyand reference, the relative error is less than±20%.
     (6) A detailed CFD research on the motion of a single Taylor bubble inliquid nitrogen was conducted using VOF method. The transition of flowpattern in Taylor bubble wake, bubble rising velocity and geometriccharacteristics of trailing edge were obtained. The comparison with theexsiting literature data showed that the present model is credible. Thetransiton of laminar, transitional and turbulent flow pattern was oobtained. Onthis basis, the transition criterion of the flow pattern in nitrogen Taylor bubblewake was built. The numerical result also shows the traditional criterion raised from water based fluid experiments is no longer applicable for liquidnitrogen.
引文
[1]袁国强.液化天然气海上运输装卸作业的安全性研究[硕士学位论文].大连海事大学,2007.
    [2] Miana M, Del H R, Rodrigalvarez V, Ramon V J, Llorens R. Calculation models for prediction ofLiquefied Natural Gas (LNG) ageing during ship transportation. Applied Energy,2010,87:1687-1700.
    [3] Kimmel A. Effect of quadratic fluid damping in two-phase liquefied natural gas. AIChE AnnualMeeting, Conference Proceedings,2007.
    [4] Nagai H, Noda K. Status of H-II rocket first stage propulsion system. Journal of Propulsion andPower,1992,8:313–319.
    [5] Hands B A. Problems due to superheating of cryogenic liquids. Cryogenics,1988,28:823-829.
    [6]张华.垂直管道低温汽-液两相流动弹状流流型及动态特性的研究[博士学位论文].上海交通大学,2009.
    [7] Cao XiaoLi, Zhang XiaoBin, Qiu LiMin, Gan ZhiHua. Validation of full cavitation model incryogenic fluids. Chinese Science Bulletin,2009,54(10):1633-1640.
    [8]齐守良.微通道中液氮流动和换热特性研究[博士学位论文].上海交通大学,2007.
    [9]汪蓉,盛勇,杨传路,朱正和,谭明亮,蒋刚.液态低沸点气体的表面张力.化学物理学报,2000,(13)3:380-384.
    [10] Baidakov V G, Khvostov K V, Muratov G N. Zh. Fiz. Khim.,1982,56(4):814-817.
    [11] Ostromoukhov V B, Ostronov M G. Zh. Fiz. Khim.,1994,68(1):39-43.
    [12] Sprow F B, Prausnitz J M. Trans. Faraday Soc.,1966,62:1097-1104.
    [13] Upstill C E, Evans R. The surface tension and density profile of simple liquids. J. Phys. C: SolidState Phys.,1977,10:2791-2799.
    [14]薛国宇,陈志坚,王德忠.低温表面张力贮箱研究.火箭推进,2005,(31)3:26-29.
    [15] Barron R F. Cryogenic Systems,2nd Edition. Oxford University Press, Oxford,1985.
    [16] Scott D, Bembenek J. Chem. Phys.,2006,124,014709.
    [17] Kamerlingh O H, Keesom W H. Commun. Kamerlingh Onnes Lab, Univ. Leiden,137d,1913.
    [18] Van Itterbeek A. Physica1940,7,325.
    [19]孙酣经,梁国仑.氢的应用、提纯及液氢输送技术.低温与特气,1998,01:28-35.
    [20] Stewart R B, Roder H M. Chapter11. Properties of normal and Parahydrogen. p.379-404inTechnology and Uses of Liquid Hydrogen, Pergmon Press, New York,1964.
    [21] Fuks S, Bellemans A. Physica (Amsterdam),1966,32:594-602.
    [22] Chae Hee B, James W S, Michael R M. Surface tension of refrigerants R123and R134a. J. Chem.Eng. Data,1990,35:6-8.
    [23] Monick J A. Alcohols: their chemistry, properties and manufacture. Reinhold Book Corp., NewYork,1968.
    [24]付鑫.微细通道内液氮流动沸腾热物理特性与机理的可视化研究[博士学位论文].上海交通大学,2012.
    [25] Campos J B L M and Guedes De Carvalho J R F. An experimental study of the wake of gas slugsrising in liquids. Journal of Fluid Mechanics,1988,196:27-37.
    [26] Sousa R G, Nogueira S, Pinto A M F R, Riethmuller M L, Campos J B L M. Flow in the negativewake of a Taylor bubble rising in viscoelastic carboxymethylcellulose solutions: particle imagevelocimetry measurements. J. Fluid Mech.,2004,511:217–236.
    [27] Philippov L P. Similarity of properties of substances. Moscow State University Press,1978.
    [28] Klimenko V V. Heat transfer intensity at forced flow boiling of cryogenic liquids in tubes.Cryogenics,1982,22(6):569-576.
    [29] Yang C Y, Shieh C C. Flow pattern of air-water and two-phase R-134a in small circular tubes. Int.J. Multiphase Flow,2001,27(7):1163-1177.
    [30] Lee J, Mudawar I. Two-phase flow in high-heat-flux micro-channel heat sink for refrigerationcooling applications: Part I–pressure drop characteristics. Int. J. Heat Mass Transfer,2005,48:928-940.
    [31] Zhao T S, Bi Q C. Co-current air-water two-phase flow patterns in vertical triangular microchannels. Int. J. Multiphase Flow,2001,27:765-782.
    [32] Akbar M K, Plummer D A, Ghiaasiaan S M. On gas–liquid two-phase flow regimes inmicrochannels. Int. J. Multiphase Flow,2003,29:855-865.
    [33] Chen L, Tian Y S, Karayiannis T G. The effect of tube diameter on vertical two-phase flowregimes in small tubes. Int. J. Heat Mass Transfer,2006,49(21-22):4220-4230.
    [34] Triplett K A, Ghiaasiaan S M, Abdel-Khalik S I, Sadowski D L. Gas-liquid two-phase flow inmicrochannels, Part I: Two-phase flow patterns. Int. J. Multiphase Flow,1999,25:377-394.
    [35] Das R, Pattanayak S. Bubble to slug flow transition in vertical upward two-phase flow ofcryogenic fluids. Cryogenics,1995,35(7):421-426.
    [36] Barnea D. Transition from annular flow and from dispersed bubble flow-unified models for thewhole range of pipe inclinations. Int J Multiphase Flow,1986,12:733-144.
    [37] Davies R M, Taylor G I. Proc. R. Soc. London,1950, Ser. A,200:375.
    [38] Kang C W, Quan S P, Lou J. Numerical study of a Taylor bubble rising in stagnant liquids.Physical Review E,2010,81,066308:1-11.
    [39] Nogueira S, Sousa R G, Pinto A M F R, Riethmuller M L, Campos J B L M. Simultaneous PIVand pulsed shadow technique in slug flow: a solution for optical problems. Experiments in Fluids,2003,35:598–609.
    [40] Nogueira S, Riethmuller M L, Campos J B L M, Pinto A M F R. Flow patterns in the wake of aTaylor bubble rising through vertical columns of stagnant and flowing Newtonian liquids: Anexperimental study. Chemical Engineering Science,2006,61:7199–7212.
    [41] Taha T, Cui Z F. CFD modeling of slug flow in vertical tubes. Chem. Eng. Sci.,2006,61:676–687.
    [42] Figueroa B, Fabre J. Taylor bubble moving in a flowing liquid in vertical channel: transition fromsymmetric to asymmetric shape. J. Fluid Mech.,2011,679:432-454.
    [43] Wallis G B. One dimensional two-phase flow, Chaps.9and10. McGraw-Hill,1969.
    [44] Tung K W, Parlange J Y. Note on the motion of long bubbles in closed tubes–Influence ofsurface tension. Acta Mechanica,1976,24:313–317.
    [45] Fabre J, Line A. Modeling of two-phase slug flow. Annu. Rev. Fluid Mech.,1992,24:21-46.
    [46] Zukoski E E. Influence of viscosity, surface tension, and inclination angle on motion of longbubbles in closed tubes. J. Fluid Mech.1966,25:821–837.
    [47] Funada T, Joseph D D, Maehara T, Yamashita S. Ellipsoidal model of the rise of a Taylor bubblein a round tube. Int. J. Multiphase Flow,2005,31:473–491.
    [48] Lu X Z, Prosperetti A. A numerical study of Taylor bubbles. Ind. Eng. Chem. Res.,2009,48:242–252.
    [49] Zheng Donghong, He Xiao, Che Defu. CFD simulations of hydrodynamic characteristics in agas–liquid vertical upward slug flow. International Journal of Heat and Mass Transfer,2007,50:4151–4165.
    [50] Liberzon D, Shemer L, Barnea D. Upward-propagating capillary waves on the surface of shortTaylor bubbles. Phys. Fluids,2006,18,048103.
    [51] Sousa R G, Riethmuller M L, Pinto A M F R, Campos J B L M. Flow around individual Taylorbubbles rising in CMC solutions: PIV measurements. Chem. Eng. Sci.,2005,60:1859–1873.
    [52] Hewitt G F, Hall T N. Annular Two Phase Flow. Pergamon Press, Oxford,1970.
    [53] Ove Bratland. Pipe Flow2: Multi-phase Flow Assurance.2010. Internet resource, website:http://drbratland.com/PipeFlow2/index.html.
    [54]赵建福.气泡初始尺寸对泡-弹状流型转换的影响.工程热物理学报,2005,26(5):793-795.
    [55] Taitel Y, Barnea D, Dukler A E. Modeling flow pattern transitions for steady upward gas-liquidflow in vertical tubes. AIChE Journal,1980,26(3):345–354.
    [56] Chen X T, Cai X D, Brill J P. A general model for transition to dispersed bubble flow, Chem. Eng.Sci.1997,52:4373–4380.
    [57] Radovcich N A, Moissis R. The Transition from two phase bubbly flow to slug flow. Report No7-7673-22, MIT,1962.
    [58] Guet S, Ooms G, Oliemans R V A. Influence of bubble size on the transition from low-Re bubblyflow to slug flow in a vertical pipe. Experimental Thermal and Fluid Science,2002,26:635–641.
    [59] Griffith P, Snyder G A. The Bubbly-slug transition in a high velocity two phase flow. TechnicalReport No.5003-29, Division of Sponsored Research, Massachusetts Institute of Technology, July1964.
    [60] Griffith P, Wallis G B. Two-phase slug flow. J. Heat Transfer,1961,83:307–320.
    [61] Harmathy T Z. Velocity of Large drops and bubbles in media of infinite or restricted extent.AICHE,1960,6:281–288.
    [62] Mishima K, Ishii M. Flow Regime Transtion criteria for upward two-phase flow in vertical tubes.Int. J. Heat Mass Transfer,1984,27(5):723-737.
    [63]夏国栋,刘亮,马重芳等.气液两相弹状流动的实验研究——液弹长度及Taylor气泡长度份额.北京工业大学学报,2000,26(2):35-38.
    [64] van Hout R, Shemer L, Barnea D. Spatial Distribution of void fraction within the liquid slug andsome other related slug parameters. Int. J. Multiphase Flow,1992,18:831–845.
    [65] van Hout R, Barnea D, Shemer L. Evolution of statistical parameters of gas-liquid slug flow alongvertical pipes. Int. J. Multiphase Flow,2001,27:1579–1602.
    [66] van Hout R, Barnea D, Shemer L. Translational velocities of elongated bubbles in continuous slugflow. Int. J. Multiphase Flow,2002,28,1333–1350.
    [67] van Hout R, Shemer L, Barnea D. Evolution of hydrodynamic and statistical parameters ofgas-liquid slug flow along inclined pipes. Chem. Eng. Sci.,2003,58:115–133.
    [68] Mayor T S, Ferreira V, Pinto A M F R, Campos J B L M. Hydrodynamics of gas–liquid slug flowalong vertical pipes in turbulent regime–An experimental study. International Journal of Heat andFluid Flow,2008,29:1039–1053.
    [69]刘诗明,于志家.垂直上升管内未充分发展弹状流流动特征参数的研究.应用基础与工程科学学报,2004,12(1):67-72.
    [70]刘诗明,于志家.用统计方法研究未充分发展弹状流动.化学工程,2006,34(1):20-23.
    [71] Brill J P, Schmidt Z R, Coberly W A, Herring J D, Moore D W. Analysis of two-phase tests inlarge diameter flow lines in Prudhoe Bay field. Soc. Petroleum Engrs J.1981,3:363–378.
    [72] Nydal O J, Pintus S, Andreussi P. Statistical Characterization of slug flow in horizontal pipes. Int.J. Multiphase Flow,1992,18:439–453.
    [73] Costigan G, Whalley P B. Slug Flow regime identification from dynamic void fractionmeasurements in vertical air–water flows. Int. J. Multiphase Flow,1997,23,263–282.
    [74] Mao Z S, Dukler A E. An Experimental study of gas–liquid slug flow. Exp. Fluids,1989,8:169–182.
    [75] Madani S, Caballina O, Souhar M. Unsteady dynamics of Taylor bubble rising in verticaloscillating tubes. Int. J. Multiphase Flow,2009,35:363–375.
    [76] Gibson A H. On the Motion of long air-bubbles in a vertical tube. Philos. Mag.,1913,26,952.
    [77] Barr G. Air-bubble viscometer. Philos. Mag.,1926,1;395.
    [78] Dumitrescu D T. Stromung an Einer luftblase im senkrechten rohr. Z. Angew. Math. Mech.,1943,23:139–149.
    [79] Viana F, Pardo R, Yánez R, Trallero J L, Joseph D D. Universal correlation for the rise velocity oflong gas bubbles in round pipes. Journal of Fluid Mechanics,2003,494:379-398.
    [80] Brown R A S. The mechanics of large gas bubbles in tubes: I. Bubble velocities in stagnant liquids.Can. J. Chem. Eng.,1965,43:217–223.
    [81] Laird A D, Chisholm D. Pressure and forces along cylindrical bubbles in a vertical tube. Indust.Eng. Chem.,1956,48:1361.
    [82] Polonsky S, Shemer L, Barnea D. The relation between the Taylor bubble motion and the velocityfield ahead of it. Int. J. Multiphase Flow,1999,25:957–975.
    [83] White E T, Beardmore R H. The velocity of rise of single cylindrical air bubbles through liquidscontained in vertical tubes. Chem. Eng. Sci.,1962,17:351–361.
    [84] Goldsmith H L, Mason S G. The movement of single large bubbles in closed vertical tubes. J.Fluid Mech.,1962,10:42–58.
    [85] Nicklin D J, Wilkes J O, Davidson J F. Two-phase flow in vertical tubes. Transactions of theInstitute of Chemical Engineers,1962,40:61–68.
    [86] Bendiksen K H. An Experimental Investigation of the motion of long bubbles in inclined tubes.Int. J. Multiphase Flow,1984,10,467–483.
    [87] Hasan A R, Kabir C S. Predicting Multiphase Flow behavior in a deviated well. In61st Annu.Tech. Conf., New Orleans, La. SPE15449,1986.
    [88] Weber M E, Alarie A. Velocities of Extended bubbles in inclined tubes. Chem. Eng. Sci.,1986,41:2235–2240.
    [89] Alves I N, Shoham O, Taitel Y. Drift Velocity of elongated bubbles in inclined pipes. Chem. Eng.Sci.,1993,48:3063–3070.
    [90] Carew P S, Thomas N H, Johnson A B. A Physically based correlation for the effects of power lawrheology and inclination on slug bubble rise velocity. Int. J. Multiphase Flow,1995,21:1091–1106.
    [91] Whalley P B. Boiling, Condensation and gas-liquid flow, Clarendon Press, Oxford,1987.
    [92] Marks C H. Measurements of the terminal velocity of bubbles rising in a chain. J. Fluids Eng.,1973,95:17-22.
    [93] Kojima E, Akehata T, Shirai T. Behaviour of single air bubbles held stationary in downward flows.J. Chem. Eng. Jpn.,1975,8:108-113.
    [94] Kumar S, Fan L S. Heat-transfer characteristics in viscous gas-liquid and gas-liquid-solid systems.AIChE J.,1994,40:745-755.
    [95] Hubbard M G. An Analysis of horizontal gas-liquid slug flow. PhD Thesis, University of Houston,1965.
    [96] Gregory G A, Scott D S. Correlation of liquid slug velocity and frequency in horizontal cocurrentgas-liquid slug flow. AIChE J.,1969,15:833-35.
    [97] Vakilotojjar M, Javdani K. Bubble frequency in gas-liquid slug flow in vertical tubes. Chem. Eng.Sci.,1980,35:2356-2358.
    [98] Kang C, Wilkens R, Jepson, W P. The effect of slug frequency on corrosion in high pressure,inclined pipelines, in: The NACE Int. Annual Conf. and Exposition, USA, Denver, Colorado,March24-29, Paper No.20,1996.
    [99] Cai J Y, Wang R W, Hong T, Jepson W P. Slug frequency and length inclined large diametermultiphase pipeline, in: Proc. of the Fourth International Symposium, China, August22-24,1999,Multiphase Flow and Heat Transfer, Xi’an.
    [100] Vermeulen L R, Ryan J T. Two phase slug flow in horizontal and inclined tubes, Can. J. of Chem.Eng.,1971,49:195-201.
    [101] Zabaras G. Prediction of slug frequency for gas/liquid flows, SPE J.,2000,5,252-258
    [102] Hernandez P V, Abdulkadir M, Azzopardi B J. Slugging frequency correlation for inclinedgas-liquid flow. World Acad. Sci. Eng. Technol.,2010,61:44-51.
    [103] Taitel Y, Dukler A E. A model for slug frequency during gas-liquid flow in horizontal and nearhorizontal pipes. Int. J. Multiphase Flow,1977,3,585-96.
    [104] Heywood N, Richardson J. Slug Flow of Air-water mixtures in a horizontal pipe: determination ofliquid holdup by gamma-ray absorption. J. Chem. Eng. Sci.,1979,34:17-30.
    [105] Hill T, Wood D. A new approach to the prediction of slug frequency, in: spe annu. tech. conf. andexhibition, USA, New Orleans, Louisiana, September23-26,1990.
    [106] Hill T, Wood D. Slug Flow: Occurrence, Consequences, and Prediction, in: University of TulsaCentennial Petroleum Engineering Symposium, USA, Tulsa, Oklahoma, August29-31,1994.
    [107] Tronconi E. Prediction of slug frequency in horizontal two-phase slug flow, AlChE J.,1990,36:701-709.
    [108] Manolis I G, Mendes-Tatsis M A, Hewitt G F. The effect of pressure on slug frequency ontwo-phase horizontal flow, in: the2nd Int. Conf. on Multiphase Flow, Japan, Kyoto, April3-7,1995.
    [109] Aswani K M, Mahuya D, Deepak K. Effect of distributor on gas-liquid downward flow incapillaries. Ind. Eng. Chem. Res.,2007,46:8406-8412.
    [110] Pinto A M F R, Campos J B L M. Coalescence of two gas slugs rising in a vertical column ofliquid. Chem. Eng. Sci.,1996,51:45–54.
    [111] Talvy C A, Shemer L, Barnea D. On the interaction between two consecutive elongated bubbles ina vertical pipe. Int. J. Multiphase Flow,2000,26:1905-1923.
    [112] Tokuhiro A, Maekawa M, Iizuka K, Hishida K, Maeda M. Turbulent flow past a bubble and anellipsoid using shadow-image and PIV techniques. Int. J. Multiphase Flow,1998,24,1383–1406.
    [113] Jensen K D. Flow Measurements. Presented at ENCIT2004–10th Brazilian Congress of ThermalSciences and Engineering, Nov.29--Dec.03,2004, Rio de Janeiro, RJ, Brazil. Technical Editor:Atila P. Silva Freire.
    [114] Shemer L, Barnea D. Visualization of the instantaneous velocity profiles in gas–liquid slug flow.PhysicoChem. Hydrodyn.,1987,8,243–253.
    [115] DeJesus J M, Ahmad W, Kawaji M. Experimental study of flow structure in vertical slug flow. In:Proceedings of the Second International Conference on Multiphase Flow’95–Kyoto, Kyoto,Japan,1995, vol.4, Session p9:51–55.
    [116] Kawaji M, DeJesus, J.M., Tudose, G. Investigation of flow structures in vertical slug flow. Nucl.Eng. Des.,1997175,37–48.
    [117] Ahmad W R, DeJesus J M, Kawaji M. Falling film hydrodynamics in slug flow. Chem. Eng. Sci.,1998,53:123–130.
    [118] Bugg J D, Saad G A. The velocity field around a Taylor bubble rising in a stagnant viscous fluid:numerical and experimental results. Int. J. Multiphase Flow,2002,28:791–803.
    [119] van Hout R, Gulitski A, Barnea D, Shemer L. Experimental investigation of the velocity fieldinduced by a Taylor bubble rising in stagnant water. Int. J. Multiphase Flow,2002,28:579–596.
    [120] Moissis D, Griffth P. Entrance effects in a two-phase slug flow. J. Heat Transfer. Trans. ASME,Ser. C,1962,2,29-39.
    [121] Maxworthy T. A note on the existence of wakes behind large rising bubbles. J. Fluid Mech.,1967,27(2):367–368.
    [122] Filla M, Donsi G, Crescitelli S. Techniche sperimentali per lo studio della scia di bolle.ICP-Rivista Industria Chimica VII (10)(ottobre),1979.
    [123] Kvernvold O, Vind y V, S ntvedt T, Saasen A, Selmer-Olsen S. Velocity distribution in horizontalslug flow. Int. J. Multiphase Flow,1984,10:441–457.
    [124] Nakoryakov V E, Kashinski O N, Kozmenko B K. Experimental study of gas–liquid slug flow ina small diameter vertical pipe. Int. J. Multiphase Flow,1986,12:337–355.
    [125] Nakoryakov V E, Kashinski O N, Petukhov A V, Gorelik R S. Study of local hydrodynamiccharacteristics of upward slug flow. Exp. Fluids,1989,7:560–566.
    [126] Sousa R G, Riethmuller M L, Pinto A M F R, Campos J B L M. Flow around individual Taylorbubbles rising in stagnant polyacrylamide (PAA) solutions. J. Non-Newton. Fluid Mech.,2006,135,16–31.
    [127] Sousa R G, Pinto A M F R, Campos J B L M. Interaction between Taylor bubbles rising instagnant non-Newtonian fluids. Int. J. Multiphase Flow,2007,33:970–986.
    [128] Pinto A M F R, Pinheiro M N C, Campos J B L M. Coalescence of two gas slugs rising in aco-current flowing liquid in vertical tubes. Chem. Eng. Sci.,1998,53:2973–2983.
    [129] Benjamin J W, Haydee Coronado-Diaz, Ronald J. Optical contouring of an acrylic surface fornon-intrusive diagnostics in pipe-flow investigations. Exp Fluids,2008,45:95-109.
    [130]李如意,黄为民.柱状曲面容器内粒子图像测速中径向畸变校正方法.上海理工大学学报,2008,30(4):315-318.
    [131]阮驰,孙传东,白永林,王屹山,任克惠,丰善.水洞流场PIV显示与分析系统离轴测试校正.光子学报,2007,36(1):169-173.
    [132] Araújo J D P, Miranda J M, Pinto A M F R, Campos J B L M. Wide-ranging survey on the laminarflow of individual Taylor bubbles rising through stagnant newtonian liquids. Int. J. MultiphaseFlow,2012,43:131-148.
    [133] Clift C, Grace J R, Sollazo V. Continuous slug flow in vertical tubes. Journal of Heat Transfer,Transaction of ASME,1974,371-376.
    [134] Dukler A E, Maron D M, Brauner N. A physical model for predicting minimum stable slug length.Chem. Eng. Sci.,1985,40:1379–1385.
    [135] Pinto A M F R, Pinheiro M N C, Campos J B L M. On the interaction of Taylor bubbles rising intwo-phase co-current slug flow in vertical columns: turbulent wakes. Exp. Fluids,2001,31,643–652.
    [136] Polonsky S, Barnea D, Shemer L. Averaged and time-dependent characteristics of the motion ofan elongated bubble in a vertical pipe. Int. J. Multiphase Flow,1999,25:795-812.
    [137] Wang Axia, Ma Yichen, Yan Wenjing. The proper orthogonal decomposition method for theNavier-Stokes equations. Academic Journal of Xi'an Jiaotong University (English Edition),2008,20(3):141-148.
    [138] Volkwein S. Proper orthogonal decomposition (POD) for nonlinear dynamical systems. Austria:University of Graz Disc Summer school,2005:1-26.
    [139] Shi L L.Unsteady measurements of turbulent boundary layer flow past a2D square cylinder byusing TR-PIV.The12th Asian Congress Oil Fluid Mechanics.
    [140] Lumley J. The structure of inhomogeneous turbulent flows. In: Yaglam, A.M., ITatarsky,V.(Eds.),Proceedings of the International Colloquium on the Fine Scale Structure of theAtmosphere and its Influence on Radio Wave Propagation. Nauka, Moscow,1967,pp.166–178.
    [141] Bakewell H, Lumley J. Viscous sublayer and adjacent wall region in turbulent pipe flows. Physicsof Fluids,1967,10(9):1880–1889.
    [142] Payne M, Lumley J. Large eddy structure of the turbulent wake behind a circular cylinder. Physicsof Fluids,1967,10(9):194–196.
    [143] Sirovich L. Turbulence and the dynamics of coherent structures. Part I: coherent structures.Quarterly of Applied Mathematics,1987,45(3):561–571.
    [144] Breuer K, Sirovich L. The use of the Karhunen–Loeve procedure for the calculation of lineareigenfunctions. Journal of Computational Physics,1991,96(2):277–296.
    [145] Sirovich L, Park H. Turbulent thermal convection in a finite domain. Physics of Fluids A,1990,2:1649–1668
    [146] Howes T, Sirovich L, Zang T. Eigen-function analysis of Rayleigh–Benard convection. Bull. Atm.Phys. Soc,1987,33:2261
    [147] Ball K, Sirovich L. Keefe. Dynamical eigenfunction decomposition of turbulent channel flow.International Journal for Numerical Methods in Fluids,1991,12:585–604
    [148] Hilberg D, Lazik W, Fiedler H. The application of classical pod and snapshot pod in a turbulentshear layer with periodic structures. Applied Science Research,1994,53:283–290.
    [149] Pastur L R, Lusseyran F, Fraigneau Y, Podvin B. Determining the spectral signature of spatialcoherent structures in open cavity flow. Physical Review E,2005,72:1–4.
    [150] Kraft B, Watt D. Visualization of coherent structure in scalar fields of unsteady jet flows withinterferometric tomography and proper orthogonal decomposition. Experiments in Fluids,2001,30:633–644.
    [151] Husain A, Maig M, Varshney H. Investigation of coherent structures in rotating Rayleigh–Benardconvection. Physics of Fluids,2006,18:1–4.
    [152] Huang H. Limitations of and improvements to PIV and its application to a backward-facing stepflow. Ph.D. Thesis, Technischen Universitat Berlin, Germany,1994.
    [153]何江,符松.竖直平板间自然对流大尺度相干结构的POD分析.力学学报,2003,35(4):385-392.
    [154]阳祥,丁鹏,李增耀,陶文铨.基于POD方法的湍流大尺度信息提取与分析.工程热物理学报,2010,31(6):1019-1022.
    [155]丁鹏,陶文铨.建立低阶模型的POD方法.工程热物理学报,2009,30(6):1019-1021.
    [156]范晨麟,李孝伟.基于本征正交分解方法的多段翼型流动分析.上海大学学报(自然科学版),2012,18(1):76-82.
    [157] Shemer L, Gulitski A and Barnea D. Movement of two consecutive Taylor bubbles in verticalpipes. Multiphase Science and Technology,2007,19(2):99–120.
    [158]夏国栋,张少华,魏宸官等.垂直及倾斜上升弹状流的实验研究--下降液膜.北京理工大学学报,1999,19(1):13-17.
    [159] Liu Y P, Wang P Y, Hu X Y, Zhang H, Du Z H. Visualisation research on characteristics of thecryogenic slug flow in vertical and inclined tubes. Can. J. Chem. Eng.,2011,90(6):1588-1601.
    [160] Zhang P, Fu X. Two-phase flow characteristics of liquid nitrogen in vertically upward0.5and1.0mm micro-tubes: Visualization studies. Cryogenics,2009,49(10):565-575.
    [161] Manik N B, Basu A N, Mukherjee S C. Characterisation of the photodetector and light emittingdiode at above liquid nitrogen temperature. Cryogenics,2000,40(4–5):341-344.
    [162]万立国,任庆凯,田曦,艾胜书,刘自放. PIV技术及其在两相流测量中的应用.环境科学与技术,2010,33(12):463-467.
    [163]戴光清,吴燕华,刘齐宏.乳化空气泡示踪粒子在PIV测速中的应用.四川大学学报(工程科学版),2000,32(1):1-3.
    [164]孙培杰,吴静怡,张鹏,徐烈.层间稀薄气体传热对多层绝热材料性能的影响分析.低温与超导,2008,36(9):11-16,31.
    [165]周志雄.高真空多层绝热中接触导热数值计算和实验研究[硕士学位论文].上海交通大学,2007.
    [166] Song S, Yovanovich M M. Correlation of thermal accommodation coefficient for engineeringsurfaces, ASME HTD-Vol.69, Fundamentals of conduction and recent developments in contactresistance, edited by M. Imber, G.P. Peterson and M.M. Yovanovich,1987:107-116.
    [167]高殿荣,王益群,申功炘等. DPIV技术及其在流场测量中的应用.液压气动与密封,2001,(5):30-33.
    [168]鲍晓利,李木国.一种改进的基于FFT的PIV互相关算法.大连理工大学学报,2011,51(3):417-421.
    [169] Liu Z C, Landreth C C, Adrian R J, Hanratty T J. High resolution measurement of turbulentstructure in a channel with particle image velocimetry. Experiments in Fluids,1991,10(6):301-312.
    [170]阮驰,孙传东,白永林,王屹山. PIV系统水洞流场测量准确度与误差分析.光子学报,2008,37(10):2005-2008.
    [171] Raffel M, Willert C, Wereley S, Kompenhans J. Particle image velocimetry: a practical guide.Springer-Verlag, ISBN3-540-72307-2,2007.
    [172]严敬,杨小林,邓万权等.示踪粒子跟随性讨论.农业机械学报,2005,30(6):54-56.
    [173] Drew D A, Passman S L. Theory of multicomponent fluids drew. Berlin: Springer,1999.
    [174] Pak B C, Cho Y. Hydrodynamic and heat transfer study of dispersed fluids with submicronmetallic oxide particles. Exp. Heat Transfer,1998,11:151–170.
    [175] Miloslav Nic, Jiri Jirat, Bedrich Kosata. IUPAC compendium of chemical terminology (GoldBook),2002-022-1-024.
    [176]王淑华.垂直管路中低温两相流间歇泉现象及其动态特性的研究[博士学位论文].上海交通大学,2010.
    [177] Spedding P L, Nguyen V T. Bubble rise and liquid content in horizontal and inclined tubes. Chem.Eng. Sci.,1978,33:987-94.
    [178] Fagundes Netto J R, Fabre J, Peresson L. Shape of long bubbles in horizontal slug flow, Int. J.Multiphase Flow,1999,25:1129-1160.
    [179] Fabre J, Line A. Modeling of Two-phase slug flow. Annu. Rev. Fluid Mech.,1992,24:21-46.
    [180] Wang J, Zhang H, Zhang L. Experimental investigation of the propagation behavior of slugbubbles in a cryogenic liquid-vapor two-phase flow. The Second International Symposium onMultiphase, Non-Newtonian and Reacting Flows'04, September10-12,2004, Hangzhou, China.
    [181] Wang S H, Zhang H, Wang J. Cryogenic liquid slug and Taylor bubble length distributions in aninclined tube. CJChE,2009,17(1):20-26.
    [182] Zhang H, Wang S H, Wang J. Experimental study on boiling flow of liquid nitrogen in inclinedtubes—velocities and length distributions of Taylor bubbles. J. Taiwan Inst. Chem. E.,2009,40,431-438.
    [183] Dukler A E, Fabre J. Gas-liquid slug flow: knots and loose ends. Multiphase Sci. Technol.,1994,8:355-469.
    [184] Cook M, Behnia M. Bubble motion during inclined intermittent flow. International Journal ofHeat and Fluid Flow,22(5):543-551.
    [185] Shemer L, Gulitski A, Barnea D. Experiments on the turbulent structure and the void fractiondistribution in the Taylor bubble wake. Multiphase Science and Technology, Vol.17, Nos.1-2:103-122,2005.
    [186] Fabre J. In modeling and experimentation in two-phase flow. New York: Springer Wien,2003:117-156.
    [187]夏国栋,周芳德,胡明胜.垂直上升弹状流中液弹长度分布.化工学报,1997,48(6):729-735.
    [188]胡学羽,刘亦鹏,王平阳,王经.倾斜管中低温气液两相流弹状气泡生成位置的实验研究.上海交通大学学报,2012,46(2):306-311.
    [189] Murphy D W. An experimental investigation of geysering in vertical tubes. Advances inCryogenic Engineering,1965,10:353-359.
    [190] Burkhalter J E, Richard H S. Investigations of geysering in vertical tubes. Journal of Spacecraftand rockets,1968,5(7):854-857.
    [191]张亮,林文胜,鲁雪生等.低温液体输送系统间歇泉现象机理分析与消除措施.低温与超导,2002,30(2):1-6.
    [192]张华,王经.垂直低温两相流管底液氮汽泡上升速度的实验研究.工程热物理学报,2006,27(z1):233-236.
    [193] Mendelson H D. The prediction of bubble terminal velocities from wave theory. AIChE J.,1967,13(2):250-252.
    [194] Cole R. Motion of vapor bubbles in saturated liquids. AIChE J.,1967,13,403.
    [195] Radovicich N A, Moissis R. The transition from two-phase bubble flow to slug flow. MIT Report7-7673-22,1962.
    [196] Thomas R M. Bubble coalescence in turbulent flows. Int. J. Multiphase Flow,1981,7(6):709–717.
    [197] Bonnecaze R H, Erksne JR W, Greskovich E J. Holdup and pressure drop for two-phase slug flowin inclined pipes. AIChE J.,1971,17:1109–1113.
    [198] Kuncoro H, Rao Y F, Fukuda K. An experimental study on the mechanism of geysering in aclosed two-phase thermosyphon. Int. J. Multiphase Flow,1995,21(6):1243-1252.
    [199] Youngs D L. Time dependent multi-material flow with large fluid distortions. Numerical Methodsfor Fluid Dynamics,273-285, London, UK, Academic Press.
    [200] Brackbill J U, Kothe D B, Zemach C. A continuum method for modeling surface tenstion. Journalof Computational Physics,100(2):335-354.
    [201] Hirt C W, Nichols B D. Volume of fluid (VOF) method for the dynamics of free boundaries.Journal of Computational Physics,1981,39(1):201–225.
    [202] Taitel Y, Barnea D. Two-phase slug flow. Advances in Heat Transfer,1990,20:83–132.
    [203]马昕晖,徐腊萍,陈景鹏,宋建军.液氢加注系统竖直管道内Taylor气泡的行为特性.低温工程,2011,(6):66-70.
    [204]李祥东,汪荣顺.低温推进剂弹状汽泡形成过程的数值模拟研究.哈尔滨工程大学学报,2009,30(2):198-203.
    [205] Mukherjee A, Kandlikar S G. Numerical simulation of growth of a vapor bubble during flowboiling of water in a microchannel. Microfluid Nanofluid,2005,1:137-145.
    [206] Lee W, Son G. Bubble dynamics and heat transfer during nucleate boiling in a microchannel.Numerical Heat Transfer,2008, Part A,53:1074-1090.
    [207] Lee M R. Critical heat flux in a narrow channel. Dissertation, University of Wisconsin-Madison,USA,2001.
    [208] Konyukhov S N. Applied mechanics problems accompanying spacecraft launches from a floatingplatform and their resolution by the sea launch project. International Applied Mechanics,40(2),115-139,2004.
    [209] Mario M, HoyoRafael D, Vega R, José R V, Raúl L. Calculation models for prediction ofLiquefied Natural Gas (LNG) ageing during ship transportation. Applied Energy,87:1687-1700,2010.
    [210] Herbert F. Oil recovery by spontaneous imbibition for a wide range of viscosity ratios. Ph.D.thesis,University of Wyoming,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700