用户名: 密码: 验证码:
红豆杉紫杉烷13α-,14β-羟基化酶基因调控及茉莉酸甲酯诱导下的蛋白表达
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
紫杉醇(taxol)是Wall等首次从短叶红豆杉(Taxus Brevifolia)树皮中分离得到的一种重要的次生代谢产物,是迄今为止最具抗癌活性的天然化合物之一。本论文围绕紫杉醇的生物合成过程展开了以下研究:
     1、紫杉烷13α-,14β-羟基化酶基因调控研究
     紫杉醇生物合成全过程约20步酶促反应。其中,紫杉烷13a-羟基化酶(简称130H)是紫杉醇生物合成途径的关键羟化酶。而紫杉烷14p-羟基化酶(简称140H)存在于包括紫杉醇在内的各种C-13氧取代的紫杉烷生物合成分支途径中。如果能够抑制紫杉醇生物合成的分支途径,则有可能提高该物质的生物合成产量。应用本试验室构建好的紫杉烷13α-羟基化酶基因正向表达载体、14-p羟基化酶基因反义RNA表达载体、14-p羟基化酶基因RNAi表达载体和几种可能对紫杉醇生物合成产生影响的miRNA表达载体,以曼地亚红豆杉(Taxusxmedia)愈伤组织细胞为材料进行了转化实验,并运用southern blot. RT-PCR、HPLC等技术进行了分析,结果如下:
     (1)建立了一套将转基因方法应用于红豆杉培养细胞的高效、完整的转化体系,对红豆杉愈伤组织细胞的转化成功率达到了100%。并探讨了几种影响转化效率的因素。
     (2)利用14-β羟基化酶基因RNAi表达载体(pZ14aRNAi、pZ14bRNAi)以及14-p羟基化酶基因反义RNA表达载体(pZl4c)进行了转化红豆杉细胞实验。Southern检测初步证实外源基因已经整合到了植物基因组中;RT-PCR分析结果表明,内参基因β-actin在转基因和非转基因细胞中表达水平基本一致,而140H基因在转基因细胞系中的表达水平相对非转基因细胞系显著下降。HPLC结果分析显示,转基因的红豆杉细胞与对照相比三种C-14氧取代紫杉烷(yunnanxane, sinenxan A, sinenxan C)的含量发生了较大的改变。其中主要的紫杉烷Sinenxan A含量明显下降,三种紫杉烷在转基因红豆杉细胞中的总含量呈显著下降趋势。
     (3)利用pC130H载体转化红豆杉细胞实验。GUS检测,荧光观察及southern blot分析初步证明pC130H载体(13α-羟基化酶基因正向表达载体)成功转化红豆杉细胞。RT-PCR结果表明,内参基因β-act in在转基因和非转基因细胞中表达水平一致,而13OH基因在转基因细胞系中的表达水平显著,却在对照中未表达。HPLC检测三种C-14氧取代紫杉烷类化合物的总量在转基因细胞中均略微有所下降。
     (4)其他转化红豆杉细胞的实验。本研究还进行了pC13OH、pZ14a共转化,pC13OH、pZ14b共转化,pC13OH、pZ14c共转化,pC130H、pCO169d共转化,pC13OH、pE415共转化红豆杉细胞的实验.另外,利用构建的几种miRNA表达载体如169d、pROK2-JERFs也对曼地亚红豆杉细胞进行了转化。对转化后的样品进行分析显示,共转化试验及几种niRNA表达载体均未对紫杉醇生物合成途径产生较大影响。
     2、茉莉酸甲酯诱导下红豆杉细胞中蛋白质的表达
     已有的研究表明采用茉莉酸甲酯(MJ)诱导可以有效的提高紫杉醇及紫杉烷类物质在红豆杉细胞中的含量。研究该物质诱导的作用机制,可以更全面了解茉莉酸甲酯对红豆杉细胞基因表达的影响,找到可能与紫杉醇生物合成相关的重要基因或转录因子。本试验利用茉莉酸甲酯诱导中国红豆杉(Taxus chinensis)愈伤组织细胞,采用双向电泳技术、质谱技术对茉莉酸甲酯诱导15天后细胞中的蛋白质变化进行了分析,找到22个差异表达的蛋白。经过肽质量指纹分析、数据库查询,初步断定CK(对照组)中的219号、231号、156号、127号蛋白分别与actin2(一种细胞骨架蛋白)、enolase(烯醇酶,一种参与糖酵解系统的酶,催化2-磷酸甘油酸失水而生成磷酸烯醇丙酮酸反应的酶)、F1-ATP酶α亚单位、maturase K(一种成熟酶)具有同源性。经过茉莉酸甲酯诱导后,该四种蛋白的表达量均有不同程度的降低。这可能与茉莉酸甲酯诱导引起红豆杉细胞的凋亡有关。另外,有10个蛋白与数据库中所有蛋白的同源性都很低,可能代表了中国红豆杉中与茉莉酸甲酯诱导相关的未知蛋白。
     3、抗凋亡抑制剂DEVD-Capaselll对紫杉醇生物合成的影响
     DEVD-Capaselll是一种抗细胞凋亡抑制剂,在红豆杉细胞培养基加入该物质则有可能抑制细胞的凋亡从而达到提高紫杉醇生物合成产量的目的。以曼地亚红豆杉愈伤组织作为实验材料,采用添加200μMMj(茉莉酸甲酯)的6,7-V作为培养基,试验组加入501μM的Ac-DEVD-CMK,分别在继代9天和21天后取样,观察细胞的颜色、生长情况等,并运用HPLC方法对细胞中的紫杉烷成分的种类及含量进行分析。结果发现:MJ诱导后并未在曼地亚红豆杉细胞中检测到紫杉醇的变化,说明本试验中细胞的凋亡并不是主要由于紫杉醇的积累而是由于MJ引发的反应;在细胞生长周期的早期阶段加入Ac-DEVD-CMK,不能阻止Caspase的活性,未能抑制愈伤组织细胞的凋亡。
     4、未知化合物的鉴定
     无论是在转基因还是MJ诱导试验过程中,我们均检测到了一种未知化合物,并对该化合物进行了纯化试验。该物质在HPLC色谱图上的保留时间比紫杉醇的保留时间延迟了大约0.4min。将该物质的二级质谱图与分子量类似的已知化合物的谱图进行比对,没有发现完全吻合的质谱特征。经过HPLC-HRMS分析得到该未知化合物分子量为851.39747,在Xcalibur version2.2软件中计算得到最可能是C46H55O10N6等化合物中的一种。
     结论:(1)本实验建立了一套高效转基因体系,并应用转基因技术成功地抑制了曼地亚红豆杉细胞系中14OH基因的表达,C-14位氧化紫杉烷类含量在转基因细胞系中均有所下降;(2)在采用茉莉酸甲酯(MJ)诱导中国红豆杉愈伤组织细胞的试验中,鉴定了四种并发现了10个可能与茉莉酸甲酯诱导有关的蛋白;(3)抗凋亡抑制剂DEVD-CapaseⅢ未对紫杉醇生物合成产生较大的影响;(4)在实验过程中检测到了一种有可能是未报道的化合物,并进行了初步的纯化和分析。
Summary
     Taxol (generic name paclitaxel), a complex diterpenoid derived by Wall from the Pac-ific yew (Taxus brevifolia) tree, has been approved as an important antitumor and antile-ukemic drug. Several experiments around the biosyntheses of Taxol were performed.
     1. Studies on Regulation of the Gene Expression of Taxol Biosynthesis
     It is estimated that the biosyntheses of Taxol in vivo, from the universal diterpenoid precursor geranylgeranyl diphosphate, involves at least20distinct enzymatic steps with a similar number of taxoid intermediates. Many metabolites are intermediates of parallel or divergent taxoid pathways. The cytochrome P450taxoid14β-hydroxylase (14OH) is als-o thought to operate early in the pathway but to direct the formation of sideroute C-14o-xygenated taxoids. The cytochrome P450taxoid13a-hydroxylase (13OH) is considered to catalyze an early Taxol pathway oxygenation step that leads to C-13oxygenated taxoi-ds such as Taxol, baccatinⅢ and10-deacetylbaccatinIII. If side-route C-14oxygenated taxoids is silenced, the biosynthesis production of taxol may increase.To determine the e-ffect of suppression of this side-route on taxoids production, an antisense and RNAi appr-oach were used in Taxus×media cell line. The vector of13OH gene and other microRN-A vectors which could affect the biosynthesis pathway of paclitaxel were introduced into the cell line too. Southern blot, RT-PCR and HPLC were used to analyze the transgenic cells.
     We got the results as follow:
     (1) A high efficient transformation system was constructed in our study. The system provided a feasible way to promote the yield of taxol in biosynthesis pathway and the transformation rate can reach100%. Several important factors affecting the efficiency of transformation were summarized.
     (2) The dsRNA and antisense RNA expression constructs were introduced into cells by Agrobacterium tumefaciens-mediated transformation. Southern blot analysis of transgenic Taxus×media cells revealed that the transgenic cells possessed the dsRNA and anti-RNA unit. The expression of housekeeping gene β-actin was similar in the transgenic cell lines and the controls but the levels of14OH gene transcripts were significantly reduced in the transgenic cell lines by the silencing strategies, as determined by semiquantitative RT-PCR. Analysis of5major taxoids by HPLC revealed that the total yield of three major C-14oxygenated taxoids (yunnanxane, sinenxan A, sinenxan C) was reduced dramatically in these silenced cell lines as compared to non-transgenic controls.
     (3) The pC13OH vector which harbored the13OH gene was constructed and introduced into the Taxus cells. GUS activity determination, GFP expression and southern blot analysis of transgenic cells revealed that the exogenous gene was integrated into the Taxus genome. RT-PCR analysis showed that the levels of β-actin gene transcripts were the same in the transgenic cell lines as that in the controls, but the expressions of13OH gene were notably increased in the transgenic cell lines. Analysis of HPLC revealed that the total yield of three C-14oxygenated taxoids was reduced slightly in transgenic cell lines as compared to the controls.
     (4) Several co-transformation experiments (such as pC13OH and pZ14a, pC13OH andpZ14b, pC13OH and pZ14c, etc) and other transgenic experiments using microRNA vectors were performed in the study. Analysis indicated that the co-transformation and those microRNA vectors didn't affect the biosynthesis pathway of taxol remarkably.
     2. Analysis of Protein profile in Taxus sp. Cells Treated with Methyl Jasmonate
     The previous research reported that MJ (Methyl jasmonate) is a plant growth regulator that plays an important role in regulating the biosynthesis of plant secondary metabolites and can promote the production of taxol efficiently, as well as other taxoids. To study the operation mechanism of MJ, we can know about the MJ's effect on the genes involved in the biosynthesis of taxol roundly and may find some new key genes and transcription factors. The callus of Taxus chinensis treated with MJ was used as material. Two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) was used to obtain the protein profiles of the taxus cells induced by MJ on day15. Matrix-Assisted Laser Desorption Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF-MS) technique was employed to generate the peptide mass fingerprinting (IMF) of the differentially expressed proteins.22differentially expressed proteins were found and database search was performed. Most of proteins hit putative proteins, and only the proteins marked with219,231,156and127in CK's gel (the control) showed some similarity with actin2, enolase, Fl-ATPase alpha subunit and maturase K proteins respectively in the database. The levels of these proteins decreased in the cells induced by MJ. Ten proteins have low similarity with those in the database and may be the unknown ones related to the induction of MJ.
     3. The effect of DEVD-Capaselll on the biosynthesis of paclitaxel
     The apoptosis can be suppressed by Capase-3inhibitor. If it is applied in the culturing of taxus, the yield of taxol may increase. To investigate the effect of DEVD-CapaseⅢ (Capase-3inhibitor) on the biosynthesis of paclitaxel, the Taxus media cells were treated with50μM Ac-DEVD-CMK. The6,7-V medium supplented with200μM MJ was used in both the test group and the controls. The materials were harvested on day9and21after subculturing. The changes of cells (such as colour and growth rate) were observed and HPLC was performed too. Results showed that taxol was not detected in the Taxus cells treated with MJ. We supposed that is not paclitaxel to induce apoptosis but MJ did and applying the Ac-DEVD-CMK in the early stage of the cell culture didn't block the caspase pathway.
     4. Identification of the unknown compound
     In our study, an unknown compound was found by HPLC and we try to purify it. The compound's retention time delays0.4min compared to the taxol's on the HPLC chromatogram.The results of MS/MS indicated that it may be an unreported compound. HPLC-HRMS analysis revealed that its molecular weight is851.39747and it may be C46H55O10N6or another compound among those calculated by Xcalibur version2.2.
     Conclusion:(1) A high efficient transformation system was constructed in our study. The levels of14OH gene was successfully suppressed by the silencing transgenic strategies and HPLC revealed that the total yield of three major C-14oxygenated taxoids was reduced dramatically in these silenced cell lines as compared to non-transgenic controls.(2) Four proteins were discriminated and ten unknown ones induced by MJ were found.(3) Applying the Ac-DEVD-CMK in the early stage of the cell culture didn't block the apoptosis of taxus cells.(4) An unknown compound which may be unreported was found in all of our experiments and we purified and analyzed it primordially.
引文
[1]Wani M C, Taylor H L, Wall M E, et al. Plant antitumor agents. Ⅵ. The isolation and structure of taxol, a novel antileukemic and antitumor agent from Taxus brevifolia [J]. J Am Chem Soc,1971,93(9):2325-2327.
    [2]Thomas J H, Luis J P, Venkatesh S, et al. Taxol production in suspension cultures of Taxus bacata [J]. Plant cell, Tissue and Organ Culture,1996,44:95-102.
    [3]孙彬贤,章国瑛,刘涤,等.红豆杉细胞培养与紫杉醇生产[J].悄物生理通讯,1999,35(2):135-140.
    [4]Kim J H, Kang I S, Choi H K, et al. A novel prepurification for paclitaxel from plant cell cultures [J]. Process Biochemistry,2002,37(7):679-682.
    [5]Stull D P, Scales T A, Daughenbaugh R, et al. Taxol (paclitaxel), strategies to increase the supply of a new anticancer drug[J]. Applied Biochemistry and Biotechnology, 1995,54:133-140.
    [6]韩金玉,王传贵,那平,等.红豆杉细胞培养生产紫杉醇研究进展[J].中草药,1996,27(7):433-437.
    [7]Schiff P B, Fant J, Horwitz S B. Production of microtubule assembly in vitro by taxol [J]. Nature.1979,277(5698):665-667.
    [8]Moons P J, Fitzpatrick F A. Taxane-mediated gene induction is independent of microtubule stabilization:Induction of transcription regulators and enzymes that modulate inflammation and apoptosis[J]. Proc Natl Acad Sci USA,1998, 95(7):3896-3901.
    [9]方唯硕.紫杉醇的化学研究[J].中国中药杂志,1994,29(5):259-263.
    [10]Craag G M, Scheparat S A, Suffness M, et al. The taxol supply crisis. New NCI policies for handling the large-scale production of novel natural product anticancer and anti-HIV agents [J]. J Nat Prod,1993,56(10):1657-1668.
    [11]Hanson, R L, Wasylyk, J M, Nanduri, V B, et al. Site-specific enzymetic hydrolysis of taxanes at C-10 and C-13 [J]. Biol. Chem.,1994,269(35):22145-22149.
    [12]Nicolaou K C, Yang Z, Liu J J, et al. Total synthesis of taxol [J]. Nature,1994,367: 630-634.
    [13]元英进,葛志强,冯霞.抗癌新药紫杉醇和多烯紫杉醇[M].北京:化学工业出版社,2002:3.
    [14]Denis J N, Greene A E, Guenard D, et al. Highly efficient practical approach to natural taxol [J]. J Am Chem Soc,1988,110(17):5917-5921.
    [15]元英进,葛志强,冯霞.抗癌新药紫杉醇和多烯紫杉醇[M].北京:化学工业出版社,2002:4.
    [16]邱德有,黄美娟,方晓华,等.一种云南红豆杉内生真菌的分离[J].真菌学报,1994,13(4):314-316.
    [17]周东坡,平文祥,孙剑秋,等.紫杉醇产生菌分离的研究[J].微生物学杂志,2001,21(1):18-20.
    [18]Christen A A, Gibson D M, Bland J. Production of taxol or taxol-like compounds in cell culture [P].1991, US Patent:No 5019504.
    [19]Ketchum R E B, Gibson D M, Greenspan G L. Media optimization for maxim-um biomass production in cell cultures of pacific yew.[J]. Plant Cell, Tissue Org Cult,1995,42(2):185-193.
    [20]Ketchum R E B, Gibson D M. Paclitaxel production in suspension cell cultures of Taxus [J]. Plant Cell, Tissue Org Cult,1996,46(1):9-16.
    [21]侯学文,郭勇.接种量及蔗糖浓度对悬浮培养玫瑰茄细胞生长的影响[J].华南农业大学学报,2000,21(4):51-54.
    [22]Wang H Q, Zhong J J, Yu J T. Enhanced production of taxol in suspension cultures of taxus chinensis by controlling inoculum size [J]. Biotechnology letters,1997,19 (4):353-355.
    [23]Zamir LO, Nedea M E, Garneau F X. Biosythetic building blocks of Taxus canade-nsis taxanes [J]. Tetrahedron Left,1992,33(36):5235-5236.
    [24]Fet-Neto A G, Melanson S J, Nicholson S A, et al. Improved taxol yield by aromatic carboxylic acid and amino acid feeding to cell cultures of Taxus cuspidate[J]. Biotechnology & Bioengineering,1994a,44:967-971.
    [25]赵红莲,于荣敏.诱导子在植物细胞培养中的应用研究进展[J].沈阳药科大学学报,2000,17(2):152-156.
    [26]施中东,未作君,元英进.南方红豆杉细胞培养合成紫杉醇诱导子浓度的优化[J].天然产物研究与开发,1999,12(4):36-40.
    [27]王红,叶和春,李国凤.诱导子的作用方式及其在植物组织培养中的应用[J].植物学通报,1999,16(1):11-18.
    [28]Huang Y F, Lan W Z, Chen C, et al. The role of lipoxygenase in elicitor-induced taxol production in Taxus chinensis cell cultures [J]. Process Biochemistry,2005, 40(8):2793-2797.
    [29]臧新,吕晓辉,杨冬之,等.红豆杉细胞培养中提高紫杉醇产量的研究综述[J].福建林业科技,2006,33(2):154-158,174.
    [30]Yukimune Y, Tabata H, Higashi Y, et al. Methyl jasmonate-induced overproduce-tion of Paclitaxel and bacⅢ in Taxus cell suspension cultures. Nature Biotechnology, 1996,14:1129-1032.
    [31]Ketchum R E B, Gibson D M, Croteau R B,et al. The Kinetics of taxoid accumulat-ion in cell suspension culture of Taxus following elicitation with methyl jasmonate [J]. Biotechnology and Bioengineering,1999,62 (1):97-105.
    [32]梅兴国,张舟宁,苏湘鄂,等.水杨酸对红豆杉细胞的诱导作用[J].生物技术,2000,10(6):18-20.
    [33]黄琳玲.蛋白质组学研究脉冲电场诱导对中国红豆杉细胞蛋白表达的影响[D].上海:华东师范大学,2005.
    [34]元英进,胡国武,王传贵,等.镧钟对红豆杉细胞生长及紫杉醇合成的影响[J].中国稀土学报,1998,16(1):56-60.
    [35]Wu J Y, Wang C G, Mei X G. Stimulation of taxol production and excretion in Taxus spp. cell cultures by rare earth chemical lanthanum [J]. Journal of Biotechnology, 2001,85:67-73.
    [36]胡国武,元英进.硝酸铈对红豆杉细胞培养及紫杉醇合成的影响[J].稀土,2000,21(2):49-51.
    [37]David C, Petit A, Tempe J. T-DNA length variability in mannopine hairy root:more than 50 kilobasepairs of pRiT-DNA can integrate in plant cells [J]. Plant Cell Rep, 1988,7:92-95.
    [38]Mcknight T D, Lillis M T, Simpon R B. Segregation of genes transferred to one plant cell from two separate Agrobacterium Strains [J]. Plant Mol Biol,1987, 8(6):439-445.
    [39]戴均贵,朱蔚华.发根培养技术在植物次生代谢物生产中的应用[J].植物生理学通讯1999,35(1):69-76.
    [40]Richard N. Cultured Taxus tissues as a source of taxol, related taxanes other novel anti-tumorl anti-viral compounds[P].1993, W O patent, NO:23555.
    [41]邱德有,韩一凡.红豆杉器官、组织、细胞培养和基因工程的研究进展[J].天然产物研究与开发,1997,10(1):90-98.
    [42]Hamada H, Mikuni K, Takahashi, et al. Transformation of callus of Taxus brevifol-ia[P]. Jpn Kokai Tokkyo Koho PCT/JP95/07,289,248.
    [43]Furmanowa M,.Baranek K S. Hairy root cultures of Taxus × media var. Hicksii as a new source of paclitaxel and 10-deacetylbaccatin Ⅲ [J]. Biotechnology Letters, 2000,22(8):683-686.
    [44]黄遵锡,慕跃林,周玉敏,等.发根农杆菌对短叶红豆杉的转化及毛状根中紫杉醇的产生[J].云南植物研究,1997,19(3):292-296.
    [45]Strobel G A, Stierle A. Taxomyces andreanae, a proposed new taxon for Bulbill-iferous hyphomycete associated with pacific yew(Taxus brevifolia) [J]. Mycotaxon. 1993.47:71-80.
    [46]Strobel G A, Yang X, Sears J, et al. Taxol from pestalotiopsis microspora, an endophytic fungus of Taxus wallachinana [J]. Microbiology,1996,142:435-440.
    [47]Li J Y, Strobel G A, Sidhu R, et al. Endophytic taxol producing fungi from Bald Cypress, Taxodium distichum [J]. Microbiology,1996,142(8):2223-2226.
    [48]Strobel G A, Ford E, Sears J, et al. A unique epiphytic fungus producing taxol from the Venezuelan Guayana [J]. System Appl Microbiol,1999,22(3):426-433.
    [49]Wang J W, Li G I, Lu H Y, et al. Taxol from Tubercularia sp. Strain TF5. an endophytic fungi of Taxus maire [J]. FEMS Microbiology Letters,2000,193(2): 249-253.
    [50]周东坡,孙剑秋,于寒颖,等.中国一新记录属—多节孢属[J].菌物系统,2002,20(2):148-149.
    [51]邴志刚,丛铭均,王艳红.紫杉醇及其产生菌的研究现状[J].中国药业,2008,17(20):64-66.
    [52]陈洵,周世奇,陈涛,等.功能基因组学与代谢工程:微生物菌种改进与生物过程优化[J]化工学报,2006,57(08):1792-1801.
    [53]Huang K X, Huang Q L, Wildung M R, et al. Overproduction, in Escherichia coli, of soluble taxadiene synthase, a key enzyme in the Taxol biosynthetic pathway [J]. Protein Expr Purif,1998,13(1):90-96.
    [54]Huang Q, Roessner C A, Croteau R, et al. Engineering Escherichia coli for the synthesis of taxadiene, a key intermediate in the biosynthesis of taxol [J]. Bioorg Med Chem,2001,9(9):2237-2242.
    [55]Dejong J M, Liu Y, Bollon AP, et al. Genetic engineering of taxol biosynthetic genes in Saccharomyces cerevisiae. Biotechnol Bioeng.2006,93(2):212-24.
    [56]Engels B, Dahm P, Jennewein S. Metabolic engineering of taxadiene biosynthesis in yeast as a first step towards Taxol (Paclitaxel) production [J]. Metab Eng,2008, 10(3-4):201-206.
    [57]Denis R, Sandrine O, Gaetan H, et al. CYP725A4 from yew catalyzes complex structural rearrangement of taxa-4(5), 11(12)-diene into the cyclic ether 5(12)-oxa-3(11)-cyclotaxane. J Biol Chem,2008,283:6067-6075.
    [58]Robert F. Hazel trees offer new source of cancer drug[J]. Science,2000,288(5643): 27-28.
    [59]Koepp A E, Hezari M, Zajicek J, et al. Cyclization of geranylgeranyl diphosphate to taxa4(5),11(12)-diene is the committed step of taxol biosynthesis in Pacific yew[J]. J Biol Chem,1995,270(15):8686-8690.
    [60]Hefner J, Rubenstein S M, Ketchum R E B, et al. Cytochrome P450-catalyzed hydroxylation of taxa-4(5),11(12)-diene to taxa-4(20),11(12)-dien-5a-ol:the first oxygenation step in taxol biosynthesis[J]. Chemistry and Biology,1996, 3(6):479-489.
    [61]Hezari M, Croteau R. Taxol biosynthesis:an update [J]. Planta Medica,1997, 63:291-295.
    [62]Fleming P E, Mocek U, and Floss H G. Biosynthesis of taxoids. Mode of formation of the taxol side chain [J]. J Am Chem Soc,1993,115(2):805-807.
    [63]Hefner J, Ketchum R E B, and Croteau R. Cloning and functional expression of a cDNA encoding geranylgeranyl diphosphate synthase from Taxus Canadensis and assessment of the role of this prenyltransferase in cells induced for Taxol production [J]. Archives of Biochemistry and Biophysics,1998,360(1):62-74.
    [64]Wildung M R and Croteau R. A cDNA clone for taxadiene synthase, the diterpene cyclase that catalyzes the committed step of taxol biosynthesis [J]. Biol Chem,1996, 271(16):9201-9204.
    [65]Walker K, Ketchum R E, Hezari M, et al. Partial purification and characterization of acetyl coenzyme A:taxa-4(20),11(12)-dien-5alpha-ol O-acetyl transferase that catalyzes the first acylation step of taxol biosynthesis [J]. Archives of Biochemistry Biophysics,1999,364(2):273-279.
    [66]Walker K, Schoendorf A, Croteau R. Molecular cloning of a taxa-4(20), 11(12)-dien-5alpha-ol-O-acetyltransferase cDNA from Taxus and functional expression in Escherichia coli[J]. Archives of Biochemistry and Biophysics,2000, 374(2):371-380.
    [67]Schoendorf A, Rithner C D, Williams R M, et al. Molecular cloning of a cytochrome P450 taxane 10β-hydroxylase cDNA from Taxus and functional expression in yeast [J]. Proc Natl Acad Sci USA,2001,98(4):1501-1506.
    [68]Jennewein S, Rithner C D, Williams R M, et al. Taxol biosynthesis:taxane 13α-hydroxylase is a cytochrome P450-dependent monooxygenase[J]. Proc Natl Acad Sci USA,2001,98(24):13595-13600.
    [69]Walker K., Croteau R.Taxol biosynthesis:molecular cloning of a benzoyl-CoA: taxane 2alpha-O-benzoyl transferase cDNA from taxus and functional expression in Escherichia coli [J]. Proc Natl Acad Sci USA,2000,97(25):13591-13596.
    [70]Walker K, Croteau R. Molecular cloning of a 10-deacetylbaccatin Ⅲ-10-O-acetyl transferase cDNA from Taxus and functional expression in Escherichia coli[J]. Proc Natl Acad Sci USA,2000,97(2):583-587.
    [71]Walker K, Long B, Croteau R. The final acylation step in taxol biosynthesis:cloning of the taxoid C13-side-chain N-benzoyltransferase from Taxus [J]. Proc Natl Acad Sci USA,2002,9(14):9166-9171.
    [72]Walker K, Fujisaki S, Long B, et al. Molecular cloning and heterologous expression of the C-13 phenylpropanoid side chain-CoA acyltransferase that functions in Taxol biosynthesis[J]. Proc Natl Acad Sci USA.,2002,99(20):12715-12720.
    [73]朱平,王伟,程克棣.药用植物功能基因[J].中国生物工程杂志,2001,24(2):3-8.
    [74]Jennewein S, Rithner C D, Williams R M, et al. Taxoid metabolism:Taxoid 14beta-hydroxylase is a cytochrome P450-dependent monooxygenase[J]. Arch Biochem Biophys,2003,413(2):262-270.
    [75]高丽丽,余新炳.植物基因转化技术在生物制药方面中的应用[J].热带医学杂志,2001,1(1):76-79.
    [76]王关林,方宏筠.植物基因工程原理与技术(第二版)[M].北京:科学出版社,2002:228-229.
    [77]Han K H, Fleming P, Walker K, et al. Genetic transformation of mature Taxus:an approach to genetically control the in vitro production of the anticancer drug, taxol [J]. Plant Science,1994,95(2):187-196.
    [78]盛长忠,王淑芳,张心平,等.土壤农杆菌C58遗传转化东北红豆杉的初步研究[J].南开大学学报,1999,32(4):27-30.
    [79]刘本叶,叶和春.利用生物技术生产紫杉醇的研究进展[J].生物学通报,1999,34(7):5-7.
    [80]罗建平,姜绍通,潘丽军.根癌农杆菌对云南红豆杉原生质体的转化[J].世界科学技术—中医药现代化,2003,3(5):49-52.
    [81]Kim C H, Kim K I, Chung I S. Expression of modified green fluorescent protein in suspension culture of Taxus cuspidata[J]. J Micro Biotech,2000,10(1):91-94.
    [82]Ketchum R E B, Croteau R B. Stable transformation and long-term maintenance of transgenic Taxus cell suspension cultures [J]. Plant Cell Rep,2007,6(7):1025-1033.
    [83]Ho C K, Chang S H, Lung J H, et al. The strategies to increase taxol production by usingTaxus mairei cells transformed with TS and DBAT genes [J]. International Journal of Applied Science and Engineering,2005,3(3):179-185.
    [84]江舸,金由辛.微RNA- Science杂志2002年十大科技突破第一名[J].生命的化学,2003,23(1):1-3.
    [85]Yeung M L, Bennasser Y, Le S Y, et al. siRNA, miRNA and HIV:promises and challenges [J]. Cell Research,2005,15(11-12):935-946.
    [86]纪虹,孙开来.小RNA的研究现状[J].国际遗传学杂志,2006,29(1):30-34.
    [87]Jorgenson R. Altered gene expression in plants due to trans interactions between homologous genes [J]. Trends Biotechnol,1990,8(12):340-344.
    [88]Guo S, Kemphues K J. Par-1, a gene required for establishing polarity in C. elegans embryos, encodes a putative Ser/Thr kinase that is asymmetrically distributed [J]. Cell,1995,81(4):611-620.
    [89]Fire A, Xn S. Montgomery M K, et al. Potent and specific genetic interference by double-stranded in Caenorhabditis elegans [J]. Nature,1998,391(6669):806-811.
    [90]Hamilton A J, Baulcombe D C. A species of small antisense RNA in post-transcri-ptional gene silencing in plants [J]. Science,1999,286(5441):950-952.
    [91]伍林涛,阮颖,彭琦,等miRNA研究进展[J].作物研究,2006,5:572-574.
    [92]Winkler W C, Breaker R R. Genetic control by metabolite-binding riboswitches [J]. Chem Bio Chem,2003,4(10):1024-1032.
    [93]Brantl S.Antisense-RNA regulation and RNA interference [J]. Biochimica Et Bioph-ysica Acta,2002,1575(1-3):15-25.
    [94]Miki D, Itoh R, Shimamoto K. RNA silencing of single and multiple members in a gene family of rice [J]. Plant Physiol,2005,138 (4):1903-1913.
    [95]Hamilton A, Voinnet O, Chappell L, et, al. Two classes of short interfering RNA in RNA silencing[J]. EMBO J,2002,21(17):4671-4679.
    [96]Mlotshwa S, Voinnet O, Mette MF, et al. RNA silencing and the mobile silencing signal. Plant Cell,2002,14 (Suppl):S289-301.
    [97]Mette MF, Aufsatz W, van der Winden J, et al. Transcriptional silencing and promoter methylation trigered by double-stranded RNA[J]. EMBO J,2000,19(19): 5194-5201.
    [98]Jacque J M, Triques K, Stevenson M. Modulation of HIV-1 replication by RNA interference[J]. Nature,2002,418(6896):435-438.
    [99]Novina C D, Murray M F, Dykxhoorn D M, et al. siRNA-directed inhibition of HIV-linfection[J]. Nature Med,2002,8(7):681-686.
    [100]Gitlin L, Karelsky S, Andino R. Short interfering RNA confers intracellular antiviral immunity in human cells[J]. Nature,2002,418(6896):430-434.
    [101]Waterhouse P M, Helliwell C A. Exploring plant genomes by RNA-induced gene silencing[J]. Nat Genet Rev,2003,4(1):29-38.
    [102]Chen S, Hofius D, Sonnewald U, et al. Temporal and spatial control of gene silenc-ing in transgenic plants by inducible expression of double-stranded RNA[J]. Plant J,2003,36(5):731-740.
    [103]朱剑,余潮,朱友林.RNA沉默技术及其在植物中的应用[J].遗传,2007,29(1):22-28.
    [104]Lu R, Malcuit I, Mofertt P, et al. High throughput virus-induced gene silencing implicates heat shock protein 90 in plant disease resistance[J]. EMBO J,2003, 22(21):5690-5699.
    [105]Byzova M, Verduyn C, de Brouwer D, et al. Transforming petals into sepaioid organs in Arabidopsis and oilseed rape:implementation of the hairpin RNA-medi-ated gene silencing technology in an organ-specific manner[J]. Planta,2004, 218(3):379-387.
    [106]Dugas D V, Bartel B. MicroRNA regulation of gene expression in plants[J]. Curr Opin Plant Biol,2004,7(5):512-520.
    [107]Tang G, Galili G. Using RNAi to improve plant nutritional value; from mechanism to application[J]. Trends Biotechnol,2004,22(9):463-469.
    [108]Liu Q, Singh S P, Green A G. High-stearic and high-oleic cottonseed oils produced by hairpin RNA-mediated post-transcriptional gene silencing[J]. Plant Physiol, 2002,129(4):1732-1743.
    [109]Waterhouse P M, Graham M W, Wang M B. Virus resistance and gene silencing in plants can be induced by simultaneous expression of sense and antisense RNA[J]. Proc Natl Acad Sci USA,1998,95(23):13959-13964.
    [110]Wang M B, Abbott D C, Waterhouse P M. A single copy of a virus-derived transgene encoding hairpin RNA gives immunity to barley yellow dwarf virus[J]. Mol Plant Pathol,2000,1(6):347-356.
    [111]Kalantidis K, Psaradakis S, Tabler M, et al.The occurrence of CM V-specific short RNAs in transgenic tobacco expressing virus-derived double-stranded RNA is in-dicative of resistance to the virus[J], Mol Plant Microbe Interactions,2002,15(8): 826-833.
    [112]Kessler A, Halitschke R, Baldwin I T. Silencing the jasmonate cascade:Induced plant defenses and insect populations[J]. Science,2004,305(30):665-668.
    [113]Gilissen L J, Belhaar S T, Mates C I, et al. Silencing the major apple allergen Mal d 1 by using the RNA interference approach [J]. J Allergy Clin Immunol,2005, 115(2):364-369.
    [114]Dhankher O P, Rosen B P, McKinney E C, et al. Hyperaccumulation of arsenic in the shoots of Arabidopsis silenced for arsenate reductase (ACR2)[J]. Proc Natl Acad Sci USA,2006,103 (14):5413-5418.
    [115]Allen R S, Millgate A G, Chitty J A, et al. RNAi-mediated replacement of morphine with the nonnarcotic alkaloid reticuline in opium poppy[J]. Nat Biotechnol,2004, 22(12):1559-1566.
    [116]Petrovskal N, Wu X L, Donato R, et al. Transgenic ryegrasses (Lolium spp.) with down-regulation of main pollen allergens[J]. Mol Breed,2005,14(4):489-501.
    [117]Zarnore PD, Haley B. The big world of small RNAs [J]. Science,2005,309: 1519-1524.
    [118]Lee R C, Feinbaum R L. Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14[J]. Cell,1993,75: 843-854.
    [119]Lin SY, Johnson S M, Abraham M, et al.The C. elegans hunchback Homolog, hbl-1, Controls Temporal Patterning and Is a Probable MicroRNA Target[J]. Develop-mental Cell,2003,4 (5):639-650.
    [120]Bartel D P. Micro RNAs:Genomics, biogenesis, mechanism, and function[J]. Cell, 2004,116:281-297.
    [121]Ambros V. MicroRNA pathways in flies and worms:Growth, death, fat. Stress, and timing[J]. Cell,2003,113:673-676.
    [122]Pilal R S. MicroRNA function:Multiple mechanism for a tiny RNA[J]. RNA,2005, 11:1753-1761.
    [123]Lewis B P, Shih I H, Jones-Rhoades M W, et al. Prediction of manmalian micro-RNA targets[J]. Cell,2003,115:787-798.
    [124]Wightman B, Ha I, and Ruvkun G. Post-transcriptional regulation of theheterochro-nic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans[J]. Cell, 1993,75:855-862.
    [125]Lim L P, Glasner M E, Yekta S, et al.Vertebrate microRNA genes[J]. Science,2003, 299(5612):1540.
    [126]Lagos-Quintana M, Rauhut R, Yalcin A, et al. Identification of tissue-specific mic-roRNAs from mouse[J]. Curr Biol.,2002,12(9):735-739.
    [127]Giraldez A J, Cinalli R M, Glasner M E, et al. MicroRNAs regulate brain morpho-genesis in zebrafish[J]. Science,2005,308(5723):833-838.
    [128]Palatnik J F, Allen E, Wu X, et al. Control of leaf morphogenesis by microRNAs[J]. Nature,2003,425(6955):257-263
    [129]Lee R C, Ambros V. An extensive class of small RNAs in Caenorhabditis elegans [J]. Science.2001,294(5543):862-864.
    [130]Bartel B, Bartel D P. MicroRNAs:At the root of plant development?[J]. Plant Phy-siol.2003,132(2):709-717.
    [131]Millar A A, Waterhouse P M. Plant and animal microRNAs:similarities and differ-ences[J]. Funct Integr Genomics,2005,5(3):129-135.
    [132]Chang S, Johnston R J, Fr(?)kjaer-jensen C, et al. MicroRNAs act sequentially and asymmetrically to control chemosensory laterality in the nematode[J]. Nature,20-04,430(7001):785-789.
    [133]龙茹,李玉花,徐启江.动植物miRNA的生物合成、作用机理及其功能[J].生命科学,2007,19(2):127-131.
    [134]Chen X. MicroRNA biogenesis and function in plants[J]. FEBS Lett,2005,579 (26):5923-5931.
    [135]Doench J G, Peterson C P, Sharp P A. siRNAs can function as miRNAs[J]. Genes Dev,2003,17(4):438-442.
    [136]Zeng Y, Wagner E J, Cullen B R. Both natural and designed microRNAs can inhibit the expression of cognate mRNAs when expressed in human cells[J]. Mol Cell.2002,9(6):1327-1333.
    [137]Zeng Y, Yi R, Cullen B R. MicroRNAs and small interfering RNAs can inhibit mRNA expression by similar mechanisms[J]. Proc Natl Acad Sci USA,2003, 100(17):9779-9784.
    [138]Hutvagner G. Zamore P D. A microRNA in a multiple-turnover RNAi enzyme complex[J]. Science,2002,297(5589):2056-2060.
    [139]Leave C, Xie Z. Kasschau K D, et al. Cleavage of Scarecrow-like mRNA targets directed by a class of Arabidopsis miRNA[J]. Science,2002,297 (5589):2053-2056.
    [140]张云峰,季勤,杨清,等.植物miRNA在植物生长发育中的作用研究[J].安徽农业科学,2007,35(31):9834-9836.
    [141]Reinhart B J, Weinstein E G, Rhoades M W, et al. MicroRNAs in plants[J]. Genes Dev,2002,16:1616-1626.
    [142]Palatnik J F, Allen E, Wu X, et al. Control of leaf morphogenesis by microR-NAs[J]. Nature,2003,425(6955):257-263.
    [143]Wang J W, Wang L J, Mao Y B, et al. Control of root cap formation by microRN-A-targeted auxin response factors in Arabidopsis[J]. Plant Cell,2006.17(8):2204-2216.
    [144]Aukeman M L, Sakai H. Regulation of flowering time and floral organ identity by microRNA and its APETALA2-like target genes [J]. Plant Cell,2003,15:2730-2741.
    [145]Schmid M, Uhlenhaut N H, Godard F, et al. Dissection of floral induction pathwa-ys using global expression analysis [J]. Development,2003,130(24):6001-6012.
    [146]Wang J F, Zhou H, Chen Y Q, et al. Identification of 20 microRNAs from Oryza sativa[J].Nucleic Acids Res,2004,32(5):1688-1695.
    [147]Lagos-Quintana M, Rauhut R, Lendeckel W, et al. Identification of novel gene coding for small expressed RNAs [J]. Science,2001,294(5543):853-858.
    [148]Wassarman K M, Repoila F, Rosenow C, et al. Identification of novel small RNAs using comparative genomics and microarrys[J]. Genes Dev,2001,15(13): 1637-1651.
    [149]Schmittgen T D, Jiang J, Liu Q, et al. A high throughput method to monitor the expression of microRNA precursors[J]. Nucleic Acids Res.,2004,32(4):e43.
    [150]Tang F, Hajkova P, Barton S C, et al. MicroRNA expression profiling of single whole embryonic stem cells[J]. Nucleic Acids Res.,2006,34(2):e9.
    [151]Sempere L F, Freemantle S, Pitha-Rowe I, et al. Expression profiling of mammalian microRNAs uncovers a subset of brain-expressed microRNAs with possible roles in murine and human neuronal differentiation [J]. Genome Biol, 2004,5(3):R13.
    [152]Liu C G, Calin G A, Meloon B, et al. An oligonucleotide microchip for genome-wide microRNA profiling in human and mouse tissues[J]. Proc Natl Acad Sci USA, 2004,101(26):9740-9744.
    [153]Chen X. A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development [J]. Science,2004,303(5666):2022-2025.
    [154]陈芳,殷勤伟.调控基因表达的miRNA[J]科学通报,2005,50(13):1289-1299.
    [155]房宝英,何冬梅,张洹.发现miRNA及其靶基因的研究方法[J].山东医药2007,47(32):157-159.
    [156]Rusinov V, Baev V, Minkov I N. Microlnspector:a web tool for detection of miRNA binding sites in an RNA sequence [J]. Nucleic Acids Res,2005,33 (Web Server issue):W696-700.
    [157]Vatolin S, Navaratne K, Weil R J. A novel method to detect functional microRNA targets[J]. J Mol Bol,2006,358(4):983-996.
    [158]Abrahante J E, Daul A L, Li M, et al. The Caenorhabditis elegans hunchback-like gene lin-57/hbl-1 controls developmental time and is regulated by microRNAs[J]. Developmental Cell,2003(4):625-637.
    [159]Ambros V. MicroRNA pathways in flies and worms:Growth, death, fat. Stress, and timing[J]. Cell,2003,113:673-676.
    [160]Mallory A C, Dugas D V, Bartel D B, et al. MicroRNA regulation of NAC-domain targets is required for proper formation and separation of adjacent embryonic, vegetative, and floral organs [J]. Curt Biol,2004,14:1035-1046.
    [161]Aukeman M L, Sakai H. Regulation of flowering time and floral organ identity by microRNA and its APETALA2-like target genes[J]. Plant Cell,2003,15: 2730-2741.
    [162]Emery J F, Floyd S K, Alvarez J, et al. Radial patterning of Arabidopsis shoots by classⅢ HD-ZIP and KANADI genes[J]. Curr Biol,2003,13:1768-1774.
    [163]Vazquez F, Gasciolli V, Crete P. The nuclear dsRNA binding protein HYL1 is required for microRNA accumulation and plant development, but not posttranscriptional transgene silencing [J]. Curr Biol,2004,14:346-351.
    [164]张惠展.基因工程概论[M].上海:华东理工大学出版社,1990:35-55.
    [165]Kawaji H, Mizuno T, Mizushima S. Influence of molecular size and osmolarity of sugars and dextrans on the synthesis of outer membrane proteins O-8 and O-9 of Escherichia coli K-12[J]. Journal of Bacteriology,1979,140:843-847.
    [166]唐正义,胡蓉.反义RNA研究进展[J].内江师范学院学报,2004,19(4):30-35.
    [167]宫明,宫峰.反义RNA调控的不同方式[J].生命的化学,1996,16(4):17-18.
    [168]Tomizawa J, Itoh T. Plasmid ColE1 incompatibility determined by interaction of RNA Ⅰ with primer transcript[J]. Proc Natl Acad Sci USA,1981,78(10):6096-6100.
    [169]Okamoto K and Freundlich M. Mechanism for the autogenous control of the trp operon:Transcription inhibition by a divergent RNA transcript[J]. Proc Natl Acad Sci USA,1986,83 (14):5000-5004.
    [170]Oeller P W, Lu M W, Tanlor M L, et al. Reversible inhibition of tomato fruit sene-scence by antisense RNA[J] Science,1991,254(5030):437-439.
    [171]Bird C R, Ray T A. Manipulation of plant gene expression by antisense RNA[J]. Biotechnol. Genet Eng Rev,1991,9:207-227.
    [172]Theologis A, Oeller P W, Wong L M, et al. Use of a tomato mutant constructed wi-th reverse genetics to study fruit ripening, a complex developmental process[J]. Dev Genet,1993,14(4):282-295.
    [173]Ju R, Tian Y, Shen Q, et al. Cloning of polygalacturonase (PG) cDNA and inhibition effects of its antisense RNA on the expression of PG gene in transgenic tomato plants[J]. Chin J Biotechnol,1994,10(2):67-74.
    [174]Day A G, Bejarano E, Buck K W et al. Expression of an antisense viral gene in transgenic tobacco confers resistance to the DNA virus tomato golden mosaic virus Proe Natl Acad Sci USA,1991,88(15):6721-6725.
    [175]Nelson A, Roth K A, Ohnson J D. Tobacco mosaic virus in function of transgenic Nicotiana tabacum plants inhibited by antisense constructs directed at the 5'rege-ion of viral RNA. Gene,1993,127(2):227-232.
    [176]Yang W D, Wang S Y, Liu W P, et al. Inhibition of replication of rice dwarf virus in transgenic rice plant expressing antiseme ribozyme gene[J]. Virologica sinica, 1996,11 (3):277-283.
    [177]Han S, Wu Z, Yang H, et al. Ribozyme-mediated resistance to rice dwarf virus and the transgene silencing in the progeny of transgenic rice plants[J]. Transgenic Res, 2000,9(3):195-203.
    [178]Visser RGF, Somhorst I, Kuipers G J, et al. Inhibition of the expression of the gene for granule-bound starch synthase in potata by antisense constructs[J]. Mol Gen genet,1991,225(2):289-296.
    [179]Terada R, Nakajima M, Isshiki M, et al. Antisense waxy genes with highly active promoter effectivlfy suppress waxy gene expression in transgenic rice[J]. Plant Ce-ll Physio,2000,41(7):881-888.
    [180]Knutzon D S. Thompson G A, Rsadke S E, et al. Modification of Brasica seed oil by antisense expression of a stearoyl-acyl carrier protein desaturase gene [J]. Proc Natl Acid Sci USA,1992,89(7):2624-2628.
    [181]Schmulling T, Rohrig H, Pilz S. et al. Restoration of fertility by antisense RNA in genetically engineered male sterile tobacco plants [J]. Mol Gen Genet,1993,237 (3):385-394.
    [182]Heiser V, Rasmusson A G, Thicck O, et a l. Antisense repression of the mitoch-ondrial NADH-binding subunit of complex I in transgenic potato plants affects ma-le fertility[J]. Plant Science,1997,127 (1):61-69.
    [183]Zabatata E, Mouras A, Hermould M, et al. Transgenic male—sterile plant induced by unedited atp9 gene is restored to fertility by inhibiting it expression with antis-ense RNA[J]. Proc Natl Acad Sci USA,1996,93(20):11259-11263
    [184]Van der Krol A R, Lenting R J, Veenstra J G, et al. An antisense chalcone synth-ase gene in transgenic plants inhibits flower pigmentation [J]. Nature,1988,333: 866-869.
    [185]Deroles S C, Bradley J M, Schwinn K E, et al. An antisense chalcone synthase cDNA leads to novel colour patterns in lisianthus (Eustoma grandiflorum) flow-er[J]. Molecular Breeding,1998,4(1):59-66(8).
    [186]Fukui Y, Tanaka Y, Kusumi T, et al. A rationale for the shift in colour towards blue in transgenic carnation flowers expressing the flavonoid 3,5-hydroxylase gene [J]. Phytochemistry,2003,63(1):15-23.
    [187]Savin K L, Baidoette S C, Graham M W, et al. Antisense ACC oxidase RNA dela-ys carnation petal senescence[J]. Hort Science,1995,30(5):970-972.
    [188]刘乐承,余小林,叶纨芝,等.白菜雄性不育相关基因BcMF3功能的反义RNA验证[J].分子细胞生物学报,2007,40(5):330-338.
    [189]崔孟祥,李鹏丽,刘仲齐,等LeCOP1LIKE基因的克隆、反义构建及微型番茄的转化[J].浙江大学学报(农业与生命科学版)2006,32(5):473-478.
    [190]Voelckes C, Krugel T, Gase K, et al. Anti-sense expression of putrescine N-methy- transferase confirms defensive role of nicotine in Nicotiana Sylvestris against Man-duca Sexta[J]. Chemoecology,2001,11:121-126.
    [191]Meyermand H, Morrel K, Lapierre C, et al. Modification in lignin and accumula-tion of phenolic glulosides in poplar xylern upon down-regulation of cafeoyl-coenzyme A O-Mythyltransferase, an enzyme involved in lignin biosynthesis[J]. The Journal of Biological chemistry,2000,275(47):36899-36909.
    [192]Bird C R, Ray T A. Using antisense RNA to study gene function:inhibition of carotenoid biosynthesis in transgenic tomatoes[J]. Biotechnology,1991,9:635-639.
    [193]Ni W, paiva N L, Dixon R A. Reduced lignin in transgenic plants containing an engineered caffeic acid O-methyltransferase antisense gene[J].Transgenic Res, 1994,3(2):120-126.
    [194]Wei J H, Zhao H Y, Zhang J Y, et al. Cloning cDNA encoding CCoAOMT from Populus tomentosa and down-regulation of lignin content in transgenic plant expr-ession antisense gene[J]. Acta Botanica sinica,2001,43 (11):1179-1183.
    [195]涂长春,章金钢,熊光明,等.猪瘟病毒反义cDNA片段的化学合成及克隆[J].病毒学报,1992,8(4):383.
    [196]赵小伙,毛冬雨,张爱臣,等.在大肠杆菌中反义RNA抑制乙型肝炎病毒核心抗原的表达[J].病毒学报,1992,8(2):127.
    [197]裘慕绥、陈健、王德宝,等,反义核酸对小鼠腹水瘤病毒的抑制作用[J].科学通报,1993,38(6):546-549
    [198]杨基伟,孙丙刚.反义RNA抑制活化癌基因表达的研究[J].遗传学报,1996,23(3):243.
    [199]关钧,曹淑兰,范慕贞.ODC反义RNA对人肺鳞癌c-myc及c-Haras基因农达的影响[J].中日友好医院学报,1997,11(1):3.
    [200]曹江,滕理送,蔡心涵,等.P53反义RNA对肠癌细胞恶性表型的抑制作用[J].中华肿瘤杂志,1997,19(2):123-126.
    [201]Darius H, Buerke M, Boissel J P, et al. Local drug delivery and gene therapy[J]. Herz,1997,22(6):347-354.
    [202]Weiss B, Davidkova G, and Zhou L W. Antisense-RNA gene therapy for studying and modulating biological processes[J]. Cell Mol Life Sci,1999,55(3): 334-358.
    [203]Woolf T M. Therapeutic repair of mutated acid sequences[J]. Nat Biotech Nol, 1998,16(14):341-344.
    [204]周忠强,梅兴国.红豆杉细胞培养生产紫杉醇的研究进展[J].中南民族大学 学报(自然科学版),2004,23(1):21-25.
    [205]Collins-Pavao N, Chin C K. Pedersen H. Taxol partitioning in two-phase plant cell cultures of Taxus brevifolia [J]. Journal Biotechnology,1996,49(1-3):95-100.
    [206]甘烦远,袁丽萍,郑光植.云南红豆杉细胞培养中紫杉醇的代谢调控[J].云南植物学研究,1996,18(4):451-454.
    [207]罗建东,管锦霞.甲羟戊酸通路对细胞生长调控作用的研究进展[J].生命科学,1999,11(5):212-214.
    [208]Huang Y F, Lan W Z, Chen C, et al. The role of lipoxygenase in elicitor-induced taxol production in Taxus chinensis cell cultures [J]. Process Biochemistry,2005, 40(8):2793-2797.
    [209]Zhang C, Wu J. Ethylene inhibitors enhance elicitor-induced paclitaxel production in suspension cultures of Taxus spp. Cells [J]. Enzyme and Microbial Technology, 2003,32(1):71-77.
    [210]张宏杰,武田美雄,南庆典,等.云南红豆杉根中的紫杉烷类化合物[J].云南植物研究,1993,15(4):424-426.
    [211]Cheng K, Fang W, Yang Y, et al. C-14 Oxygenated Taxanes from Taxus Yunnanensis Cell Cultures[J]. Phytochemistry,1996,42(1):73-75.
    [212]Menhard B, Eisenreich W, Hylands P J, et al. Taxoids from cell cultures of Taxus chinenesis [J]. Phyto chemistry,1998,49(1):113-125.
    [213]Wheeler A L, Long R M, Ketchum R E, et al. Taxol biosynthesis:differential transformations of taxadien-5 alpha-ol and its acetate ester by cytochrome P450 hydroxylases from Taxus suspension cells[J]. Arch Biochem Biophys,2001,390(2): 265-278.
    [214]Ketchum R E, Horiguchi T, Qiu D Y, et al. Administering cultured Taxus cells with early precursors reveals bifurcations in the taxoid biosynthetic pathway[J]. Phytochemistry,2007,68(3):335-341.
    [215]胡新玲,徐妙云,刘德虎,等.紫杉烷14p-羟基化酶基因片段的克隆及其植物表达载体的构建[J].分子植物育种,2006,4(2):243-250.
    [216]滕文静,胡新玲,王伟,等.紫杉烷13α-羟基化酶基因的克降及其转化烟草的研究[J].中国生物工程杂志,2008,28(2):53-58。
    [217]胡国武,温延益,元英进.紫杉醇合成代谢途径中紫杉烯合成酶cDNA的克隆[J].生物工程学报,2000,16(2):158-160.
    [218]Svoboda P, Di Cara A. Hairpin RNA:a secondary structure of primary importance [J]. Cell Mol Life Sci,2006,63(7-8):901-918.
    [219]陈彩艳,肖晗,张文利,等.以花药愈伤组织为受体的水稻转化和RNA干扰 研究[J].中国科学C辑生命科学,2006,36(4):289-301.
    [220]Castle L A, Morris R O. Transient expression assays using GUS constructs and flu-orometric detection for analysis of T-DNA transfers. In:Gelvin S, Schilperoot R (eds) Plant molecular biology manual,2nd edn. Kluwer, Dordrecht,1994, B5, pp 1-16.
    [221]胡雅琴,肖娅萍,王孝安,等.几种松科植物基因组总DNA的提取[J].西北植物学报,2004,24(3):523-526.
    [1]Wasinger V C, Humphery Smith I, Williams K L, et al. Progress with gene product mapping of the mollicutes:Mycoplasma genitalium[J]. Electrophoreses,1995,16(7): 1090-1094.
    [2]Wilkins M R, Sanchez J C, Gooley A A, et al. Progress with proteome projects:Why all proteins expressed by a genome shuould be identified and how to do it[J]. Biotech & Genetic Engineering Rev,1996,13:19-50.
    [3]Swinbanks D. Government backs proteome proposal[J]. Nature,1995,378 (6558) 653.
    [4]Kahn P. From genome to proteome:Looking at a cell's proteins[J]. Science,1995,270 (5235):369-370.
    [5]Liu H L, Hsu J P. Recent developments in structural proteomics for protein structure determination [J]. Proteomics,2005,5:2056-2068.
    [6]Labaer J, Ramachandran N. Protein microarrays as tools for functional proteomics [J]. Curr Op in Chem Biol,2005,9 (1):14-19.
    [7]Fields S, Sternglanz R. The two hybrid system:an assay for protein protein interact-tions[J]. Trends Genet,1994,10(8):286-292.
    [8]Serebriiskii I G, Fang R, Latypova E, et al. A combined yeast bacteria two hybrid system:development and evaluation [J]. Mol Cell Proteomics,2005,4:819-826.
    [9]关薇,王建,贺福初.大规模蛋白质相互作用研究方法进展[J].生命科学,2006,5,507-512.
    [10]王英红,来茂德.信号转导的功能蛋白质组学研究[J].临床与实验病理学杂志,2006,4:488-491.
    [11]Marc A, Reymond R S, Thil O K, et al. Expression and functional proteomics studies in colorectal cancer [J]. Pathol Res Prac,2004,200(2):119-127.
    [12]Klein J B, Thongboonkerd V. Overview of proteomics[J]. Contrib Nephrol,2004, 141:1-10.
    [13]Romijn E P, Krijgsveld J, Heck A J. Recent liquid chromatographic-(tandem) mass spectrometric applications in proteomics[J]. J Chromatogr A,2003,1000(1-2):589-608.
    [14]Hunter T C, Andon N L, Koller A, et al. The functional proteomics toolbox: methods and applications[J]. J Chromatogr B Analyt Technol Biomed Life Sci,2002, 782(1-2):165-181.
    [15]Huber LA. Is proteomics heading in the wrong direction?[J]. Nat Rev Mol Cell Biol, 2003,4(1):74-80.
    [16]Herbert B R, Harry J L, Packer N H, et al. What place for polyacrylamide in proteo-mics?[J]. Trends Biotechnol,2001,19 (10Suppl):S3-S9.
    [17]Molloy M P, Herbert B R, Walsh B J, et al. Extraction of membrane proteins by diff-erential solubilization for separation using two-dimensional gel electrophoresis[J]. Electrophoresis,1998,19:837-844.
    [18]Herbert B, Righetti P G. A turning point in proteome analysis:sample prefractio-nation via multicompartment electrolyzers with isoelectric membranes. Electrophor-esis,2000,21(17):3639-3648.
    [19]Yan J X, Devenish A T, Walt R, et al. Fluorescence two-dimensional difference gel electrophoresis and mass spectrometry based proteomic analysis of Escherichia coli. Proteomics,2002,2 (12):1682-1698.
    [20]Unlu M, Morgan M E, Minden J S. Difference gel electrophoresis:a single gel method for detecting changes in protein extracts[J]. Electrophoresis,1997,18(11): 2071-2077.
    [21]Alban A, David S O, Bajorkesten L, et al. A novel experimental design for comparative two-dimensional gel analysis:two-dimensional difference gel electrophoresis incorporating a pooled internal standard[J]. Proteomics,2003,3 (1): 36-44.
    [22]Patterson S D. Mass spectrometry and proteomics[J]. Physiol Genomics,2000,2 (2): 59-65.
    [23]Aebersold R, Mann M. Mass spectrometry-based proteomics[J]. Nature,2003,422 (6928):198-207.
    [24]Washburn M P, Wolters D, Yates J R. Large-scale analysis of the yeast proteome by multidimensional protein identification technology[J]. Nat Biotechnol,2001,19(3): 242-247.
    [25]Binz P A, Muller M, Hoogland C, et, al. The molecular scanner:concept and devel-opments[J]. Curr Opin Biotechnol,2004,15(1):17-23.
    [26]Hochstrasser D F, Appel R D, Vargas R, et, al. A clinical molecular scanner:the Melanie project[J]. MD Comput,1991,8(2):85-91.
    [27]Muller M, Gras R, Binz P A, et, al. Molecular scanner experiment with human plasma:improving protein identification by using intensity distributions of matching peptide masses[J]. Proteomics,2002,2(10):1413-1425.
    [28]Lee K H. Proteomics:a technology-driven and technology-limited disco very scie-nce[J]. Trends Biotechnol,2001,19(6):217-222.
    [29]钱小红,贺福初.蛋白质组学理论与方法[M].北京:科学出版社,2003:172.
    [30]Merchant M, Weinberger S R. Recent advancements in surface-enhanced laser deso-rption/ionization-time of flight-mass spectrometry[J]. Electrophoresis,2000,21(6): 1164-1177.
    [31]王阳梦,何聪芬,董银卯.蛋白质组学研究中的新技术[J].生物技术通报,2007,5:46-50.
    [32]Gillespie M. Affordable proteomics:the two-hybrid systems[J]. Curr Opin Mol Ther, 2003,5(3):266-270.
    [33]Legrain P, Selig L. Genome-wide protein interaction maps using two-hybrid ystsem- s[J]. FEBS Lett,2000,480(1):32-36.
    [34]Vidal M, Endoh H. Prospects for drug screening using the reverse two-hybrid system[J]. Trends Biotechnol,1999,17(9):374-381.
    [35]Walhout A J, Sordella R, Lu X, et, al. Protein interaction mapping in C. elegans using proteins involved in vulval development[J]. Science,2000,287 (5450):116-122.
    [36]Uetz P, Giot L, Gagney G, et, al. A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae[J]. Nature,2000,403(6770):623-627'.
    [37]Vidal M, Brachmann R K, Fattaey A, et al. Reverse two-hybrid and one-hybrid systems to detect dissociation of protein and protein-DNA interactions[J]. Proc Natl Acad Sci USA,1996,93(19):10315-10320.
    [38]Vidal M, Brachmann R K, Fattaey A, et al. Reverse two-hybrid and one-hybrid systems to detect dissociation of protein and protein-DNA interactions[J]. Proc Natl Acad Sci USA,1996,93(19):10315-10320.
    [39]夏其昌,曾蝾.蛋白质化学与蛋白质组学[M].北京:科学出版社,2004:462.
    [40]Puig O, Caspary F, Riaut G, et al. The tandem affinity purification (TAP) method:a general procedure of protein complex purification [J]. Methods,2001,24:218-229.
    [41]Swmbdner G, Parthier B. The biochemistry and the physiological and molecular actions of jasmonates [J]. Annu Rev Plant physiol Plant Mol Blot,1993,44:569-589.
    [42]潘瑞炽,李海航.茉莉酸—天然生长抑制剂[J].植物生理学通讯,1989,2:78-80.
    [43]Ueda J, Kato J, Yamane H, et al. Inhibitory effect of methyl jasmonate and its related compounds on kinetine-induced retardation of oat leaf senescence [J]. Physiol Plant, 1981,52(2):305-309.
    [44]Meyer A, Miersch O, Buttner C, el al. Occurrence of the plant growth regulator jas-monic acid in plants [J]. J Plant Growth Regul,1984,3(1-4):1-8.
    [45]Brady A V. Pathways of fatty acid hydroperoxide metabolism in Spinach leaf chloroplast [J]. Plant Physiol,1984,85:1073-1078.
    [46]Vick B A. Biosynthesis of jasmonic acid by several plant species [J]. Plant Physiol, 1984,76:458.
    [47]戴良英,罗宽.茉莉素及其功能[J].湖南农业大学学报,2000,26(2).150-155.
    [48]Saniewski M, Czapski J, Nowacki J, et al. Relationship between stimulatory effect of methyl jasmonate on ethylene and 1-aminocyclo-propane-l-carboxylic acid cont-ent in tomatoes[J]. Biol Plant,1987,17(1):17-21.
    [49]Ravnikar M, Gogola N. Regulation of potato meristem development by jasmonic acid in vitro[J]. Plant Physiol,1988,83(suppl 4):77.
    [50]Wang S Y. Methyl jasmonate reduces water stress in strawberry [J]. Journal of Plant Growth Regulation,1999,18(3):127-134.
    [51]蔡昆争,董桃杏,徐涛.茉莉酸类物质(JAs)的生理特性及其在逆境胁迫中的抗性作用[J].生态环境,2006,15(2):397-404.
    [52]Farmer E E, Ryan C A. Octadecanoid precursors of jasmonate acid activate the synt-hesis of wounding-inducible proteinase inhibitors [J]. The Plant Cell,1992,4(2): 129-134.
    [53]Ilinskayal I, Gorenburg E V, Chalenko G I, et al. Participation of jasmonic acid methyl ester in the induction of potato resistance to phytophthora pathogen[J]. Fizaologiya Rastenii,1996,43(5):713-720.
    [54]Michael V K, Hao C, Richard J G, et al. A leaf lipoxygenase of potato induced specifically by pathogen infection [J]. Plant physiology,2000,124:1121-1130.
    [55]Tssao R, Zhou T. Interaction of monoterpenoids, methyl jasmonate, and Ca2+ in controlling post-harvest brown rot of sweet cherry[J]. Hortscience,2000,35(7): 1304-1307.
    [56]潘瑞炽,古焕庆.茉莉酸甲酯对花生幼苗生长和抗旱性的影响[J].植物学报,1998,40(3):256-262。
    [57]贺立红,宾金华.花生采前茉莉酸甲酯处理对成熟种子黄曲霉抗性的影响[J].河南农业科学,2006,8:51-55.
    [58]桂连友.外源茉莉酸甲酯对茶树抗虫作用的诱导及其机理[D].杭州:浙江大学,2005.
    [59]Satler S O, Thimann K V. Le jasmonate de methyle:nouveau et puissant promoteur de la senescence des feuilles[J]. Compt rend Acad Sci III,1981,293:735-740.
    [60]Beltrano J, Ronco M G, Montaldi E R, et al. Senescence of flag leaves ears of wheat hastened by methyl jasmonate [J]. Journal of Plant Growth Regulation,1998,17(1): 106-113.
    [61]吴文华,潘瑞炽.茉莉酸甲酯对水稻幼苗叶片中碳水化合物含量及苯丙氨酸解氢酶活性的影响[J].植物生理学通讯,1997,33(3):178-180.
    [62]吴文华,潘瑞炽.茉莉酸甲酯对水稻幼苗光合作用的影响[J].植物学报,1998,40(3):256-262.
    [63]Jan T, Aadres F, Lars R A. Wound and methyl jasmonate-inducible transcript coding for a myrosinase associated protein with similarities to an early nodulin [J]. Plant Physiology,1996,110(2):483-491.
    [64]Shunsuke I, Katsuhitoh, Makiko N, et al. Differential induction by methyl jasmonate of genes encoding ornithine decarboxylase and other enzymes involved in tobacco cell cultures [J]. Plant Molecular Biology,1998,38(6):1101-1111.
    [65]Slobodanka S, Brigtte K, Kerstin P, et al. Induction of auxin biosynthetic enzymes by jasmonic acid and in clubroot diseased Chinese cabbage plants[J]. Physiologia Plantarum,1999,105(3):521-531.
    [66]Flotaand V, Felipe A, Del V. Jasmonate modulates development and light-regulated alkaloid biosynthesis in Catharanthus Roseus [J]. Phytochemistry,1998,49(2): 395-402.
    [67]李海航,潘瑞炽.茉莉酸甲酯对绿豆下胚轴插条生根的影响[J].华南农业大学学报(自然科学版),1988,1:68-72。
    [68]曾晓春,周燮.茉莉酸甲酯诱导水稻颖花开放[J].植物学报1999,41(5):560-562.
    [69]李会霞,王玉文,田岗,等.茉莉酸甲酯对谷子颖花开放的诱导效应[J].植物生理科学,2006,22(7):298-301.
    [70]Koda Y. Possible involvement of jasmonates in various morphogenic events [J]. Physiol Plant,1997,100 (3):639-646.
    [71]原永兵.水杨酸在植物体内的作用[J].植物学通报,1994,11(3):1-9.
    [72]朱昌华,茉莉酸类和乙烯在拟南芥根毛发育过程中的相互作用[D].南京:南京农业大学,2006.
    [73]Huang Y F, Lan W Z, Chen C, et al. The role of lipoxygenase in elicitor-induced taxol production in Taxus chinensis cell cultures [J]. Process Biochemistry,2005,40 (8):2793-2797.
    [74]Ketchum R E B, Gibson D M, Croteau R B, et al. The Kinetics of taxoid accumulation in cell suspension culture of Taxus following elicitation with methyl jasmonate [J]. Biotechnology and Bioengineering,1999,62 (1):97-105.
    [75]Yukimune Y, Tabata H, Higashi Y, et al. Methyl jasmonate-induced overproduction of Paclitaxel and bacⅢ in Taxus cell suspension cultures. Nature Biotechnology, 1996,14:1129-1032
    [76]Mirjalili N, Linden J C. Methyl jasmonate induced production of taxol in suspension cultures of Taxus cuspidata:ethyl en e interaction and induction models[J]. Biotechnology Progress,1996,12(1):110-118.
    [77]臧新,吕晓辉,杨冬之,等红豆杉细胞培养中提高紫杉醇产量的研究综述[J]。福建林业科技,2006,33(2):154-158,174.
    [78]Furmanowa M, Glowniak K, Syklowska-Baranek K, et al. Effect of picloram and methyl jasmonate on growth and taxane accumulation in callus culture of Taxus × media var. Hatfieldii[J].Plant Cell Tiss. Org. Cult,1997,49(1):75-79.
    [79]Moon W J, Yoo B S, Kim D-I, et al. Elicitation kinetics of taxane production in suspension cultures of Taxus Baccata Pendula[J]. Biotechnology Techniques,1998, 12(1):79-81.
    [80]Ketchum R E B, Rithner C D, Qiu D, et al. Taxus metabolomics:methyl jasmonate preferentially induces taxoids oxygenated at C-13 in Taxus × media cell cultures[J]. Phytochemistry,2003,62(6):901-909.
    [81]黄新,邱德有,黄璐琦.茉莉酸甲酯对中国红豆杉细胞基因表达的mRNA差异显示研究[J].分子植物育种,2006,4(5):627-632.
    [82]Vanbogelen R A, Olson E R, Wanner B I, et al. Global analysis of proteins synthesized during phosphorus restriction in Escherichia coli[J]. J Bacteriol,1996, 178 (15):4344-4366.
    [83]赵红,诱导悬浮培养东北红豆杉细胞凋亡过程蛋白表达差异研究[D].天津:天津大学,2003.
    [84]黄琳玲,蛋白质组学研究脉冲电场诱导对中国红豆杉细胞蛋白表达的影响[D].上海:华东师范大学,2005.
    [85]杨松,Ce<’4+>诱导红豆杉细胞凋亡的关键信号事件及信号层次的研究[D].天津:天津大学,2004.
    [86]Rakwal R, Agrawal G. K, Yonekura M. Separation of proteins from stressed rice (Oryza sativa L.) leaf tissues by two-dimensional polyacryl amide gel electrophoresis:Induction of pathogenesis-related and cellular protectant proteins by jasmonic acid, UV irradiation and copper chloride[J]. Electrophoresis,1999,20 (17): 3472-3478.
    [87]Cheng J S and Yuan Y J. Proteomic analysis reveals the spatial heterogeneity of immobilized Taxus cuspidata cells in support matrices[J]. Proteomics,2006,6(7): 2199-2207.
    [88]仇燕,南方红豆杉细胞紫杉醉代谢调节的研究[D].石家庄:河北师范大学,2004.
    [1]Oyaizu H, Adachi Y, Taketani S, et al. A crucial role of caspase 3 and caspase 8 in paclitaxel-induced apoptosis[J]. Mol. Cell Biol. Res. Commun,1999,2(1):36-41.
    [2]Zhang Y, Goodyer C and LeBlanc A. Selective and protracted apoptosis in human primary neurons microinjection with active caspase-3,-6,-7 and-8[J]. J Neurosci, 2000,20(22):8384-8389.
    [3]Communal C, Sumandea M, De Tombe P, et al. Functional consequences of caspase activation in cardiac myocytes[J]. Proc Natl Acad Sci USA,2002,99(9):6252-6256.
    [4]Enari M, Sakahira H, Yokoyama H, et al. A caspase-activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD [J]. Nature,1998,391 (6662):43-50.
    [5]毛德文,陈月桥,王丽,等Caspase-8及Caspase-3与细胞凋亡[J].辽宁中医药大学学报,2008,10(10):148-150.
    [6]康洁,余晓丽.植物细胞凋亡机理的研究[J].安徽农业科学,2005,33(8):1564-1565.
    [7]Nataga S. Apoptosis by death factor [J]. Cell,1997,88(3):355-365.
    [8]Vaux D U, Stasser A. The molecular biology of apoptosis [J]. Proc Natl Acad Sci USA,1996,93(6):2239-2244.
    [9]赵红,诱导悬浮培养东北红豆杉细胞凋亡过程蛋白表达差异研究[D].天津:天津大学,2003.
    [10]Moos P J. Taxane-mediated gene induction is independent of microtubule stabilization Induction of transcription regulators and enzymes that modulate inflammation and apoptosis[J]. Proc Nad Acad Sci USA,1998,95(7):3896-3901.
    [11]彭玮丹,张杰,王成济.紫杉醇诱导的细胞凋亡信号转导[J].1998,18(6):35-37.
    [12]方勇,吴金民,潘宏铭,等Caspase-3抑制剂减弱紫杉醇诱导乳腺癌细胞凋亡[J].实用肿瘤杂志,2004,19(2):120-123.
    [13]杨松,Ce<’4+>诱导红豆杉细胞凋亡的关键信号事件及信号层次的研究[D].天津:天津大学,2004.
    [14]王宇卉,夏春林,邵福源.半胱氨酸蛋白酶抑制剂减少大鼠脑缺血模型Calpain的表达[J].中华现代内科学杂志,2005,2(7):590-593.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700