用户名: 密码: 验证码:
用于金属化的工程塑料表面改性方法的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚碳酸酯(PC)、聚丙烯腈-丁二烯-苯乙烯共聚物(ABS)和聚酰亚胺(PI)是常用的三种工程塑料。由于具有电绝缘性、耐冲击性和装饰性等诸多优异性能,它们已经被广泛的应用于电子电器、机械设备及航空航天等领域。通过对PC. ABS和PI表面的金属化处理,可以在保持其优异性能的基础上大幅扩大其应用范围。未经处理的PC. ABS和PI表面非常光滑且平整,镀覆后的金属层与基板表面之间的粘结强度很低,因此在对PC. ABS和PI进行表面金属化之前需要对基板进行表面处理(也称表面改性)以增加其表面粗糙度并改善基板表面亲水性,使基板金属化时产生更好的镀层效果。塑料表面处理的方法主要有湿法化学处理法、等离子体法、离子注入法、聚合物接枝法等,基于操作和成本方面的综合考虑,湿法化学处理方法是一种比较简单的表面处理方法。湿法化学处理法主要包括除油、膨润、微蚀、中和四个步骤,微蚀处理是其中的关键环节。目前,对PC. ABS基板和PI薄膜的表面处理主要通过铬酐-硫酸体系来完成,但该体系中的铬会引发严重的环境污染。为了降低生产成本,减小环境污染,寻求新的基板处理手段和方法尤为迫切。
     本论文探讨了塑料基板表面处理的新方法,采用新设计的膨润体系对PC基板进行了微蚀处理前的膨润研究;采用无铬低污染的微蚀体系对膨润后的PC和ABS基板进行了表面处理;采用环境友好的Ti02光催化法对ABS基板和PI薄膜进行了表面处理。上述处理方法均取得了良好的表面处理效果。本论文的工作主要包括以下几个方面:
     1.PC是含有多个类似于苯环的刚性高分子聚合物,在湿法化学微蚀时,其刚性而致密的表面不利于微蚀剂的进入。因此,表面膨润对PC微蚀处理起着十分重要的作用。PC表面的膨润过程能保证微蚀处理的顺利进行,并为取得良好的微蚀处理效果奠定基础。本文设计了N,N-二甲基甲酰胺(DMF)、乙醇和水组成的温和膨润体系,并用该体系对微蚀前的PC基板进行膨润处理,然后在固定微蚀条件下对膨润后的基板进行微蚀处理,研究了膨润溶液中DMF的浓度对表面处理效果的影响。通过观察膨润及微蚀处理后PC基板表面形貌的变化发现,当膨润溶液中DMF的浓度在合适的范围内时,PC基板经合适的膨润处理后,基板表面的活性反应点被充分暴露,能促使微蚀剂进入到PC基板的表层内部,有利于微蚀反应的进行;若DMF的浓度过大,则会导致基板的膨润过度而使微蚀效果变差。最后由实验结果确定了合适的膨润条件。
     2.采用MnO2-H2SO4-H2O三元微蚀体系对合适膨润处理后的PC基板进行了微蚀处理,研究了微蚀体系中硫酸浓度、微蚀时间、二氧化锰含量及微蚀温度对PC基板表面处理效果的影响,并测定了微蚀体系的氧化还原电位和可溶四价锰离子浓度。研究结果表明,硫酸浓度的增加有利于增大体系的氧化还原电位、增强体系的氧化能力;温度升高有利于微蚀反应的进行,但温度过高时会对PC基板造成过度微蚀,‘使微蚀效果变差。在70℃条件下,PC基板经硫酸浓度为12.3mol/L的MnO2-H2SO4-H20三元微蚀体系处理20min后,基板表面形成大量致密而均匀的微孔,表面粗糙度达到最大值,表面由憎水性变为强的亲水性。X-射线光电子能谱(XPS)分析结果表明,微蚀处理后,PC聚合链中的侧链被氧化后生成了-COOH和-OH亲水的极性基团;极性基团的生成增强了基板表面的亲水性。高的表面粗糙度和强的表面亲水性使PC基板表面与镀铜膜间粘结强度的最大值达到1.08kN/m。
     3.对上述MnO2-H2SO4-H2O三元微蚀体系进行了改良,加入磷酸构成了MnO2-H2SO4-H3PO4-H2O四元微蚀体系。研究了四元微蚀体系中硫酸浓度、磷酸浓度、微蚀时间及微蚀温度对合理膨润处理后的PC基板表面微蚀效果的影响。通过测定微蚀体系的氧化还原电位和可溶四价锰离子浓度得知,加入的磷酸与体系中自由的锰离子形成络合物,将可溶四价锰离子浓度提高到0.111mol/L,是MnO2-H2SO4-H2O三元体系中可溶四价锰离子浓度(0.010mol/L)的十多倍。微蚀过程是个动态过程,强氧化剂可溶四价锰离子浓度的增加,既增大了氧化还原反应速率、缩短了反应时间,又能够及时补充微蚀过程中消耗的氧化剂的量,从而延长四元微蚀体系的使用寿命。合理的微蚀处理后,PC基板表面形成了致密均匀的微孔,表面粗糙度显著增加。红外光谱显示,微蚀处理后,PC基板表面生成了-OH和-COOH亲水的极性基团。XPS分析结果进一步证实,微蚀处理后,PC聚合链中的侧链被氧化后生成了-OH和-COOH亲水的极性基团,并且部分酯基发生了断裂;极性基团的生成大幅增强了基板表面的亲水性。该体系对PC基板进行微蚀处理时,能够在较低的微蚀温度(60℃)和较短的微蚀时间(10min)内,使基板获得高的表面粗糙度和强的表面亲水性,微蚀效果比较理想。
     4.设计了MnO2-H2SO4-Na4P2O7-H2O新四元微蚀体系,并用该体系对ABS进行了微蚀研究。研究了微蚀体系中硫酸浓度和焦磷酸钠含量对ABS基板表面微蚀效果的影响,测定了微蚀体系的氧化还原电位和体系中可溶性四价锰离子的含量。ABS表面微蚀的原理是利用微蚀体系中的氧化剂有选择性地氧化或者优先氧化ABS中的聚丁二烯相,微蚀体系的氧化能力在合适的范围内时,聚丁二烯相和聚苯丙烯腈-苯乙烯相的微蚀速率差值达到最大,微蚀后基板表面的粗糙度最大,基板表面的亲水性最好,基板表面与镀铜层间的粘结强度最高。焦磷酸钠的加入降低了微蚀体系中氢离子的浓度,但将可溶四价锰离子浓度提到了0.019mol/L,是MnO2-H2SO4-H2O三元体系中可溶四价锰离子浓度的两倍。可溶四价锰离子浓度的增加,增大了反应速率,并在较短的时间内获得了较好的微蚀效果。实验结果表明,在一定量的焦磷酸钠含量下,适当提高微蚀体系中硫酸的浓度,可以使体系的氧化还原电位达到氧化ABS所需要的电位值。基板表面与镀铜膜间粘结强度的定性及定量测定表明,当MnO2-H2SO4-H2O四元微蚀体系中硫酸浓度和焦磷酸钠含量分别为12.9mol/L和58g/L时,ABS经微蚀处理后,基板表面形成大量致密均匀的微孔,基板表面的平均粗糙度达到155nm,接触角由92°降低到31°,微蚀后基板表面与镀铜膜间粘结强度达到1.33kN/m,微蚀效果较好。
     5.利用TiO2在紫外光照射下产生的具有强氧化能力的自由基对ABS进行表面改性,研究了TiO2含量、紫外线功率及照射时间对ABS基板表面性质和基板与镀铜膜间粘结强度的影响。实验结果表明,在适当的照射时间内,ABS基板表面的亲水性和基板表面与镀铜膜间的粘结强度随着紫外功率和照射时间的增加而增加;随着TiO2含量的增加先增大后减小,这是因为在高含量的TiO2悬浮液中TiO2粒子的团聚作用降低了产生强氧化剂(·OH)的能力。Ti02含量为1.0g/L时,粘结强度值最高。光催化处理过程中由于ABS中只是部分聚丁二烯相被氧化,ABS的表面形貌变化很小,其表面粗糙度远小于Mn02微蚀体系处理后ABS的表面粗糙度。红外光谱显示,光催化处理后ABS基板表面生成了-OH和-COOH亲水极性基团,并且极性基团的浓度随着紫外功率和照射时间的增加而增大。XPS分析结果进一步表明,与Mn02微蚀体系处理后相比,.光催化处理后ABS表面生成的亲水极性基团的浓度更大,亲水基团浓度的增加使基板表面与镀铜膜间的粘结强度达到1.25kN/m。实验结果证实,Ti02光催化处理是一种环境友好的且有效的ABS处理方法,该方法既保持了基板表面的平整性又使基板表面与镀铜膜间的粘结强度得到了提高。
     6.将PI薄膜碱性条件下的水解反应与TiO2光催化相结合对PI薄膜进行表面改性,研究了Ti02含量、紫外线功率及照射时间对PI薄膜表面处理效果的影响。实验结果表明,光催化处理前后PI表面形貌没有发生明显的变化,PI薄膜表面的亲水性以及和镀铜膜间的粘结强度随着紫外功率和照射时间的增加而增加,随着Ti02含量的增加并不成线性增加的关系。红外光谱显示,光催化处理后PI薄膜表面生成了-OH和-COOH亲水极性基团,并且极性基团的浓度随着紫外功率和照射时间的增加而增大。XPS分析进一步证实,光催化处理后PI中部分酰亚胺环水解的产物被氧化后生成了-COOH等极性基团,并且-COOH基团的含量达到了6.1%。生成的亲水极性基团极大地增强了PI薄膜表面的亲水性,从而增大了薄膜表面与铜膜间的粘结强度。PI薄膜经Ti02含量为1.0g/L的悬浮液在300W紫外光线照射条件下处理30min后,PI表面与镀铜膜间粘结强度的最大值达到0.78kN/m。实验结果证明了Ti02光催化处理是一种环境友好的有效的PI薄膜表面处理方法。
The polycarbonates (PC), acrylonitrile-butadiene-styrene (ABS) and polyimide (PI) are the most commonly used three polymers because of their excellent properties, such as:electrical insulating property, shock resistance and a variety of decorative effects. They have been widely used in electric products, mechanical equipment and aerospace fields. With the surface metallization of PC, ABS and PI substrates, many specific properties of them can be enhanced and the range of application can be expanded. But without treatment, the surface of the substrates are very smooth, and the adhesion strength between the substrates and electroless plated copper films is generally weak because of the thermal mismatches. Therefore, surface modification processes are necessary to improve the adhesion strength and the surface hydrophily. In order to have a successful metallic deposition, a great number of methods have been introduced to enhance the surface roughness and the wettability of the substrate surface, such as wet chemical treatment, plasma processes, ion track etching and surface graft copolymerization treatments. Due to simplicity and low cost, the wet chemical treatment is one of the most frequently used processes for the metallization. The wet chemical treatment mainly includes four steps:degreasing, swelling, etching and neutralization treatments. Among them, the etching treatment is the key step. At present, the sulfo-chromic admixture is the most widely used etchant for PC, ABS substrates and PI films due to its high oxidative power at present, but the carcinogen Cr(VI) impose serious operating-problems. And so, the research about the low cost and environmentally friendly surface modification processes becomes more important.
     In this dissertation, a newly-designed swelling system was used to swell PC substrate before the etching treatment, the chromium-free and low environmental pollution chemical treatment was used for swelled PC and ABS substrates surface etching treatment, and the environmentally friendly photocatalytic treatment was used for ABS substrate and PI film surface modification treatment. After the substrates were treated properly by the above methods, the desired effects were obtained. The main works of the dissertation are as follows:
     1. PC is a macromolecule polymer which is a single-phase composition and contains many rigid groups being similar to the benzene ring. The dense structure prevents the etching agent from entering into it. And so, the swelling process is very necessary before the etching treatment. The mild swelling system containing N, N-dimethylformamide (DMF), ethanol and water was designed in the experiment. And the effects of DMF concentrations in the swelling solution on the surface etching performance were investigated after swelling and etching treatments at the fixed etching condition. The results of SEM observation indicated that the reaction points were exposed sufficiently after the PC substrate was swelled in proper concentration of DMF swelling solution. The exposed reaction points were beneficial for the etching treatment. The increase of DMF concentration could reduce the etching effect because PC substrate was excessively swelled. And so, the proper swelling condition was determined by the experiment.
     2. The H2SO4-MnO2-H2O ternary system was used for PC substrate etching after it was swelled properly, and the effects of H2SO4concentration, etching time, MnO2content and bath temperature on the surface physical and chemical properties and the adhesion strength between the substrate and electroless copper film were investigated. The redox potential of etching system and the soluble Mn(IV) ion concentration were measured by an electrochemical workstation and redox titration. The results indicated that redox potential of etching system increased with an increase of H2SO4concentration, and the oxidant capacity of the etching system increased correspondingly. Higher temperature could promote the etching reaction, but excessive temperature could cause over-reaction resulting in poor etching performance. It was found that the etching performance was excellent when the H2SO4concentration was12.3mol/L, the etching temperature and treatment time were70℃and20min, respectively. With the etching treatment, many cavities appeared on the PC surface and the density and depth of the cavities were large, the surface roughness reached the maximum value, and the PC surface changed from a hydrophobic to a hydrophilic. X-ray photoelectron spectroscopy (XPS) analysis further demonstrated that abundant hydrophilic groups were generated on the PC surface after the etching treatment, which was attributed that side chains in the PC resin were oxidized by the oxidant. The formation of hydrophilic groups strengthened the hydrophilicity of PC substrate. The maximum adhesion strength between the electroless plated copper film and PC substrate reached1.08kN/m, which was due to the higher surface roughness and strong surface hydrophilicity.
     3. In order to improve the etching performance, H3PO4was added into the MnO2-H2SO4-H2O ternary system to constitute a new quaternary system of MnO2-H2SO4-H3PO4-H2O. And so, effects of the H2SO4concentration, H3PO4concentration, treatment time and bath temperature upon the surface properties and the adhesion strength between the substrate and electroless copper film were investigated. The redox potential of etching system and the soluble Mn(IV) ion concentration were measured by an electrochemical workstation and redox titration. The results indicated that the Mn(IV)-H3PO4complex, as a strong oxidizing agent, could be formed with an addition of the H3PO4because of phosphoric acid strong coordination. And the soluble Mn(IV) concentration was enhanced to0.111mol/L, which is ten times larger than that in the ternary system (0.010mol/L). The etching process was a dynamic process, and the increase of the soluble Mn (IV) concentration was conducive to the supplement of the oxidant in etching process, increasing reaction rate, shortening treatment time and prolonging the useful life of the etching system. The results of SEM observation indicated that many dense uniform cavities appeared on the PC surface after the proper etching treatment, and the surface roughness increased significantly. Fourier trans-form-infrared spectroscopy (FT-IR) indicated that lots of hydrophilic groups were generated on the PC surface after the etching treatment. XPS analysis further demonstrated that side chains in the PC resin were oxidized by the oxidant, and some of the ester groups were cracked. The desired effect was achieved after the PC substrate was etched for a shorter period of time (10min) at lower temperature (60℃).
     4. The H2SO4-Na4P2O7-H2O-MnO2quaternary system was designed for ABS etching treatment. And effects of the H2SO4concentration and Na4P2O7content on the surface etching performance of ABS substrates were investigated. The redox potential of etching system and the soluble Mn(IV) ion concentration were measured by an electrochemical workstation and redox titration. The principle about ABS etching treatment is that the butadiene phase is oxidized selectively or preferentially by the oxidant in the etching system. The rate between the butadiene phase and the acrylonitrile and styrene phases is the largest when the oxidation capacity of system is in a proper range. After the etching treatment, the surface roughness reached to the maximum value, the surface hydrophilic property was strongest and the adhesion strength was largest. The results indicated that although the redox potential of etching system decreased with an addition of which is neutralization reaction of Na4P2O7with H2SO4, and results in a decrease of H+concentration in the etching system, the soluble Mn(IV) ion concentration increased to0.019mol/L, which is two times larger than that in the ternary system (0.010mol/L). The etching process was a dynamic process, and the increase of the soluble Mn(TV) ion concentration was conducive to the supplement of the oxidant in etching process, increasing redox reaction rate, shortening treatment time and obtaining a better etching effect. The redox potential could be in a proper range through increasing the H2SO4concentration when the Na4P2O7content was fixed. The adhesion strength between the electroless copper film and ABS substrate was measured by qualitative and quantitative determination. The results indicated that the desired etching effect could be obtained when the H2SO4concentration and the Na4P2O7content were12.9mol/L and58g/L, respectively. Many dense uniform cavities appeared on the ABS surface after the proper etching treatment, the average roughness (Ra) reached the maximum (155nm), and the surface contact angle decreased from92°to31°, indicating strong wettability. The maximum adhesion strength between the electroless copper film and ABS substrate reached1.30kN/m.
     5. In the photocatalytic treatment, the photo-generated holes react with water molecules and hydroxyl ions adsorbed on the surface of the photocatalyst (TiO2) to form hydroxyl radicals. The resulting hydroxyl radicals, as very strong oxidizing agents, could modify ABS surface. Effects of the TiO2content, irradiation time and UV power upon the surface characterization and the adhesion strength between ABS surface and electroless copper film were investigated. The results indicated that the hydrophilic of ABS substrate and the adhesion strength increased with an increase of the UV power and a prolongation of irradiation time. The adhesion strength first increased and then decreased with an increase of TiO2content, and it was the highest value when the TiO2content was1.0g/L, which was attributed to agglomeration of TiO2particles in the high content TiO2dispersed solution decreasing the oxidative capacity of·OH radicals. With the photocatalytic treatment, the surface topography and the surface roughness changed little, which was attributed that some butadiene phase on the surface were oxidized by the aggressive species such as hydroxyl radical. FT-IR indicated that lots of hydrophilic groups were generated on the ABS surface after the photocatalytic treatment, and the density of hydrophilic groups increased with an increase of UV power and irradiation time. XPS analysis further demonstrated that the density of polar groups formed on the ABS surface by the photocatalytic treatment was much higher than that etched by H2SO4-MnO2-H2O ternary system. The adhesion strength between the substrate and the electroless plating film reached1.25kN/m. The results indicated that the photocatalytic treatment was an environmentally friendly and effective method to replace commercial wet chemical process for the ABS surface modification. With the photocatalytic treatment, not only was the high adhesion strength obtained, but also the smooth ABS surface was kept.
     6. The combination of TiO2photocatalytic treatment and alkaline hydrolysis was used to modify polyimide (PI) film. And effects of the TiO2content, UV power and irradiation time upon the treatment performance were investigated. The results indicated that the surface topography of PI film had no obvious change before and after the photocatalytic treatment. The hydrophilicity of PI film and the adhesion strength between PI surface and electroless copper film increased with the increase of UV power and a prolongation of irradiation time, and did not increased linearly with an increase of TiO2content. FT-IR spectra that abundant hydrophilic groups were generated on the PI surface after the photocatalytic treatment, and the density of hydrophilic groups increased with an increase of UV power and irradiation time. XPS analysis further demonstrated that the PI films were cleaved and the amide groups and carboxyl groups were formed on the surface of the PI films after the photocatalytic treatment, and the-COOH group content reached6.1%. The surface hydrophilicity had been strengthened greatly by the formation of polar hydrophilic groups, and the adhesion strength was increased accordingly. After PI film was treated for30min by the1.0g/L TiO2suspension solution at300W, the maximum adhesion strength reached0.78kN/m. The results indicated that the photocatalytic treatment was an environmentally friendly and effective method for the PI films surface modification.
引文
[1]H. J. Zhang, X. W. Wu, Q. L. Jia, et al. Preparation and microwave properties of Ni-SiC ultrafine powder by electroless plating [J]. Mater. Des.,2007,28(4): 1369-1373.
    [2]A. Shibata, Y. Imamura, M. Sone, et al. Pd-Ni-P metallic glass film fabricated by electroless alloy plating [J]. Thin Solid Films,2009,517(6):1935-1938.
    [3]C. K. Lee. Electrochemical and wear-corrosion properties of electroless nickel—phosphorus deposition on CFRP composites [J]. Mater. Chem. Phys.,2009, 114(1):125-133.
    [4]R. Zhang, L. Gao, J. K. Guoa. Preparation and characterization of coated nanoscale Cu/SiCp composite particles [J]. Ceram. Int.,2004,30(3):401-404.
    [5]S. Ra, C. Lee, J. Cho, et al. Micro via and line patterning for PCB using imprint technique [J]. Current Applied Physics,2008,8(6):675-678.
    [6]J. E. McCaskie. Plating on plastics:a survey of mechanisms for adhering metal films to plastic surfaces [J]. Met. Finish.,2006,104(5):31-39.
    [7]姜晓霞,沈伟.化学镀理论及实践[M].北京:国防工业出版社,2000.
    [8]M. Charbonnier, M. Romand. Polymer pretreatments for enhanced adhesion of metals depsited by the electroless process [J]. Int. J. Adhes. Adhes.,2003,23(4): 277-285.
    [9]李丽波,安茂忠,高辉.塑料化学镀[J].电镀与环保,2004,24(3):1-4.
    [10]曾华梁,吴仲达,陈钧武等.电镀工艺手册[M].北京:机械工业出版社,1997.
    [11]H. Horn, S. Beil, D. A. Wesner, et al. Excimer laser pretreatment and metallization of polymers [J]. Nucl. Instrum. Methods Phys. Res., Sect. B,1999,151(1-4): 279-284.
    [12]D. SchrOer, R. J. Nichols, H. Meyer. Pretreatment of polymer surfaces-the crucial step prior to metal deposition [J]. Electrochim. Acta,1995,40(10):1487-1494.
    [13]S. L. Favaro, A. F. Rubira, E. C. Muniz, et al. Surface modification of HDPE, PP, and PET films with KMnO4/HCl solutions [J]. Polym. Degrad. Stab.,2007,92(7): 1219-1226.
    [14]L. Guzman, A. Miotello, M. Adami, et al. Hard coating adhesion on ion implanted polymer surfaces [J]. Thin Solid Films,2000,377-378 (1):760-765.
    [15]S. Siau, A. Vervaet, E. Schachat, et al. Epoxy polymer surface modification through wet-chemical organic surface synthesis for adhesion improvement in microelectronics [J]. Thin Solid Films,2006,495 (1-2):348-356.
    [16]T. Smausz, T. Csizmadia, B. Hopp, et al. Influence on the laser induced backside dry etching of thickness and material of the absorber laser spot'size and multipulse irradiation [J]. Appl. Surf. Sci.,2007,254 (4):1091-1095.
    [17]L. A. Langley, D. H. Fairbrother. Effect of wet chemical treatments on the distribution of surface oxides on carbonaceous materials [J]. Carbon,2007,45 (1): 47-54.
    [18]B. Ranby. Surface modification and lamination of polymers by photo-graftin [J]. Int. J. Adhes. Adhes.,1999,19(5):337-343.
    [19]饶国瑛,南爱玲,杜振霞.聚碳酸酯结构及热稳定性研究[J].北京化工大学学报,1999,26(3):76-78.
    [20]凌绳,王秀芬,吴友平.聚合物材料[M].北京:中国轻工业出版社,2000:251.
    [21]杨世莹,贺子凯,黄鑫,等.聚碳酸酯化学镀镍工艺初探[J].电镀与环保,2005,25(4):32-34.
    [22]K. A. Vijayalakshmi, M. Mekala, C. P. Yoganand, et al. Studies on adhesive properties of polypropylene (PP) and polycarbonate (PC) film surfaces using DC glow discharge plasma [J]. Int. J. Phys. Sci.,2012,7(15):2264-2273.
    [23]K. I. Khaleel, A. S. Jasim, M. A. K. Ahmed, et al. Surface modifications of high density polycarbonate by argon plasma [J]. Int. J. Recent Res. Rev.,2012,3:1-7.
    [24]B. A. Latella, J. R. Bartlett, M. Ignat, et al. Enhanced adhesion of atomic layer deposited titania on polycarbonate substrates [J]. Thin Solid Films,2007,515 (5): 3138-3145.
    [25]J. Abenojar, M. A. Martinez, J. M. Martin-Martinez, et al. Surface modifications of polycarbonate (PC) and acrylonitrile-butadiene-styrene (ABS) copolymer by treatment with atmospheric plasma [J]. Surf. Coat. Technol.,2009,203: 2173-2180.
    [26]H. C. Ong, R. P. H. Chang, W. C. Oliver, et al. Improvement of mechanical properties of amorphous carbon films deposited on polycarbonate plastics [J]. Surf. Coat. Technol.,1997,89 (1):38-46.
    [27]H. Yaghoubi, N. Taghavinia. Surface chemistry of atmospheric plasma modified polycarbonate substrates [J]. Appl. Surface Sci.,2011,257:9836-9839.
    [28]C. Seidel, H. Kopf, B. Gotsmann, et al. Ar plasma treated and Al metallised polycarbonate:a XPS, mass spectroscopy and SFM study [J]. Appl. Surface Sci., 1999,150:19-33.
    [29]A. Hofrichter, P. Bulkin, B. Drevillon. Plasma treatment of polycarbonate for improved adhesion [J]. J. Vac. Sci. Technol., A,2002,20:245-250.
    [30]D. Hegemann, H. Brunner, C. Oehr. Plasma treatment of polymers for surface and adhesion improvement [J]. Nucl. Instrum. Methods Phys. Res., Sect. B,2003, 208:281-286.
    [31]C. C. Lee, J. C. Hsu, C. C. Jaing. Optical coatings on polymethyl methacrylate and polycarbonate [J]. Thin Solid Films,1997,295 (2):122-124.
    [32]K. R. C. Soma Raju, L. Sowntharya, S. Lavanya, et al. Effect of plasma pretreatment on adhesion and mechanical properties of sol-gel nanocomposite coatings on polycarbonate [J]. Compos. Interfaces,2012,19:259-270.
    [33]J. M. LackNer, W. Waldhauser, M. Schwarz, et al. Polymer pre-treatment by linear anode layer source plasma for adhesion improvement of sputtered TiN coatings [J]. Vacuum,2009,83:302-307.
    [34]L. Y. Wu, L. Boon, X. T. Zeng, et al. Adhesion enhancement of sol-gel coating on polycarbonate by heated impregnation treatment [J]. Thin Solid Films.2009,517: 4850-4856.
    [35]J. S. Cho, W. K. Choi, H. J. Jung, et al. Effect of oxygen gas on polycarbonate surface in keV energy Ar+ion irradiation [J]. J. Mater. Res.,1997,12:277-280.
    [36]S. K. Koh, S. C. Choi, W. K. Choi, et al. Surface modification of polymer by ion assisted reaction in reactive gases environment [J]. Mat. Res. Soc. Symp. Proc., 1997,438:505-510.
    [37]S. Karima, W. Ensinger, E.U. Khan, et al. Effect of etching conditions on pore shape in etched ion-track polycarbonate membranes [J]. Radiat. Meas.,2009,44: 779-782.
    [38]N. Sertova, E. Balanzat, C. Trautmann, et al. Investigation of initial stage of chemical etching of ion tracks in polycarbonate [J]. Nucl. Instrum. Methods Phys. Res.,2009,267:1039-1044.
    [39]P.Y. Apcl, I. V. Blonskaya, T. I. Mamonova, et al. Surfactant-controlled etching of ion-track nanopores and its practical applications inmembrane technology [J]. Radiat. Meas.,2008,43:S552-S559.
    [40]Ⅰ. Saarikoski, M. Suvanto, T. A. Pakkanen. Modification of polycarbonate surface properties by nano-, micro-, and hierarchical micro-nanostructuring [J]. Appl. Surf. Sci.,2009,255:9000-9005.
    [41]A. Kumar, R. K. Jain, P. Yadav, et al. Effect of gamma irradiation on the etching properties of Lexan and Makrofol-DE polycarbonate plastics [J]. J. Radioanal. Nucl. Chem.,2013,295:95-98.
    [42]B. S. Rathore, M. S. Gaur, K. S. Singh. Dielectric properties and surface morphology of swift heavy ion beam irradiated polycarbonate films [J]. J. Therm. Anal. Calorim.,2013,111:647-653.
    [43]Alekh S. Bhurke, Per A. Askeland, Lawrence T. Drzal. Surface modification of polycarbonate by ultraviolet radiation and ozone [J]. J. Adhes.,2007,83:43-66.
    [44]Q. H. Zhou, H. W. Chen, Y. Wang. Region-selective electroless gold plating on polycarbonate sheets by UV-patterning in combination with silver activating [J]. Electrochim. Acta,2009,55:2542-2549.
    [45]S. W. Lam, A. Soetanto, R. Amal. Self-cleaning performance of polycarbonate surfaces coated with titania nanoparticles [J]. J. Nanopart. Res.,2009,11: 1971-1979.
    [46]伍建华,张官理,温培刚.低能离子束表面改性对聚碳酸酯(PC)粘接性能的影响[J].材料工程,2009,12(9):42~44.
    [47]郑继,方月娥,史天义.聚碳酸酯膜的等离子体表面处理改性及其性质的研究[J].膜科学与技术,1989,9(2):29~34.
    [48]刘裕明,陈慧英,夏建新.低温等离子体对棉纺织物表面改性及时效研究[J].应用基础与工程科学学报,2004,12(2):127~131.
    [49]孙昌,孙长春.离子注入聚碳酸酯表面力学性能改变研究[J].原子能科学技术,2004,38(5):405~409.
    [50]C. Changui, A. Doren. Surface properties of polycarbonate and promation of yeast cells adhesion [J]. J. Chim. Phys.,1987,84(2):275-281.
    [51]P. G. Rouxhet, A. Doren, C.Changui, et al. Chemical composition and physico-chemical properties of polymer surfaces [J]. Prog. Org. Coat.,1993,22: 327-344.
    [52]G. Dajko. The effect of etching solution compotion on the response of an electrochemically etched CR-39 detector [J]. Radiat. Meas.,1997,28:133-136.
    [53]李爱琴,唐宏建,王阳峰.环境中铬污染的生态效应及其防治[J].中国环境管理干部学院学报,2006,16(1):74~77.
    [54]刘华莲,崔留欣,杨建勋,等.环境中铬污染及其对人体健康影响的调查研究[J].解放军预防医学杂志,1991,9(1):16~20.
    [55]杨世莹,贺子凯,黄鑫,等.聚碳酸酯化学镀镍工艺初探[J].电镀与环保,2005,25(4):32~34.
    [56]王艳芝.聚碳酸酯酸性化学镀Ni-Fe-P工艺[J].电镀与环保,2003,23(6):23~24.
    [57]P. C. Yen. Improved ABS plastic activating treatment for electroless copper plating [J]. Polymer Communications,1995,36 (17):3399-3400.
    [58]G. X. Wang, N. Li, H. L. Hu, et al. Process of direct copper plating on ABS plastics [J], Appl. Surf. Sci.,2006,253:480-484.
    [59]G. X. Wang, N. Li, D. Y. Li. Effect of Pd ions in the chemical etching solution [J]. J. Univ. Sci. Technol. Beijing,2007,14(3):286-289.
    [60]E. Anzawa, M. Kral, A. Ogino, et al. Improvement of hydrophilicity of polymer surface by surface-wave excited Ar plasma with acetic acid [J]. Electrical Engineering in Japa.,2011,176(4):1-6.
    [61]L. A. C. Teixeira, M. C. Santini. Surface conditioning of ABS for metallization without the use of chromium baths [J]. J. Mater. Process. Technol.,2005,170(1): 37-41.
    [62]S. Kisin, P. G. Th. van der Varst, G. D. With. Adhesion and adhesion changes at the copper-metal-(acrylonitrile-butadiene-styrene) polymer interface [J]. Thin Solid Films,2007,515(24):6853-6859.
    [63]S. Kisin, F. Scaltro, P. Malanowski, et al. Chemical and structural changes at the ABS polymer-copper-metal interface [J]. Polym. Degrad. Stab.,2007,92(4): 605-610.
    [64]N. Inagaki, H. Kimura. Electroless copper plating on acrylonitrile butadiene styrene material surfaces without chromic acid etching and a palladium catalyst [J]. J. Appl. Polym. Sci.,2009,111:1034-1044.
    [65]T. Bessho, K. Inoue, H. Honma, et al. Electroless copper plating on the insulating resin for build-up process using T1O2 as a photocatalyst [J]. J. Surf. Finish. Soc. Jap.,2006,57(2):157-161.
    [66]M. Sugimoto, K. Tashiro, H. Honma, et al. Surface reforming of ABS resin Using TiO2 under UV light irradiation [J]. J. Surf. Finish. Soc. Jap.,2006,57(2): 162-166.
    [67]T. Bessho, F. Yoshinaga, K. Inoue, et al. Pretreatment of nickel plating on ASA resin using ozonated water as replacement for chromic acid etching [J], J. Surf. Finish. Soc. Jap.2006,57 (9):659-663.
    [68]G. G. Kim, J. A. Kang, J. H. Kim, et al. Photocatalytic pretreatment of acrylonitrile-butadiene-styrene polymer for electroless plating [J]. Scripta Mater., 2007,56(5):349-351.
    [69]G. G. Kim, J. A. Kang, J. H. Kim, et al. Metallization of polymer through a novel surface modification applying a photocatalytic reaction [J]. Surf. Coat. Technol., 2006,201(6):3761-3766.
    [70]L. Magallon-Cacho, J. J. Perez-Bueno, Y. Meas-Vong, et al. Surface modification of acrylonitrile-butadiene-styrene (ABS) with heterogeneous photocatalysis (TiO2) for the substitution of the etching stage in the electroless process [J]. Surf. Coat. Technol.,2011,206:1410-1415.
    [71]D. H. Kang, J. C. Choi, J. M. Choi, et al. An environment-friendly surface pretreatment of ABS plastic for electroless plating using chemical foaming agents [J]. Transaction on Electrical and electronic materials,2010,11:174-177.
    [72]M. Bazzaoui, J. I. Martins, E. A. Bazzaoui, et al. Environmentally friendly process for nickel electroplating of ABS [J]. Appl. Surf. Sci.,2012,258:7968-7975.
    [73]洪祥乐,欧阳锡,黄桂玉,等.ABS塑料电镀中无铬粗化液的研究[J].佛山大学佛山师专学报,1990,8(2):49-52.
    [74]周骏,赵逸云,林玉萍,等.超生辐射下ABS表面的粗化研究[J].化学研究与应用,1999,11(5):545~546.
    [75]X. J. Tang, M. Cao, C. L. Bi, et al. Research on a new surface activation process for electroless plating on ABS plastic [J]. Mater. Lett.,2008,62:1089-1091.
    [76]X. J. Tang, C. L. Bi, C. X. Han, et al. A new palladium-free surface activation process for Ni electroless plating on ABS plastic [J]. Mater. Lett.,2009,63: 840-842.
    [77]Z. X. Li, N. Li, L. Yin, et al. An environment-friendly surface pretreatment of ABS resin prior to electroless plating [J]. Electrochem. Solid-State Lett.,2009, 12(12):D92-95.
    [78]Z. L. Wang, Z. X. Li, Y. He, et al. Study of an environmentally friendly surface etching system of ABS for improving adhesion of electroless Cu film [J]. J. Electrochem. Soc.,2011,158 (11):D664-670.
    [79]Z. F. Yang, Y. He, Z. Li, et al. Adhesion improvement of ABS resin to electroless copper by H2SO4-MnO2 colloid with ultrasound-assisted treatment [J]. J. Adhes. Sci. Technol.,2011,25:1211-1221.
    [80]王增林,李志新.无铬污染的ABS工程塑料零部件表面微蚀方法[P],专利号:ZL200810017601.8.
    [81]王增林,何悦.超声微蚀体系对ABS工程塑料零部件表面微蚀方法[P],专利号:ZL201010213536.3.
    [82]北京师范大学等.无机化学[M].第四版,北京:高等教育出版社,2002:424.
    [83]M. Jaky. Oxidations with soluble manganese(Ⅳ) phosphate [J]. Polyhedron,1993, 12(11):1271-1275.
    [84]M. Jaky. Oxidations of bifunctional substrates with soluble manganese(Ⅳ) phosphate [J]. Polyhedron,1995,14(20-21):2857-2861.
    [85]K. A. Kumar, P. Sivaswaroop, K. J. Rao, et al. Kinetics of stepwise oxidation of manganese(Ⅱ) by peroxodisulphate in phosphoric acid medium [J]. Transition Met. Chem.,1987,12:441-444.
    [86]N. W. Barnett, B. J. Hindson, P. Jones, et al. Chemically induced phosphorescence from manganese(Ⅱ) during the oxidation of various compounds by manganese(Ⅲ), (Ⅳ) break and (Ⅶ) in acidic aqueous solutions [J]. Anal. Chim. Acta,2002,451: 181-188.
    [87]S. V Bronnikov, T. E. Sukhanova, M. Y. Goikhman. Evolution of statistical ensembles of mierodomains on the surafee of films of rigid-chain polyimide during thermal imidization [J]. Russ. J. Appl. Chem.,2003,76(6):967-971.
    [88]D. Liaw, C. Huang, W. Chen. Color lightness and highly organosoluble fluorinated polyalnides polyimides and poly(amideimide)s based on noncoplanar 2, 2-dimethyl-4,4'-biphenylene units [J]. Polymer,2006,47:37-48.
    [89]张武最,罗益峰.合成树脂与塑料[M].合成纤维,北京:化学工业出版社,1999,586~589.
    [90]成晓旭.合成纤维新品种及用途[M].北京:纺织工业出版社,1998,277~279.
    [91]李友清,刘丽,刘润山.聚酰亚胺研究[J].精细石油化工进展,2003,4(3):38~46.
    [92]唐婷婷,周伍清,戴礼兴.聚酰亚胺的改性研究进展[J].合成技术及应用, 2006,21(3):25~29.
    [93]D. Bhusari, H. Hayden, R. Tanikella, et al. Plasma treatment and surface analysis of polyimide films for electroless copper buildup process [J]. J. Electrochem. Soc., 2005,152(10):F162-F170.
    [94]S. J. Park, H. Y. Lee. Effect of atmospheric-pressure plasma on adhesion characteristics of polyimide film [J]. J. Colloid and Interface Sci.,2005,285: 267-272.
    [95]S. H. Kim, S. H. Cho, N. E. Lee, et al. Adhesion properties of Cu/Cr films on polyimide substrate treated by dielectric barrier discharge plasma [J]. Surf. Coat. Technol.,2005,193:101-106.
    [96]S. H. Kim, S. W. Na, N. E. Lee, et al. Effect of surface roughness on the adhesion properties of Cu/Cr films on polyimide substrate treated by inductively coupled oxygen plasma [J]. Surf. Coat. Technol.,2005,200:2072-2079.
    [97]H. W. Kim, J. H. Kim, D. J. Kim, et al. Adhesion enhancement of electroless-deposited Cu on flexible polyimide substrate treated by O2 and N2/H2 inductively coupled plasmas [J]. J. Electrochem. Soc.,2009,156(12):D525-D530.
    [98]郑朝銮,沈丽.等离子体处理条件对聚酰亚胺薄膜表面处理效果的影响[J].表面技术,2012,41(3):90~93.
    [99]Y. Zhang, K. L. Tan, G. H. Yang, et al. Electroless plating of copper and nickel via a Sn-free process on polyimide films modified by surface graft copolymerization with 1-Vinylimidazole [J]. J. Electrochem. Soc.,2001,148(9):C574-C582.
    [100]L. Li, G P. Yan, J. Y. Wu, et al. Electroless plating of copper on polyimide films modified by surface-initiated atom-transfer radical polymerization of 4-vinylpyridine [J]. Appl. Surf. Sci.,2008,254:7331-7335.
    [101]W. C. Wang, E. T. Kang, K. G. Neoh. Electroless plating of copper on polyimide films modified by plasma graft copolymerization with 4-vinylpyridine [J]. Appl. Surf. Sci.,2002,199:52-66.
    [102]B. I. Noh, J. W. Yoon, J. H. Choi, et al. Effect of thermal treatment on adhesion strength of Cu/Ni-Cr/polyimide flexible copper clad laminate fabricated by roll-to-roll process [J]. Microelectron. Eng.,2011,88:718-723.
    [103]S. Ikeda, K. Akamatsu, H. Nawafune. Direct photochemical formation of Cu patterns on surface modified polyimide resin [J]. J. Mater. Chem.,2011,11: 2919-2921.
    [104]H. W. Chien, G M. Wu, C. W. Chiue, et al. Surface modification of polyimide alignment films by ion beams for liquid crystal displays [J]. Surf. Coat. Technol., 2011,206:797-800.
    [105]Y. Li, Q. H. Lu, X. f. Qian, et al. Preparation of surface bound silver nanoparticles on polyimide by surface modification method and its application on electroless metal deposition [J]. Appl. Surf. Sci.,2004,233:299-306.
    [106]S. M. Lian, K. M. Chen, A. Hung. Studies of polyimide/metal interface [J]. J. Electrochem. Soc.,1994,141(9):2374-2379.
    [107]Y. I. Lee, Y. S. Goo, K. J. Lee, et al. Effect of UV/ozone treatment on interactions between ink-jet printed Cu patterns and polyimide substrates [J]. Thin Solid Films,2011,519:6853-6857.
    [108]J. D. Lin, C. L. Kuo. Effects of hydrogen plasma treatment on microstructure evolution and electrical conductivity of electroless Ni-P coatings on polyimide and glass substrates [J]. Surf. Coat. Technol.,2012,209:80-89.
    [109]D. H. Park, W. K. Choi. Low energy O2+and N2O+ion beam modification of polyimide for improving adhesive strength of Cu/PI in roll-to-roll process [J]. Thin Solid Films,2009,517:4222-4225.
    [110]H. J. Kim, Y. J. Park, J. H. Choi, et al. Surface modification of polyimide film by coupling reaction for copper metallization [J]. J. Ind. Eng. Chem.,2009,15: 23-30.
    [111]H. Y. Jiang, Z. J. Liu, X. W. Wang, et al. Effect of triethanolamine on deposition rate of electroless copper plating [J]. Trans. Inst. Met. Finish.,2007,85(2): 103-106.
    [112]华中师范大学等.分析化学[M].第三版,北京:高等教育出版社,2001:75.
    [113]华中师范大学等.分析化学实验[M].第三版,北京:高等教育出版社,2001:75~78.
    [114]王智香.高酸低铜体系电镀铜微孔超级填充及微蚀机理的初步研究[D].西安,陕西师范大学,2011.
    [115]G. N. Patel, D. Bolikal. Pre-swelling and etching of plastics for plating:U.S., 4941940 [P].1990-7-17.
    [116]G. N. Patel, D. Bolikal. Single step pre-swelling and etching of plastics for plating:U.S.,5049230 [P].1991-9-17.
    [117]R. P. Kambour, C. L. Gruner, E. E. Romagosa. Bisphenol-A polycarbonate immersed in organic media swelling and response to stress [J]. Macromolecules, 1974,7(2):248-253.
    [118]S. L. Brock, N. Duan, Z. R. Tian, et al. A review of porous manganese oxide materials [J]. Chem. Mater.,1998,10:2619-2628.
    [119]Y. J. Park, D. M. Yu, J. H. Aha, et al. Surface modification of polyimide films by an ethylenediamine treatment for a flexible copper clad laminate [J]. Macromol. Res.,2012,20(2):168-173.
    [120]P. C. Zheng, K. M. Liu, J. M. Wang, et al. Surface modification of polyimide (PI) film using water cathode atmospheric pressure glow discharge plasma [J]. Appl. Surf. Sci.,2012,259:494-500.
    [121]M. Hashizume, M. Hirashima. Sol-gel titania coating on unmodified and surface-modified polyimide films [J]. J. Sol-Gel. Sci. Technol.,2012,62: 234-239.
    [122]Z. L. Wang, A. Furuya, K. Yasuda, et al. Adhesion improvement of electroless copper to a polyimide film substrate by combining surface microroughening and imide ring cleavage [J]. J. Adhesion Sci. Technol.,2002,16 (8):1027-1040.
    [123]B. B. Nayak, K. G. Mishra, R. K. Paramguru. Kinetics and mechanism of MnO2 dissolution in H2SO4 in the presence of pyrite [J]. J. Appl. Electrochem.,1999, 29:191-200.
    [124]T. J. Pastor, F. T. Pastor. The role of manganese(IV) compounds as oxidants-a review [J]. Talanta,2000,52:959-970.
    [125]A. J. Brown, P. S. Francis, J. L. Adcock, et al. Manganese(III) and manganese(IV) as chemiluminescence reagents:a review [J]. Anal. Chim. Acta, 2008,624:175-183.
    [126]S. Siau, A. Vervaet, E. Schacht, et al. Influence of chemical pretreatment of epoxy polymers on the adhesion strength of electrochemically deposited Cu for use in electronic interconnections [J]. J. Electrochem. Soc.,2004,151 (2): 133-141.
    [127]B. A. Latella, J. R. Bartlctt, M. Ignat, et al. Enhanced adhesion of atomic layer deposited titania on polycarbonate substrates [J]. Thin Solid Films,2007,515 (5): 3138-3145.
    [128]M. Diepens, P. Gijsman. Photodegradation of bisphenol A polycarbonate [J]. Polym. Degrad. Stab.,2007,92:397-406.
    [129]邱祖民,刘钟薇.国内ABS塑料电镀件回收工艺研究进展[J].能源研究与管理,2010,3:1-3.
    [130]S. Siau, A. Vervaet, L. Vaeck, et al. Adhesion strength of the epoxy polymer/copper interface for use in microelectronics [J]. J. Electrochem. Soc., 2005,152:C442-C455.
    [131]E. T. Kang, K. G Neoh, K. L. Tan, et al. In adhesion promotion techniques: technological applications [M]. New York:Marcel Dekker,1999.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700