用户名: 密码: 验证码:
飞机结构件反求建模关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
反求建模技术在我国新型飞机研制及已有飞机的改进改型设计制造中具有广阔的应用前景。然而,飞机产品的反求建模比一般机械产品的反求建模要求高、难度大:首先,飞机测量数据量大,外形品质要求高;其次,飞机结构复杂,结构间协调要求高;同时,通过反求建立的模型只能作为飞机进一步设计的初始模型,不可能直接作为飞机设计的最终模型,因此,反求重建的飞机产品模型必须符合飞机设计表达,易于设计修改。本文针对飞机产品反求建模必须符合飞机设计表达、易于设计修改的要求,对飞机结构件反求建模关键技术进行了系统深入的研究,主要研究内容与成果如下:
     提出了基于特征的飞机结构件模型重建思路:将样件测量数据(三角网格模型)进行特征分解;提取各基本特征参数及约束,并重建基本特征;根据各特征之间的依赖关系,通过布尔运算及曲面裁剪等特征操作,获得结构件的参数化特征模型。重建模型反映原始设计意图,符合飞机设计表达,为后续的飞机详细设计或改进改型设计奠定了基础。
     针对基本特征重建需要,提出了基于特征的数据自动分割算法。依次采用法矢准则、曲率准则和曲面拟合误差准则对测量获得的三角网格模型进行数据粗分割、再分割以及细分割,并采用后置优化处理方法调整分割结果中“不合格”数据块,实现了网格模型的特征精确分解,为后续的特征重建作好了准备。
     针对与外形无关飞机结构件特征的特点,将其模型重建归结为参与布尔运算的基本实体特征重建和实施曲面裁剪操作的曲面特征重建。针对基本实体特征,给出了拉伸特征、旋转特征、扫掠特征、放样特征、圆角特征以及对称特征的重建方法。针对曲面特征,提出了基于SDM策略的单个规则曲面重建方法、基于约束的多个规则曲面整体重建方法以及基于误差控制的B样条自由曲面重建方法。两者结合,实现了与外形无关飞机结构件特征模型重建。
     针对与外形相关飞机结构件特征的特点,提出了基于外形曲面等距的结构件表面特征重建方法和可近似为直纹面的结构件表面特征重建方法。对飞机结构件中与飞机外形贴合的表面较宽、面积较大的表面特征,采用基于外形曲面等距的方法重建表面特征,该方法遵循了原结构件的设计要求。对飞机结构件中与飞机外形贴合的表面较窄、面积较小的表面特征,由于其表面轮廓外形线比较平坦,接近于直线(通常采用四、五坐标机床的铣刀摆角功能以线接触方式加工得到),该类特征可近似为可展直纹面特征,采用直纹面来重建该类表面特征,反映了该类零件加工制造的实际。
     本文研究成果已集成到南京航空航天大学CAD/CAM工程研究中心开发的逆向工程软件系统FBRES中,并成功应用于某型号飞机结构件的反求建模,大量的应用实例验证了本文方法的正确性和有效性。
Model reconstruction has wide applications in the national defense because it plays an important role in the improvement and redesign of the aircrafts which are under research or in service. However, The aircraft products are more difficult to be reconstructed than those mechanical parts for the following reasons: Firstly the measured data of aircraft products are huge, and the airplane contour requires higher quality; Secondly the aircraft structures are complicated, and the high synchronization between them is required; Moreover, the reconstructed model of aircraft product just serves as a initial model for further design, not the final model. Therefore, the reconstructed model of aircraft product must accord with the design expression of aircraft and be facile to improve and redesign. Based on those requirements, the model reconstruction of aircraft structural parts is studied systematically and deeply. The main subjects and achievements of this paper are summarized as follows:
     A novel thought for feature-based model reconstruction of aircraft structural parts is proposed: the features within triangle-mesh model of structural part are disassembled firstly; then the basic features are reconstructed on basis of the parameters and the constraints extracted from original features; finally the parameterized feature model of aircraft is reconstructed by performing operations, including Boolean operation, trim operation and so on, among basic features based on dependency relationships of basic features. The reconstructed model reflects original design intent, accords with design expression, which lays a foundation for further detailed design and redesign.
     The feature-based segmentation algorithm is put forward for the further reconstruction of basic features. Firstly based on the normal rule, the raw segmentation is achieved, secondly the further segmentation is performed according to the curvature rule, and then the precise segmentation is realized in accordance with the surface fitting error rule, finally the segmented model could be refined by some methods such as eliminating impure triangle meshes, combining small segments and smoothing jagged boundary. With a result, the basic features are disassembled accurately, which makes preparations for the model reconstruction.
     According to the characteristics of these aircraft structural parts, which are not conjoint with aircraft contour directly, their model reconstruction could be divided by two parts: the solid feature reconstruction and the surface feature reconstruction. As for the former, the methods for reconstruction of extrude feature, revolute feature, sweep feature, lofting feature, blend feature, symmetry feature are presented; for the latter, the fitting method based on SDM is proposed for the reconstruction of sole regular surface firstly, then the method for simultaneous fitting of several regular surfaces with constraints is put forward, finally the error-based fitting method of B-spline surface is proposed to reconstruct freedom surface. With the above-mentioned methods, those aircraft structural parts, connected with aircraft contour directly, could be reconstructed facilely.
     According to the characteristics of these aircraft structural parts, which are conjoint with aircraft contour directly, the reconstruction method of the surface feature generated by offsetting aircraft contour and the reconstruction algorithm for the surface feature, approximated by ruled surface, are proposed. The former method is applicable to the surface feature within aircraft structural parts, which conjoins aircraft contour with wide area, while the latter algorithm is suitable for the surface feature within aircraft structural parts, which conjoins aircraft contour with narrow area. The former method follows the design acquirement of original feature, while the latter algorithm reflects the manufacture fact of original feature.
     The research achievements above have been integrated into the FBRES (Feature-Based Reverse Engineering System), developed by Research Center of CAD/CAM Engineering, Nanjing University of Aeronautics and Astronautics, and also applied for the model reconstruction of some aircraft structural parts. Experimental results demonstrate the accurateness and effectiveness the proposed methods.
引文
[1]金涛,童水光等.逆向工程技术.北京:机械工程出版社, 2003
    [2]刘之生.反求工程技术.北京:机械工程出版社, 1992
    [3] T. Vàrady, R. Martin, J. Cox. Reverse engineering of geometric models—an introduction. Computer-Aided Design, 1997, 29(4): 255-268
    [4]刘胜兰.逆向工程中自由曲面与规则曲面重建关键技术研究.博士学位论文,南京:南京航空航天大学, 2004
    [5]田晓东,史桂蓉,阮雪榆.复杂曲面实物的逆向工程及其关键技术.机械设计与制造工程, 2000, 29(4): 1-3
    [6]张舜德,朱东波,卢秉恒.反求工程中三维几何形状测量及数据预处理.机电工程技术, 2001, (1): 7-11
    [7]种永民,杨海成.测量造型技术中的数据处理方法.西北工业大学学报, 1997, 15(4): 624-628
    [8] Farin G, Hoschek J, Kim M S, et al. Handbook of computer aided geometric design Vol. 26. North-Holland, 2002
    [9]吴敏,周来水,安鲁陵.逆向工程中的多视定位算法研究.数据采集与处理, 2003, 18(3): 346-350
    [10] Besl P J, McKay N D. A method of registration of 3-D shapes. IEEE Transaction on Pattern Analysis and Machine Intelligence, 1992, 14(2): 239~255
    [11]彭芳瑜,周云飞,周济.基于广义能量法的曲面光顺.华中科技大学学报(自然科学版), 2002, 30(2): 5-8
    [12]赵作智,林享,时晓明.采用能量方程优化零件数据模型.机械设计与制造工程, 2000, (2): 24-26
    [13] Taubin G. Geometric Signal Processing on Polygonal Meshes. Proc. of Eurographics'2000 - State of the Art Report, Switzerland, 2000
    [14] Vollmer J, Mencl R, Muller H. Improved laplacian smoothing of noisy surface meshes. Computer Graphics Forum (Proc. Eurographics 1999), 1999, 18(3): 131~138
    [15] Karbacher S, H?usler G. A new approach for modeling and smoothing of scattered 3d data. Three-Dimensional Image Capture and Applications (Proceedings of SPIE), 1998, 3313(1): 168~177
    [16] Desbrun M, Meyer M, Schr?der P, et al. Anisotropic feature-preserving denoising of height fields and bivariate data. Proc. of the 9th International Meshing Roundtalble, New Orleans, Louisiana,2000: 145~152
    [17]谭昌柏.结构件反求建模中的数据处理技术.硕士学位论文,南京:南京航空航天大学, 2003
    [18]张丽艳,周儒荣,蔡炜斌.海量测量数据简化技术研究.计算机辅助设计与图形学学报, 2001, 13(11): 1119~1023
    [19] Davis J, Marschner S R, Garr M, et al. Filling holes in complex surfaces using volumetric diffusion. Proc. of First International Symposium on 3D Data Processing, Visualization, and Transmission, Padua, Italy, June 2002: 19-21
    [20]张丽艳,周儒荣,周来水.三角网格模型孔洞修补算法研究.应用科学学报, 2002, 20(3): 221-224
    [21]张丽艳,潘小林,安鲁陵.网格曲面中孔洞的光滑填充算法研究.工程图学学报, 2002, 22(4): 113-119
    [22] Edelsbrunner H, Mucke E P. Three-Dimensional Alpha Shape. ACM Transaction On Graphics, 1994, 13(1): 43~72
    [23] Guo B. Surface reconstruction:from points to splines. Computer-Aided Design, 1997, 29(4): 269~277
    [24]朱本富. CAD/CAM中基于三角域的散乱数据几何造型研究.博士学位论文,北京:北京航空航天大学, 1997
    [25] Hoppe H, Derose T, Duchamp T. Surface reconstruction from unorganized points. Computers Graphics, 1992, 26(2): 71~78
    [26]周儒荣,张丽艳,苏旭.海量数据点的曲面重建算法研究.软件学报, 2001, 12(2): 249-255
    [27] Milroy M J, Bradley C, Vickers G W. Segmentation of a wrap-around model using an active contour. Computer-Aided Design, 1997, 29(4): 299~320
    [28] Besl P J, Jain R C. Segmentation through variable-order surface fitting. IEEE Transaction on Pattern Analysis and Machine Intelligence, 1988, 10(2): 167-192
    [29] Checchin P, Trassoudaine L, Alizon J. Segmentation of range images into planar regions. Proc. of Proceedings of international conference on recent advances in 3D digital imaging and modeling, 1997: 156~163
    [30]刘胜兰,周儒荣,安鲁陵.三角网格模型的数据分块算法.南京航空航天大学学报, 2003, 35(6): 653-658
    [31] Hoffman R, Jain A K. Segmentation and classification of range image IEEE Trans, Pattern Anal Mach. Intell, 1987
    [32] Alrashdan A, Moravalli S, Fallahi B. Automatic Segmentation of digitized data for reverse engineering applications. IIE Transaction, 2000, 32(1): 59-69
    [33] Yokoya N, Levine M D. Range Image Segmentation Based on differential geometry: a hybrid approach. IEEE Transaction on Pattern Analysis and Machine Intelligence, 1989, 11(6): 644-649
    [34]汪俊,周来水,安鲁陵.基于面积和法矢的一种新的区域分块算法.中国机械工程, 2005, 16(9): 796-800
    [35]张丽艳.逆向工程中模型重建关键技术研究.博士学位论文,南京:南京航空航天大学, 2001
    [36] Gu P, Yan X. Neural network approach to the reconstruction of freeform surfaces for reverse engineering. Computer-Aided Design, 1995, 27(1): 59-64
    [37] B. Guo. Surface reconstruction: from points to splines. Computer-Aided Design, 1997, 29(4): 269-277
    [38] M. Eck, T. DeRose, T. Duchamp, et al. Multiresolution analysis of arbitrary meshes. Computer Graphics (SIGGRAPH’95 Proceedings), 1995, 29: 173-182
    [39] M. Eck, H. Hoppe. Automatic reconstruction of B-spline surfaces of arbitrary topological type. Computer Graphics (SIGGRAPH’96 Proceedings), 1996, 30: 325-333
    [40] C.L.Bajaj, F. Bernadini, G. Xu. Automatic reconstruction of surfaces and scalar fields from 3D scans. Proc. of SIGGRAPH’95 Proceedings, Los Angeles , 1995: 109-117
    [41] H. Park, K. Kim. Smooth surface approximation to serial cross-sections. Computer-Aided Design, 1996, 28(12): 995-1005
    [42] R. M. Bolle, B. C. Vemuri. On three-dimensional surface reconstruction methods. IEEE Trans. Pat. Anal. Mach. Intell, 1991, 13(1): 1-13
    [43]李江雄.复杂曲面反求工程CAD建模技术研究.博士学位论文,杭州:浙江大学, 1998
    [44]苏旭.逆向工程中基于散乱数据点的曲面重构方法研究.硕士学位论文,南京:南京航空航天大学, 2000
    [45]蔡炜斌.逆向工程中基于轮廓数据的曲面重构.硕士学位论文,南京:南京航空航天大学, 2001
    [46]庞秀峰.任意拓扑三角网格面分片B样条曲面拟合.硕士学位论文,南京:南京航空航天大学, 2001
    [47] Pramod N Chivate, Andrei G. Jablokow. Solid-model generation from measured point data. Computer-Aided Design, 1993, 25(9): 587-600
    [48] Pramod N. Chivate, Andrei G. Jablokow. Review of surface representations and fitting for reverse engineering. Computer Integrated Manufacturing Systems, 1995, 8(3): 193-204
    [49]孙福辉.逆向工程中重建CAD模型的若干关键技术研究.博士学位论文,北京:北京航空航天大学, 2001
    [50] Benko P, Martin R R, Várady T. Algorithms for Reverse Engineering Boundary RepresentationModels. Computer-Aided Design, 2001, 33(11): 839~851
    [51] Benko P, Kós G, Várady T, et al. Constrained Fitting in Reverse Engineering. Computer Aided Geometric Design, 2002, (19): 173~205
    [52] Fisher R B. Applying knowledge to reverse engineering problems. Computer-Aided Design, 2004, 36(6): 501~510
    [53] Fisher R, Robertson Craig, Werghi N. Constrained Object Reconstruction Incorporating Free-form Surfaces. Proc. of Proc. IX Spanish Symposium on Pattern Recognition and Image Analysis, Benicassim, Spain, 2001: 273~280
    [54] Robertson C, Fisher R, Werghi N, et al. An Evolutionary Approach to Fitting Constrained Degenerate Second Order Surfaces. Proc. of Proc. First European workshop on evolutionary computation in image analysis and signal processing, Goteborg, Sweden , 1999: 1~16
    [55] Robertson C, Fisher R, Werghi N, et al. Fitting of Constrained Feature Models to Poor 3D Data. Proc. of Proc. Adaptive Computing in Design and Manufacture, Plymouth, UK, 2000: 149~160
    [56] N. Werghi, R. Fisher, C. Robertson, et al. Object reconstruction by incorporating geometric constraints in reverse engineering. Computer-Aided Design, 1999, 31: 363-399
    [57] Werghi N, Fisher R, Robertson C, et al. Shape Reconstruction Incorporating Multiple Nonlinear Geometric Constraints. Constraints, 2002, 7(2): 117-149
    [58] Langbein F C, Mills B I, Marshall A D, et al. Approximate Geometric Regularities. International Journal of Shape Modelling, 2001, 7(2): 129~162
    [59] Langbein F C, Marshall A D, Martin R R. Choosing Consistent Constraints for Beautification of Reverse Engineered Geometric Models. Computer-Aided Design, 2004, 36(3): 261~27
    [60] Langbein F C, Mills B I, Marshall A D, et al. Finding Approximate Shape Regularities for Reverse Engineering. J. Computing and Information Science in Engineering, 2001, 1(4): 282~290
    [61] Langbein F C, Marshall A D, Martin R R. Numerical Methods for Beautification of Reverse Engineered Geometric Models. Proc. of Geometric Modelling and Processing Proc. GMP, 2002: 159~168
    [62] Langbein F C, Mills B I, Marshall A D, et al. Recognizing Geometric Patterns for Beautification of Reconstructed Solid Models. Proc. Int. Conf. on Shape Modelling and Applications, IEEE Computer Society Press, 2001: 10~19
    [63] Germain H J, Stark S R, Thompson W B, et al. Constraint optimization and feature-based model construction for reverse engineering. Proc. of Proceedings of the ARPA Image Understanding Workshop, 1997
    [64] W. B. Thompson, Jonathan C. Owen, H. James de St. Germain et al. Feature-Based ReverseEngineering of Mechanical Parts. IEEE Transactions on robotics and automation, 1999, 15(1): 57-64
    [65] Owen J C, Sloan P J, Thompson W B. Interactive feature-based reverse engineering of mechanical parts. Proc. of Proceedings of the ARPA Image Understanding Workshop, November, 1994
    [66] J C Owen. Feature-Based Reverse Engineering. PhD Thesis, Salt Lake City:University of Utah, 1994
    [67]吴敏.基于约束和特征的结构类零件实体模型重建关键技术研究.博士学位论文,南京:南京航空航天大学, 2004
    [68]谭昌柏.逆向工程中基于特征的实体模型重建关键技术研究.博士学位论文,南京:南京航空航天大学, 2006
    [69]唐杰.逆向工程中三角网格模型的数据处理技术.博士学位论文,南京:南京航空航天大学, 2000
    [70]聂军洪.任意拓扑结构三角网格模型优化调整技术研究.博士学位论文,南京:南京航空航天大学, 2003
    [71]王占东.细分曲面关键技术研究.博士学位论文,南京:南京航空航天大学, 2003
    [72]周海.细分曲面造型技术研究.博士学位论文,南京:南京航空航天大学, 2004
    [73]神会存.高质量工程曲面的重建与曲面品质检查分析.博士学位论文,南京:南京航空航天大学, 2005
    [74]贺美芳.基于散乱点云数据的曲面重建关键技术研究.博士学位论文,南京:南京航空航天大学, 2005
    [75]王志国.曲线曲面形状修改和变形关键技术研究.博士学位论文,南京:南京航空航天大学, 2006
    [76]任朴林.基于散乱数据的截面线生成及模型重构技术研究.硕士学位论文,南京:南京航空航天大学, 2003
    [77]彭雨哟.基于草图轮廓的特征模型重建技术.硕士学位论文,南京:南京航空航天大学, 2004
    [78]陈涛.逆向工程中数据分块和规则曲面拟合算法的研究.硕士学位论文,南京:南京航空航天大学, 2004
    [79] Yang M, Lee E. Segmentation of measured point data using a parametric quadric surface approximation. Computer-Aided Design, 1999, 31: 449~457
    [80] Huang J, Menq C H. Automatic Data Segmentation for Geometric Feature Extraction from Unorganized 3-D Coordinate Points. IEEE Transactions on Robotics and Automation, 2001, 17(3): 268-279
    [81]胡鑫,习俊通,金烨.基于图像法的点云数据边界自动提取.上海交通大学学报, 2002, 36(8):1118-1120
    [82] Mangan A P, Whitaker R T. Partitioning 3D surface meshes using watershed segmentation. IEEE Trans Visualization and Computer Graphics, 1999, 5(4): 308-321.
    [83] Park S, Jun Y. Automated segmentation of point data in a feature-based reverse engineering system. Proc. of Proceedings of the institution of mechanical engineers, part B, J Eng Manuf, 2002, 216: 445~451
    [84] Taubin G. Estimating the tensor of curvature of a surface from a polyhedral approximation. Proc. of Proc. 5th Intl. Conf. on Computer Vision (ICCV’95), 1995: 902-907
    [85] Moreton H P, Sequin C H. Functional optimization for fair surface design. Proc. of Computer Graphics Proceedings, Annual Conference Series, ACM SIGGRAPH, Chicago, Illinois, 1992: 167~176
    [86] Desbrun M, Meyer M, Schr?der P, et al. Discrete differential-geometry operations in nD. http://www.multires.caltech.edu/pubs/pubs.htm, 2000:
    [87] Welch W, Witkin A. Free-form shape design using triangulated surfaces. Proc. of SIGGRAPH 94 Conference Proceedings, Orlando Florida, 1994: 247-256
    [88] Hamann B. Curvature approximation for triangulated surfaces. Geometric Modelling, 1993: 139-153
    [89] Krsek P, Pajdla T, Hlavac V. Estimation of dierential parameters on triangulated surface. In 21st Workshop of the Austrian Association for Pattern Recognition, May 1997
    [90]施法中.计算机辅助几何设计与非均匀有理B样条(CAGD&NURBS).北京:北京航空航天大学出版社, 1994
    [91]朱心雄.自由曲线曲面造型技术.北京:科学出版社, 2000
    [92]谷口庆治.数字图象处理.北京:科学出版社, 2002
    [93]唐常青.数学形态学方法及其应用.北京:科学出版社, 1990
    [94] M. Van?o. A Direct Approach for the Segmentation of Unorganized Points and Recognition of Simple Algebraic Surfaces. PhD Thesis, University of Technology Chemnitz, 2002
    [95] G. H. Liu, Y.S. Wong, Y.F. Zhang, et al. Error-based segmentation of cloud data for direct rapid prototyping. Computer-Aided Design, 2002, (35): 633-645
    [96] Y. F.Wu, Y. S. Wong, H. T. Loh, et al. Modelling cloud data using an adaptive slicing approach. Computer-Aided Design, 2004, 36(3): 231-240
    [97]柯映林.反求工程CAD建模理论、方法和系统.北京:机械工业出版社, 2005
    [98]肖轶军,丁明跃,彭嘉雄.基于B样条模型的曲线特征点检测.数据采集与处理, 2000, 15(4): 422-425
    [99]孙家广.计算机图形学.北京:清华大学出版社, 1998
    [100]冯涛,习俊通,金烨.一种RE/RP集成的工艺产品模型快速开发方法.计算机辅助设计与制造, 2002, 3: 50-55
    [101]汪俊,周来水,安鲁陵.具有复杂轮廓特征的实体模型重建方法.中国机械工程, 2006, 17(11): 1157-1161
    [102]戴华.矩阵论.北京:科学出版社, 2001
    [103]袁亚湘,孙文瑜.最优化理论与方法.北京:科学技术出版社, 1997
    [104]陈宝林.最优化理论与算法.北京:清华大学出版社, 1989
    [105]张光澄.最优化计算方法成都:成都科技大学出版社, 1989
    [106]柯映林,李案.点云数据中拉伸面特征的提取.计算机辅助设计与图形学学报, 2005, 17(6): 1329
    [107]蒋长锦.科学计算和C程序集.合肥:中国科学技术大学出版社, 1998
    [108] Pottmann H, Randrup T, etal. Rotationa and Helical Surface Approximation for Reverse Engineering. Computering, 1998, 60: 307-322
    [109] Lai jiing-Yih, Ueng Wen-Der. Reconstruction of surfaces of revolution from measured points. Computer in Industry, 2000, 41: 147-161
    [110] Pottmann H, Wallner J. Computational Line Geometry. Berlin: Springer-verlag, 2001
    [111] Wen-Der Ueng, Jiing-Yih Lai, Ji-Liang Dong. Sweep-surface reconstruction from three-dimensional measured data. Computer-Aided Design, 1998, 30(10): 791-805
    [112] Wen-Der Ueng, Jiing-Yih Lai. A sweep-surface fitting algorithm for reverse engineering. Computers In Industry, 1998, (35): 261-273
    [113] Lee I. K. Curve reconstruction from unorganized points. Computer Aided Geometric Design, 2000, 17(2): 161-177
    [114] G. Kós, R. R. Martin, T. Várady. Methods to recover constant radius rolling ball blends in reverse engineering. Computer Aided Geometric Design, 2000, 17: 127-160
    [115] Woodward C D. Cross sectional design of B-spline Surfaces. Comput. & Graphics, 1987, 11(2):
    [116] Woodward C D. Skinning techniques for interactive B-spline surfaces interpolation. Computer Aided Design, 1988, 20(8):
    [117] Chih-Young Lin, Chung-Shan Liou, Jiing-Yih Lai. A surface-lofting approach for smooth-surface reconstruction from 3D measurement data. Computers in Industry, 1997, 34: 73-85
    [118]柯映林,李岸,王军文.过渡特征中的概率统计理论和方法.机械工程学报, 2003, 39(6): 140-144
    [119] H. L. Zou, Y. T. Lee. Skewed rotational symmetry detection from a 2D line drawing of a 3Dpolyhedral object. Computer-Aided Design, 2006, 38(12): 1224-1232
    [120] Aurélien Martinet, Cyril Soler, Nicolas Holzschuch, et al. Accurate detection of symmetries in 3D shapes. ACM Transactions on Graphics (TOG), 2006, 25(2): 439 - 464
    [121] Alexander V T, Olivier Colliot, Isabelle Bloch. Brain symmetry plane computation in MR images using inertia axes and optimization. Proc. of Proceedings of 16th Int. Conf. On Pattern Recognition, ICPR'02, 2002, 1: 1051-1054
    [122]柯映林,陈曦.基于局部特征匹配的对称面提取算法.计算机辅助设计与图形学学报, 2005, 17(6): 1191-1195
    [123] M J Atallah. On symmetry detection. IEEE Trans on Computer, 1985, C 34(7): 663-666
    [124] Mitsumoto H, Tamura S, Okazaki K, et al. 3-D reconstruction using mirror images based on a plane symmetry reconvering method. IEEE Transaction on Pattern Analysis and Machine Intelligence, 1992, 14(9): 941-946
    [125] Curwen R W, Mundy J L, Stewart C V. Recognition of plane projective symmetry. Proc. of Proceedings of IEEE 6th International Conference on Computer Vision, Bomday, 1998: 1115-1122
    [126] Banerjee D K, Parui S K, Majumder D D. Plane of symmetry of 3D objects. Proc. of Proceedings of 29th Annual Convention of the Computer Society of India,Information Technology for Growth and Prosperity, Calcutta, 1994: 39-44
    [127] Hattori K, Matsumori S, Sato Y. Estimating pose of human face based on symmetry plane using rang and intens ity images. Proc. of Proceedings of 14th International Conference on Pattern Recognition, Brisbane, Qld. 1998, 2: 1183-1187
    [128] Ishikawa S, Takeda T, Kato K. Identifying a symmetry axis of a plane figure with potential axial symmetry. Transactions of the Institute of Electronics, Information and Communication Engineers D-II, 1994, j77d-II(9): 1950-1952
    [129]金涛,许跃敏,童水光.一种用于逆向工程的对称平面重建方法.浙江大学学报(工学版), 2002, 36(6): 702-706
    [130]严蔚敏,吴伟民.数据结构.北京:清华大学出版社, 1996
    [131] David A. Simon. Fast and Accurate Shape-Based Registration. PhD Thesis, Pittsburghers:Carnegie Mellon University, 1996
    [132] G Godin, M Rioux, R Baribeau. 3-D registration using range and intensity information. Proc. of SPIE Proceedings, Videometrics III, International Symposium on Photonic and Sensors and Controls for Commercial Applications, Boston, MA, October 31 - November 4, 1994, 2350: 279-290
    [133] Sarkar B, Menq C H. Parameter optimization in approximating curves and surfaces tomeasurement data. CAGD, 1991, 8(3): 267-291
    [134] Rogers D, Fog N. Constrained B-spline curve and surface fitting. Computer-Aided Design, 1989, 21(6): 641-648
    [135] Milroy M J, Bradley C, Vickers G W, et al. G1 continuity of B-spline surface patches in reverse engineering. Computer-Aided Design, 1995, 27(6): 471-478
    [136]杨文茂,李全英.空间解析几何.武汉:武汉大学出版社, 1997
    [137]邓成飞,李洁.软件工程管理.北京:国防工业出版社, 2002

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700