用户名: 密码: 验证码:
碳纤维增强树脂基复合材料界面结合强度关键影响因素研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
界面对碳纤维复合材料性能的发挥起着非常重要的作用,复合材料通过界面传递载荷,可以使碳纤维与基体形成一个有效发挥综合性能的整体。在界面的研究中,提高其结合强度是改善碳纤维复合材料力学性能的关键。因此,剖析各种因素对碳纤维复合材料界面结合强度的影响,对于提高复合材料的综合性能具有十分重要的意义。本文采用扫描电镜(SEM)、X射线光电子能谱(XPS)、激光拉曼光谱(LRS)、X射线衍射(XRD)、傅立叶变换红外光谱(FTIR)以及力学性能测试等技术,考察了不同制备工艺对碳纤维结构及性能的影响,探讨了湿法纺丝制备PAN基碳纤维的电化学改性工艺以及电化学改性处理过程中碳纤维表面结构和性能的演变规律,获得了碳纤维表面除胶的合理性工艺,深入研究了碳纤维电化学改性处理、上浆剂以及基体改性对碳纤维复合材料界面结合强度的影响,提出了碳纤维电化学改性机理以及基体改性机理。
     对不同工艺制备的碳纤维结构及性能进行了对比分析,结果表明:与湿法纺丝工艺制备的碳纤维相比,干喷湿纺工艺制备的碳纤维内部致密性高,轴向微孔尺寸小,表面非碳元素相对含量低。从X射线衍射来看,干喷湿纺工艺制备的碳纤维石墨层面间距d002较小,更接近于石墨单晶的层面间距;微晶堆砌厚度Lc较高,石墨网平面尺寸La较大,石墨微晶的平均堆叠层数较多,这说明采用干喷湿纺工艺制备的碳纤维具有较高的石墨化程度,其结构完整性更高。湿法纺丝和干喷湿纺工艺制备的碳纤维其表面结构基本相同,但表面形貌存在很大差异。湿法纺丝工艺制备碳纤维表面粗糙,有许多轴向沟槽,而干喷湿纺工艺制备的碳纤维表面光滑无沟槽,沟槽的存在可以增加纤维与基体间的机械铰合作用,有利于提高复合材料的界面结合强度。另外,洁净的生产环境及精细的加工设备有利于减少碳纤维的表面缺陷。
     采用XPS技术研究了湿法纺丝工艺制备的PAN基碳纤维在电化学改性处理过程中表面特性随改性工艺的变化,结果表明:电化学改性初期,碳纤维表面改性效果明显。随着电化学改性处理时间的延长,变化趋势减慢,达到一定程度时趋于稳定。电解液的浓度和温度越高,电化学改性处理时间越长,电流密度越大,碳纤维表面改性效果越明显。大量电解质试验表明,NH4H2PO4对碳纤维表面电化学改性效果最佳。
     采用LRS技术系统研究了湿法纺丝工艺制备的碳纤维在电化学改性处理过程中表面结构的变化,结果表明:电化学改性处理后,碳纤维表面拉曼光谱中的G线和D线交叠度减小,尺值增大,D2线与G线的比值减小,D3线与G线的比值增大。随着电化学处理时间的增加,尺值不断增大,D2线与G线的比值以及D3线与G线的比值发生一定程度的改变,但变化趋势并不明显。所有代表无序结构的拉曼谱峰积分面积总和与石墨结构积分面积之比与R值的变化趋势基本一致,它可以更全面地表征电化学处理过程中碳纤维表面结构无序性的变化,对于深入分析碳纤维电化学改性处理中表面微结构的变化规律具有重要意义。
     选用高电流密度,浓度为1mol/L的NH4H2PO4为电解质,设定处理时间为4min,对碳纤维进行电化学改性处理,试验结果表明,电化学改性处理后碳纤维的表面结果和性能发生改变。碳纤维的表面结构被破坏,无序度增大,表面晶粒尺寸减小。比表面积增大,表面粗糙度增加,有利于提高碳纤维的表面极性,增大树脂的浸润性;同时更多含氧官能团的生成也有利于增大碳纤维表面与基体间的化学作用力,使得碳纤维增强树脂基复合材料的界面结合强度提高。其中,碳氧单键含量的增加对界面化学作用力的增强起主要作用。
     系统研究了过度电化学改性处理对T700碳纤维和石墨纤维结构的影响,结果表明:电化学改性是一种碳纤维表面改性处理的有效方法,它仅对纤维表面产生作用,并不改变纤维的本体结构。在相同的处理条件下,碳纤维表面部分结构破坏严重,轴向沟槽消失,部分结构保持完整,且破坏是沿纤维轴向进行的,破坏区域显示出微坑形貌;石墨纤维表面基本没有变化。电化学改性处理过程中,碳纤维中非碳元素的存在是石墨片层结构破坏的主要原因,也是表面结构破坏的根源。纤维表面结合力弱的区域容易被破坏,导致表面轴向沟槽增多并加深。
     采用不同上浆剂对碳纤维进行表面处理,研究了不同上浆剂对碳纤维以及复合材料界面结合强度的影响,结果表明:碳纤维经上浆剂处理后,很好地抑制了纤维的毛丝和断丝现象,而且上浆剂均匀附着于碳纤维表面,使纤维较好分散,有效地避免了纤维之间的粘连。上浆剂的种类对碳纤维复合材料的界面结合强度影响较大。日本生产的上浆剂基本可以改善碳纤维的表面润湿性,提高复合材料的界面结合强度。与进口上浆剂相比,国产上浆剂处理制备的碳纤维复合材料,其界面结合强度偏低,与普通环氧树脂的效果接近。
     采用FESEM、XPS、LRS和XRD等多种分析技术对不同除胶工艺处理的碳纤维结构及性能进行了研究,结果表明:丙酮浸泡工艺对碳纤维表面上浆剂的去除效果不佳;瞬时高温处理工艺虽然可以达到部分清除上浆剂的效果,但对纤维表面结构产生较大损伤;采用氮气保护下的高温除胶处理工艺,不仅可以有效地去除碳纤维表面上浆剂,而且可以通过工艺参数的合理配置,有效抑制处理过程中碳纤维表面的氧化以及上浆剂裂解产物的残存。通过对比分析确定,氮气保护下的高温除胶工艺是碳纤维表面上浆剂去除的有效方法。
     以羟基硅油为共聚改性剂对酚醛树脂基体进行改性,系统研究了基体改性对碳纤维复合材料界面结合强度及力学性能的影响,结果表明:随着羟基硅油添加量的增加,碳纤维复合材料的界面结合强度呈现先增大后减小的变化趋势,材料的弯曲强度逐渐增大,拉伸强度的变化趋势与界面结合强度的变化趋势基本一致。羟基硅油添加量不当会导致基体缺陷增加,使得复合材料界面结合性能变差,影响材料整体性能的发挥。当羟基硅油与酚醛树脂的质量百分比为2.5%时,碳纤维增强树脂基复合材料的界面结合强度最高,同时材料的拉伸强度和弯曲强度也得到改善。基体改性对复合材料界面结合强度的改善效果不如碳纤维表面改性对其效果提高明显。适当的原料配比以及合理的制备工艺是减少碳纤维复合材料内部缺陷以及改善复合材料性能的关键因素。
The interface between carbon fibers and matrix is a main component of the composite. Good adhesion is a precondition for stress transfer in carbon fiber reinforced resin composites and is helpful to effectively improve the mechanical properties of composites. On the investigation of interface, it is the key to enhance interfacial bonding strength. Therefore, it is important to comprehensively understand the effect of various factors on the interfacial bonding strength of composites. In this paper several technologies, such as scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), Laser Raman spectroscopy (LRS), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and some mechanical properties tests were used to investigate the effect of different preparation technologies on the properties and structures of carbon fibers, discuss the process of electrochemical treatment of wet-spinning PAN-based carbon fibers and the evolution of surface property and structure during electrochemical treatment systemically, grope reasonable surface desizing technology of carbon fibers, study the effect of electrochemical treatment of carbon fibers, surface sizing agent and matrix modification on the interfacial bonding strength of carbon fiber reinforced resin composites, put forward electrochemical treatment mechanism of carbon fibers and matrix modification mechanism.
     Analysis of properties and structures of carbon fibers with different preparation technologies show that compared with carbon fibers prepared by wet-spinning process, the compactness of carbon fibers prepared by dry-jet wet spinning process is higher and the axial pore size is smaller, while the content of non-carbon elements on the surface of carbon fibers is lower. From X-ray diffraction, the structural parameters of both carbon fibers vary. For carbon fiber prepared by dry-jet wet-spinning process, its interlayer spacing d_(002) is smaller than that prepared by wet-spinning process. The crystallite size Lc and La are larger and stacked layers of graphite lamella increases. The results show that carbon fiber prepared by dry-jet wet-spinning process has a higher degree of graphite and more integrated structure. The surface micro-structure of both carbon fibers is almost the same, while there is a big difference in surface morphology. The surface of carbon fibers prepared by wet-spinning process is rough and possesses many axial grooves, which are beneficial to increase the mechanical hinge effect between carbon fibers and resin matrix and improve the interfacial bonding strength of composites, while the surface of carbon fibers prepared by dry-jet wet-spinning process is smooth. In addition, clean production environment and fine processing equipment are beneficial to the reduction of carbon fiber surface defects.
     The surface properties of wet-spinning PAN-based carbon fibers was investigated with the treatment technologies by XPS during electrochemical treatment. The results indicate that the effect is obvious at early stage. However, the trend of surface treatment effect become gently forward. Higher electrolyte concentration, higher electrolyte temperature, longer treatment time and larger current density are helpful to the electrochemical treatment. Experimental determination is that NH4H2PO4 is the most suitable electrolyte for electrochemical treatment of carbon fibers.
     LRS was used to study on the surface structure change of wet-spinning PAN-based carbon fibers during electrochemical treatment. And the characteristics of first-order Raman spectra of carbon fibers with different treatment time were investigated. The results indicate that the peak separation between D band and G band increases in the first-order Raman spectra after electrochemical treatment, so does R value and ratio of D3 band and G band, while the ratio of D2 band and G band decreases. R value gradually increases with the treatment time, while the variation trends of the ratio of D2 band and G band and the ratio of D3 band and G band are not obvious. The ratio of all the disordered structure and G band increases continuously, and its change trend is consistent with that of R value, which can be used to comprehensively explain the variation of the surface disordered structure of carbon fibers. So the change rules of the structure of carbon fibers can be investigated by laser Raman spectroscopy during electrochemical treatment.
     The carbon fibers electrochemically treated in 1mol/L NH4H2PO4, for 4 mininutes, and high current density.were investigated. The results show that after electrochemical treatment specific surface area enlarges, surface roughness increases while oxygen content and oxygen-containing functional groups increase. These factors can improve the surface polarity and increase wettability of resin matrix. More oxygen-containing functional groups are helpful to enhance chemical action between carbon fibers and resin matrix to improve interfacial bonding strength of composites, in which the content increase of carbon-oxygen bond plays a main part in improving interfacial bonding strength of composites. The surface micro-structure of carbon fibers is destroyed after electrochemical treatment, the surface disordered degree increases and surface grain size becomes larger.
     The structures of T700 carbon fibers and graphite fibers after excessive electrochemical treatment were analyzed. The results indicate that electrochemical treatment is a kind of effective method, which has effect on the surface structure and does not destroy bulk structure. Under the same treatment condition, surface striations disappear and surface of T700 become rough along axial direction of carbon fibers. The surface of graphite fibers is almost unchanged. Modification mechanism is analyzed in the way of internal structure of carbon fibers. The existence of surface non-carbon elements is the main reason to destroy the structure of graphite layers, and the region of poor bonding force is easily destroyed to expose more axial grooves on the surface of carbon fibers.
     Carbon fibers were treated by different sizing agents, the effect of sizing agents on carbon fibers and interfacial bonding strength of composites were investigated. The results show that after sizing the broken filaments decrease. Sizing agents uniformly attach to the surface of carbon fibers. The dispersion property of sized carbon fibers is good to effectively avoid adhesion between carbon fibers. But different sizing agents result in different interfacial bonding strength of composites. Most sizing agents made in Japan can improve the surface wettability of carbon fibers, which is beneficial to improve the interfacial bonding strength of composites. Compared with imported sizing agent, the domestic is poor in improving interfacial bonding of composites, whose effect is close to ordinary epoxy resin.
     The structures and properties of carbon fibers treated by different desizing technology were investigated by FESEM, XPS, LRS and XRD. The results indicate that the immersion technology in acetone has little action to remove surface sizing agent. The instant high-temperature treatment can melt surface sizing agent, but it also damages the surface micro-structure of carbon fibers. The high-temperature treatment in N2 can effectively remove the surface sizing agent, eliminate the residue of the pyrolytic products of sizing agent and prevent the damage of the carbon fibers surface at high temperature under reasonable technology parameters. In summary, the high-temperature treatment in N2 is most effective to remove the surface sizing agent.
     Phenolic resin modified by hydroxyl silicone oil was used as matrix to prepare carbon fibers reinforced resin composites. It is found that when the content of hydroxyl silicone oil increases, the interfacial bonding strength of composites firstly increases and then decreases, flexural strength gradually increases and the variation trend of tensile strength is basically identical with that of interfacial bonding strength. Unsuitable addition of hydroxyl silicone oil leads to more defects in matrix and poor interfacial bonding of composites. When the weight percent of hydroxyl silicone oil to phenolic resin is about 2.5%, the interfacial bonding strength of composite is highest, meanwhile tensile strength and flexural strength enhance. But the effect of matrix modification on interfacial bonding strength of composites is inferior to that of carbon fiber treatment. In addition, suitable proportion design of matrix and proper operation in the preparation of carbon fiber composites are key factors to avoid structure defects and improve interfacial bonding strength of composites.
引文
[1]贺福.碳纤维及其应用.北京:化学工业出版社,2004.
    [2]柯泽豪,林菁菁.碳纤维研究发展之现状与未来.高科技纤维与应用,2000,25(6):1-9.
    [3]王云英,孟江燕,陈学斌,白杨.复合材料用碳纤维的表面处理.表面技术,2007,36(3):53-57.
    [4]汪家铭.碳纤维产业发展现状与市场前景.化工文摘,2009,(3):17-24.
    [5]赵稼祥.2008世界碳纤维前景会.高科技纤维与应用,2008,33(5):1-6.
    [6]黎小平,张小平,王红伟.碳纤维的发展及其应用现状.高科技纤维与应用,2005,30(5):24-30.
    [7]王海英.碳纤维的发展前景与市场分析.高科技纤维与应用,2007,32(4):23-26.
    [8]贺福,王润娥,赵建国.聚丙烯腈基碳纤维.化工新型材料,1999,27(4):6-11.
    [9]钱伯章.世界碳纤维市场继续加快发展.合成纤维,2009,(9):55.
    [10]罗益锋.炭纤维的新形势与新技术.新型炭材料,1995,(4):13-25.
    [11]钱伯章,朱建芳.碳纤维发展现状及市场分析.合成纤维,2007,36(7):10-17.
    [12]赵稼祥.碳纤维的生产、需求和市场.新材料产业,2007,(10):18-23.
    [13]陈祥宝,张宝艳,刑丽英.先进树脂基复合材料技术发展及应用现状.中国材料进展,2009,28(6):2-11.
    [14]Jia J H, Chen J M, Zhou H D, Hu L T, Chen L. Comparative investigation on the wear and transfer behaviors of carbon fiber reinforced polymer composites under dry sliding and water lubrication. Composites Science and Technology,2005, 65(7-8):1139-1147.
    [15]Jacob G C, Starbuck J M, Fellers J F, Simunovic S, Boeman R G. Crashworthiness of various random chopped carbon fiber reinforced epoxy composite materials and their strain rate dependence. Journal of Applied Polymer Science,2006,101(3): 1477-1486.
    [16]Meier U. Carbon fiber-reinforced polymers:modern materials in bridge engineering. Structural Engineering International,1992,2(1):7-12.
    [17]Chen W C. Some experimental investigation in the drilling of carbon fibr-reinforced plastic (CFRP) composite laminates. International Journal of Machine Tools and Manufacture,1997,37(8):1097-1108.
    [18]张艳丽,郭红霞.纤维增强陶瓷基复合材料及其应用.山东建材,2007,(3):49-53.
    [19]贺福.碳纤维增强陶瓷复合材料.陶瓷,1979,(3):30-36.
    [20]Lamouroux F, Bertrand S, Pailler R, Naslain R, Cataldi M. Oxidation-resistant carbon-fiber-reinforced ceramic-matrix composites. Composites Science and Technology,1999,59(7):1073-1085.
    [21]李克智,王闯,李贺军,石振海.碳纤维增强水泥基复合材料的发展与研究.材料导报,2006,20(5):85-88.
    [22]Fu X L, Chung D D L. Self-monitoring of fatigue damage in carbon fiber reinforced cement. Cement and Concrete Research,1996,26(1):15-20.
    [23]Shi Z Q, Chung D D L. Carbon fiber-reinforced concrete for traffic monitoring and weighing in motion. Cement and Concrete Research,1999,29(3):435-439.
    [24]Sun M, Li Z, Mao Q, Shen D. Study on the hole conduction phenomenon in carbon fber-reinforced concrete. Cement and Concrete Research.1998,28(4):549-554.
    [25]Chen B, Wu K, Yao W. Conductivity of carbon fiber reinforced cement-based composites. Cement and Concrete Composites,2004,26(4):291-297.
    [26]贺福.碳纤维增强橡胶复合材料.化工新型材料,1989,(10):12-15.
    [27]Jana P B, Chaudhuri S, Pal A K, De S K. Electrical conductivity of short carbon fiber-reinforced polychloroprene rubber and mechanism of conduction. Polymer Engineering and Science,2004,32(6):448-456.
    [28]贺福.碳/碳复合材料.电碳技术,1981,(3):29-41.
    [29]王曼霞.碳/碳复合材料与多功能材料的现况与进展.宇航材料工艺,1988,(5):1-8.
    [30]Luo X C, Chung D D L. Electromagnetic interference shielding using continuous carbon-fiber carbon-matrix and polymer-matrix composites. Composites Part B: Engineering,1999,30(3):227-231.
    [31]凤仪,许少凡,颜世钦,应美芳,王成福.纤维强化金属基复合材料及其应用.机械工程材料,1995,19(1):9-11.
    [32]Wan Y Z, Wang Y L, Luo H L, Dong X H, Cheng G X. Effect of fiber volume fraction, hot pressing parameters and alloying elements on tensile strength of carbon fiber reinforced copper matrix composite prepared by continuous three-step electrodeposition. Materials Science and Engineering A,2000,288(1):26-33.
    [33]Zhou Y X, Yang W, Xia Y, Mallick P K. An experimental study on the tensile behavior of a unidirectional carbon fiber reinforced aluminum composite at different strain rates. Materials Science and Engineering A,2003,362(1-2): 112-117.
    [34]Urena A, Rams J, Escalera M D, Sanchez M. Characterization of interfacial mechanical properties in carbon fiber/aluminium matrix composites by the nanoindentation technique. Composites Science and Technology,2005,65(13): 2025-2038.
    [35]上官倩芡,蔡泖华.碳纤维及其复合材料的发展及应用.上海师范大学学报(自然科学版),2008,37(3):275-279.
    [36]Fukunaga A, Komami T, Ueda S, Nagumo M. Plasma treatment of pitch-based ultra high modulus carbon fibers. Carbon,1999,37(7):1087-1091.
    [37]郑秋生.PAN基碳纤维增强复合材料生产工艺及应用.化纤与纺织技术,2009, (3):26-31.
    [38]汪家铭.聚丙烯腈基碳纤维发展与应用.化学工业,2009,27(7):45-50.
    [39]黄传真,张树生,艾兴,王景海.新型复合材料界面研究的现状与展望.材料导报,1996,(4):15-18.
    [40]李斗星,平德海,戴吉岩,宁小光,金志雄,叶恒强.材料界面的特征和表征.稀有金属,1994,18(4):293-299.
    [41]Guigon M, Klinklin E. The interface and interphase in carbon fibre-reinforced composites. Composites,1994,25(7):729-738.
    [42]汤佩钊.复合材料及其应用技术.重庆:重庆大学出版社,1998.
    [43]曾汉民.树脂基复合材料界面工程.北京:清华大学出版社,1990.
    [44]Hughes J D H. The carbon fibre/epoxy interface. Composites Science and Technology,1991,41(1):13-45.
    [45]Li J Q, Ma H Y, Huang Y D. A method for characterizes the interface between carbon fiber and epoxy resin:three-parameters exponential pattern. Materials Chemistry and Physics,2005,89(2-3):367-372.
    [46]张志谦,黄玉东,李寅,刘立洵,魏月贞.树脂基复合材料界面及界面表征.材料科学与工艺,1995,3(1):1-5.
    [47]李铁骑,章明秋,曾汉民.纤维复合材料界面层结构、性质及作用.高分子材料科学与工程,1997,13(6):15-20.
    [48]朱雅红,马晓燕,陈娜.聚合物基复合材料的界面及改性研究.玻璃钢/复合材料,2005,(3):44-48.
    [49]王荣国,武卫莉,谷万里.复合材料概论.哈尔滨:哈尔滨工业大学出版社,2004.
    [50]冼杏娟.纤维增强复合材料界面的力学行为.力学进展,1992,22(4):464-478.
    [51]Bismarck A, Kumru M E, Springer J, Simitzis J. Surface properties of PAN-based carbon fibers tuned by anodic oxidation in different alkaline electrolyte systems. Applied Surface Science,1999,143(1-4):45-55.
    [52]Lindsay B, Abel M L, Watts J F. A study of electrochemically treated PAN based carbon fibers by IGC and XPS. Carbon,2007,45(12):2433-2444.
    [53]Gulyas J, Foldes E, Lazar A, Pukanszky B. Electrochemical oxidation of carbon fibers:surface chemistry and adhesion. Composites Part A,2001,32(3-4): 353-360.
    [54]Xu B, Wang X S, Lu Y. Surface modification of polyarcylonitrile-based carbon fiber and its interaction with imide. Applied Surface Science,2006,253(5): 2695-2701.
    [55]吴庆,陈惠芳,潘鼎.碳纤维的表面处理.化工新型材料,2000,28(3):11-14.
    [56]李东风,王浩静,王心葵.PAN基碳纤维在石墨化过程中的拉曼光谱.光谱学与光谱分析,2007,27(11):2249-2253.
    [57]曹伟伟,朱波,井敏,王成国.PAN基碳纤维在表面处理中的拉曼光谱研究.光谱学与光谱分析,2008,28(12):2885-2889.
    [58]蔡维真,梁恩芳,石香玉.碳纤维的表面性质-气固色谱法研究.复合材料学报,1990,7(1):7-14.
    [59]Pittman C U, Jr, Jiang W, Yue Z R, Gardner S, Wang L, Toghiani H, C.A.Leon y Leon. Surface properties of electrochemically oxidized carbon fibers. Carbon, 1999,37(11):1797-1807.
    [60]杨景锋,王齐华,杨丽君,赵普.纤维增强聚合物基复合材料的界面性能.高分子材料科学与工程,2005,21(3):5-10.
    [61]黄玉东,魏月贞.复合材料界面研究现状(中).纤维复合材料,1994,1(1):1-11.
    [62]Goan J C, Prosen S P. Interfacial bonding in graphite fiber-resin composites. Interfacec in Compoistes,1969.
    [63]ASTM D 4475-4485. Standard test method for apparent horizontal shear strength of pultruded reinforced plastic rods by the short-beam method. Annu. Book ASTM Stand,1985.
    [64]Marloff R H, Daniel I M. Three-dimensional photoelastic analysis of a fiber-reinforced composite model. Experimental Mechanics,1969,9(4):156-162.
    [65]Whitney J M. Free-edge effects in the characterization of composite materials. Analysis of the test methods for high modulus fibers and composites. American Society for Testing and Materials,1973.
    [66]Miwa M, Ohsawa T, Tahara K. Efect of fiber length on the tensile strength of epoxy/glass fiber and polyester/glass fiber composites. Journal of Applied Polymer Science,2003,25(5):795-807.
    [67]Merle G, Xie M. Measurement of the adhesion of poly (ether block amide) to E-glass by single filament fragmentation. Composites Science and Technology, 1991,40(1):19-30.
    [68]Broutman L J. Measurement of the fiber-polymer matrix interfacial strength. Interfaces in Composites. American Society for Testing and Materials,1969.
    [69]Mandell J F, Grande D H, Tsiang T H, McGarry F J. Modified mircodebonding test for direct in situ fiber/matrix bond strength determination in fiber composites. Composite Materials:Testing and Design. American Society for Testing and Materials,1986.
    [70]曹海琳,黄玉东,张志谦.NH4HCO3溶液中PAN基碳纤维电化学改性机理.复合材料学报,2004,2](3):22-27.
    [71]Li B, Zhang C R, Cao F, Wang S Q, Chen B, Li J S. Effects of fibers surface treatments on mechanical properties of T700 carbon fiber reinforced BN-Si3N4 composites. Materials Science and Engineering:A,2007,471(1-2):169-173.
    [72]侯永平,王浩静,李东风.PAN基高模碳纤维阳极氧化的表面处理.化工进展,2007,26(4):558-562.
    [73]Harry I D, Saha B, Cumming I W. Surface properties of electrochemical oxidised viscose rayon based carbon fibers. Carbon,2007,45(4):766-774.
    [74]Ryu S K, Park B J, Park S J. XPS analysis of carbon fiber surfaces-anodized and interfacial effects in fiber-epoxy composites. Journal of Colloid and Interface Science,1999,215(1):167-169.
    [75]Yumitori S, Nakanishi Y. Effect of anodic oxidation of coal tar pitch-based carbon fiber on adhesion in epoxy matrix:part 1. Comparison between H2SO4 and NaOH solutions. Composites Part A,1996,27(11):1051-1058.
    [76]Yumitori S, Nakanishi Y. Effect of anodic oxidation of coal tar pitch-based carbon fiber on adhesion in epoxy matrix:part 2. Comparative study of three alkaline solutions. Composites Part A,1996,27(11):1059-1066.
    [77]曹海琳,黄玉东,张志谦,刘立洵.碳纤维阳极氧化法处理对复合材料界面性能的影响.材料工程,2000,(4):16-18.
    [78]王赫,刘亚青,张斌.碳纤维表面处理技术的研究进展.合成纤维,2007,(1):29-32.
    [79]殷永霞,沃西源.碳纤维表面改性研究进展.航天返回与遥感,2004,25(1):51-54.
    [80]Fu X L, Lu W M, Chung D D L. Ozone treatment of carbon fiber for reinforcing cement. Carbon,1998,36(9):1337-1345.
    [81]Lee W H, Lee J G, Reucroft P J. XPS study of carbon fiber surface treated by thermal oxidation in a gas mixture of O_2/(O_2+N_2). Applied Surface Science,2001, 171(1-2):136-142.
    [82]杨永岗,贺福,王茂章,张碧江.XPS对瞬时高温空气氧化法和气液双效法表面处理炭纤维的分析.炭素,1999,(1):15-20.
    [83]Gardner S D, Singamsetty C S K, Booth G L, He G R, Pittman C U, Jr. Surface characterization of carbon fibers using angle-resolved XPS and ISS. Carbon,1995, 33(5):587-595.
    [84]Wu Z H, Pittman C U, Jr, Gardner S D. Nitric acid oxidation of carbon fibers and the effects of subsequent treatment in refluxing aqueous NaOH. Carbon,1995, 33(5):597-605.
    [85]Zhang G X, Sun S H, Yang D Q, Dodelet J P, Sacher E. The surface analytical characterization of carbon fibers functionalized by H_2SO_4/HNO_3 treatment. Carbon, 2008,46(2):196-205.
    [86]Naganuma T, Natio K, Yang J M, Kyono J, Sasakura D, Kagawa Y. The effect of a compliant polyimide nanocoating on the tensile properties of a high strength PAN-based carbon fiber. Composites Science and Technology,2009,69(7-8): 1319-1322.
    [87]Li K Z, Wang C, Li H J, Li X T, Ouyang H B, Wei J. Effect of chemical vapor deposition treatment of carbon fibbers on the reflectivity of carbon fiber reinforced cement-based composites. Composites Science and Technology,2008,68(5): 1105-1114.
    [88]张复盛,胡卢广.碳纤维表面的电聚合改性研究.复合材料学报,1997,14(2):12-16.
    [89]Hung K B, Li J, Fan Q, Chen Z H. The enhancement of carbon fiber modified with electropolymer coating to the mechanical properties of epoxy resin composites. Composites Part A:Applied Science and Manufacturing,2008,39(7):1133-1140.
    [90]Jiang Z X, Liu L, Huang Y D, Ren H. Influence of coupling agent chain lengths on interfacial performances of carbon fiber and polyarylacetylene resin composites. Surface and Interface Analysis,2009,41(7):624-631.
    [91]Choi M H, Jeon B H, Chung I J. The effect of coupling agent on electrical and mechanical properties of carbon fiber/phenolic resin composites. Polymer,2000, 41(9):3243-3252.
    [92]乌云其其格.碳纤维表面处理.高科技纤维与应用,2001,26(5):25-28.
    [93]Li J Q, Huang Y D, Xu Z W, Wang Z. High-energy radiation technique treat on the surface of carbon fiber. Materials Chemistry and Physics,2005,94(2-3):315-321.
    [94]李峻青,徐用军,张怀志.γ-射线辐照对碳纤维及其复合材料力学性能的影响.合成纤维,2006,(11):20-23.
    [95]Xu Z W, Wu X Q, Sun Y, Jiao Y N, Li J L, Chen L, Lu L S. Surface modification of carbon fiber by redox-induced graft polymerization of acrylic acid. Journal of Applied Polymer Science,2008,108(3):1887-1892.
    [96]Sarac A S, Bismarck A, Springer J. Reflectance FTIR and SEM characterization of poly[N-vinylcarbazole-co-methylmethacrylate] electrografted carbon fiber surface: current density effect. Journal of Materials Science,2006,41(2):389-398.
    [97]郑安呐,胡福增,吴叙勤,李世瑨.碳纤维表面处理及其复合材料界面优化的研究Ⅰ低温等离子处理对碳纤维表面的作用.华东理工大学学报,1994,20(4):451-458.
    [98]郑安呐,胡福增,吴叙勤,李世瑨.碳纤维表面处理及其复合材料界面优化的研究Ⅱ低温等离子处理对碳纤维表面浸润特性的影响.华东理工大学学报, 1994,20(4):459-464.
    [99]黄发荣,焦杨声.酚醛树脂及其应用.北京:化学工业出版社,2004.
    [100]徐丽,司徒粤,胡剑峰,陈焕钦,曾汉维.双重改性酚醛树脂的合成及性能研究.粘接,2008,29(10):5-8.
    [101]黄仁和.CO2固化碱性酚醛树脂粘结剂的组成及固化机理研究.铸造,2006,55(6):642-645.
    [102]Kimura H, Matsumoto A, Ohtsuka K. Studies on new type of phenolic resin-curing reaction of bisphenol-A-based benzoxazine with epoxy resin using latent curing agent and the properties of the cured resin. Journal of Applied Polymer Science, 2008,109(2):1248-1256.
    [103]Kimura H, Matsumoto A, Ohtsuka K. New type of phenolic resin:curing reaction of phenol-novolac based benzoxazine with bisoxazoline or exoxy resin using latent curing agent and the properties of the cured resin. Journal of Applied Polymer Science,2009,112(3):1762-1770.
    [104]Takeichi T, Kawauchi T, Agag T. High performance polybenzoxazines as a novel type of phenolic resin. Polymer Journal,2008,40(12):1121-1131.
    [105]秦伟,吴晓宏,草茂盛.RTM工艺成型复合材料树脂固化过程残余应变监测研究.2005,25(4):50-52.
    [106]黄远,何芳,万怡灶,王玉林,李刚,高智芳.碳纤维增强环氧树脂基复合材料湿热残余应力的微Raman光谱测试表征.复合材料学报,2009,26(4):22-28.
    [107]赵燕茹,雷振坤,邢永明,郎风超.单纤维树脂基复合材料界面热残余应力研究.工程力学,2009,26(5):251-256.
    [1]曹伟伟.碳素电热元件的电热辐射性能研究.博士学位论文,山东大学,2009.
    [2]贺福.碳纤维及其应用技术.北京:化学工业出版社,2004.
    [1]柯泽豪,林菁菁.碳纤维研究发展之现状与未来.高科技纤维与应用,2000,25(6):1-9.
    [2]王云英,孟江燕,陈学斌,白杨.复合材料用碳纤维的表面处理.表面技术,2007,36(3):53-57.
    [3]季敏霞.PAN原丝在预氧化和碳化过程中微观结构的演变.博士学位论文,山东大学,2008.
    [4]董兴广.聚丙烯腈纤维纺丝成形机理及工艺相关性研究.博十学位论文,山东大学,2009.
    [5]贺福.碳纤维及其应用技术.北京:化学工业出版社,2004.
    [6]殷永霞,沃西源.碳纤维表面改性研究进展.航天返回与遥感,2004,25(3):51-54.
    [7]王赫,刘亚青,张斌.碳纤维表面处理技术的研究进展.合成纤维,2007,(1):29-39.
    [8]贺福,杨永岗,王润娥.用SEM研究PAN基碳纤维的表面缺陷.高科技纤维与应用,2002,27(6):25-29.
    [9]Johnson D J. Structure-property relationships in carbon fibres. Journal of Physics D,1987,20(3):286-291.
    [10]Bennett S C, Johnson D J, Johnson W. Strength-structure relationships in PAN-based carbon fibres. Journal of Materials Science,1983,18(11):3337-3347.
    [11]李东风,王浩静,贺福,王心葵.T300和T700碳纤维的结构与性能.新型炭材料,2007,22(1):59-64.
    [12]Tuinstra F, Koenig J L. Raman spectrum of graphite. Journal of Chemical Physics, 1970,53(3):1126-1130.
    [13]王平华.炭纤维表面分析的几个表征方法.炭素,1995,(2):32-39.
    [14]Darmstadt H, Summchen L, Ting J M, Roland U, Kaliaguine S, Roy C. Effects of surface treatment on the bulk chemistry and structure of vapor grown carbon fibers. Carbon,1997,35(10-11):1581-1585.
    [15]曹伟伟,朱波,井敏,王成国.PAN基碳纤维在表面处理中的拉曼光谱研究.光谱学与光谱分析,2008,28(12):2885-2889.
    [16]Sadezky A, Muckenhuber H, Grothe H, Niessner R, Poschl U. Raman microspectroscopy of soot and related carbonaceous materials:Spectral analysis and structural information. Carbon,2005,43(8):1731-1742.
    [17]Jawhari T, Roid A, Gasado J. Raman spectroscopic characterization of some commercially available carbon black materials. Carbon,1995,33(11):1561-1565.
    [18]Zhang G X, Sun S H, Yang D Q, Dodelet J P, Sacher E. The surface analytical characterization of carbon fibers functionalized by H_2SO_4/HNO_3 treatment. Carbon, 2008,46(2):196-205.
    [19]Jishi R A, Dresselhaus G. Lattice-dynamical model for graphite. Physical Review B,1982,26:4514-4522.
    [20]Zickler G A, Smarsly B, Gierlinger N, Peterlik H, Paris O. A reconsideration of the relationship between the crystallite size L_α of carbons determined by X-ray diffraction and Raman spectroscopy. Carbon,2006,44(15):3239-3246.
    [1]赵稼祥.2002年世界碳纤维前景.高科技纤维与应用,2002,27(6):6-9.
    [2]黎小平,张小平,王红伟.碳纤维的发展及其应用现状.高科技纤维与应用,2005,30(5):24-30.
    [3]王海英.碳纤维的发展前景与市场分析.高科技纤维与应用,2007,32(4):23-26.
    [4]贺福,王润娥,赵建国.聚丙烯腈基碳纤维.化工新型材料,1999,27(4):6-11.
    [5]曹海琳,黄玉东,张志谦,姚旺.电解液对PAN-基碳纤维电化学改姓效果的影响.材料科学与工艺,2004,12(1):24-28.
    [6]郭云霞,刘杰,梁杰英.电化学改性对PAN基碳纤维表面状态的影响.复合材料学报,2005,22(3):49-54.
    [7]曹海琳,黄玉东,张志谦.NH4HCO3溶液中PAN基碳纤维电化学改性机理.复合材料学报,2004,21(3):22-27.
    [8]Bismarck A, Kumru M E, Springer J, Simitzis J. Surface properties of PAN-based carbon fibers tuned by anodic oxidation in different alkaline electrolyte systems. Applied Surface Science,1999,143(1-4):45-55.
    [9]Gulyas J, Foldes E, Lazar A, Pukanszky B. Electrochemical oxidation of carbon fibers:surface chemistry and adhesion. Composites Part A,2001,32(3-4):353-360.
    [10]Yumitori S, Nakanishi Y. Effect of anodic oxidation of coal tar pitch-based carbon fiber on adhesion in epoxy matrix:part 1. comparison between H2SO4 and NaOH solutions. Composites Part A,1996,27(11):1051-1058.
    [11]Lindsay B, Abel M L, Watts J F. A study of electrochemically treated PAN based carbon fibers by IGC and XPS. Carbon,2007,45(12):2433-2444.
    [12]刘杰,郭云霞,梁节英.碳纤维表面电化学氧化的研究.化工进展,2004,23(3):282-285.
    [13]Xie Y M, Sherwood P M A. X-ray photoelectron spectroscopic studies of carbon fiber surface.11.differents in the surface chemistry and bulk structure of different carbon fibers based on poly (acrylonitrile) and pitch and comparison with various graphite samples. Chemistry of Materials,1990,2(3):293-299.
    [14]Zhang G X, Sun S H, Yang D Q, Dodelet J P, Sacher E. The surface analytical characterization of carbon fibers functionalized by H_2SO_4/HNO_3 treatment. Carbon, 2008,46(2):196-205.
    [15]Fukunaga A, Ueda S. Anodic surface oxidation for pitch-based carbon fiber and the interfacial bond strengths in epoxy matrices. Composites Science and Technology,2000,60(2):249-254.
    [16]Waseem S F, Gardner S D, He G, Jiang W, Jr U P. Adhesion and surface analysis of carbon fibers electrochemically oxidation in aqueous potassium nitrate. Journal of Materials Science,1998,33 (12):3151-3162.
    [17]Lee J R, Kim M H, Park S J. Surface modification of carbon fibers by anodic oxidation and its effect on adhesion, Key Engineering Materials,2000,183(2): 1105-1109.
    [18]Park S J, Park B J. Electrochemically modified PAN carbon fibers and interfacial adhesion in epoxy-resin composite. Journal of Materials Science Letters,1999, 18(1):47-49.
    [19]曹海琳,黄玉东,张志谦,孙举涛.磷酸盐溶液中碳纤维表面电化学改性.复合材料学报,2004,21(3):28-32.
    [1]邱求元,邢素丽,肖加余,曾竞成,王遵.碳纤维增强树脂基复合材料界面优化研究进展.材料导报,2006,20(z2):436-439.
    [2]Lindsay B, Abel M L, Watts J F. A study of electrochemically treated PAN based carbon fibers by IGC and XPS. Carbon,2007,45(12):2433-2444.
    [3]Jiang Z Y, Zhang H, Zhang Z, Murayama H, Okamoto K. Improved bonding between PAN-based carbon fibers and fullerene-modified epoxy matrix. Composites Part A,2008,39(11):1762-1767.
    [4]Herrera-Franco P J, Drzal L T. Comparison of methods for the measurement of fibre/matrix adhesion in composites. Composites,1992,23(1):2-27.
    [5]卢怀宝,徐用军,李峻青,姜琳琳.γ-射线辐照接枝对碳纤维表面性能的影响.大庆石油学院学报,2006,30(2):61-69.
    [6]贺福,杨永岗,王润娥.用SEM研究PAN基碳纤维的表面缺陷.高科技纤维与应用,2002,27(6):25-29.
    [7]贺福.碳纤维及其应用技术.北京:化学工业出版社,2004.
    [8]刘杰,郭云霞,梁节英.碳纤维表面电化学氧化的研究.化工进展,2004,23(3): 282-285.
    [9]Zhu D, Xu C Y, Nakura N, Matsuo M. Study of carbon films from PAN/VGCF composites by gelation/crystallization from solution. Carbon,2002,40(3): 363-373.
    [10]冀克俭,张银生,张以河,汪信,张复涛,刘元俊,邵鸿飞,毛如增,蔡华甦.聚丙烯腈纤维炭化过程中纤维表面的XPS研究.高分子材料科学与工程,2003,19(1):205-211.
    [11]Laffant L, Monthioux M, Serin V, Mathur R B, Guimon C, Guimon M F. An EELS study of the structural and chemical transformation of PAN polymer to solid carbon. Carbon,2004,42(12-13):2485-2494.
    [12]Watt W, Johnson D J, Parker E. Pyrolysis and structure development in the conversion of PAN fibres to carbon fibres. Proceedings of International Conference on Carbon Fiber,1974.
    [13]侯永平,王浩静,王红飞.阳极氧化对PAN基高模碳纤维表面的影响.化工新型材料,2007,35(4):34-36.
    [1]杨禹,吕春祥,王心葵,苏小雷,贺福,李永红,宋燕.纳米SiO2改性乳液上浆剂对炭纤维抗拉强度的影响.新型炭材料,2006,21(3):263-268.
    [2]罗益锋.国外PAN原丝及碳纤维专利分析报告(2).高科技纤维与应用,2007,32(1):4-7.
    [3]邵友林,王伯羲.碳纤维的表面除胶及表征.复合材料学报,2002,19(4):29-32.
    [4]贺福.碳纤维及其应用技术.北京:化学工业出版社,2004.
    [5]肇研,段跃新,肖何.上浆剂对碳纤维表面性能的影响.材料工程,2007,(z1):121-126.
    [6]曹霞,温月芳,张寿春,杨永岗.耐温型炭纤维乳液上浆剂.新型炭材料,2006,21(4):337-341.
    [7]Dilsiz N, Wightman J P. Surface analysis of unsized and sized carbon fibers. Carbon,1999,37(7):1105-1114.
    [8]Hughes J D H. The carbon fiber/epoxy interface. Composites Science and Technology,1991,41(1):13-45.
    [9]关蓉波,杨永岗,郑经堂,贺福.用Weibull统计方法来评价上浆对炭纤维强度的影响.炭素,2001(3):26-29.
    [10]贺福,梁涛,王润娥.用Weibull模拟表征炭纤维的力学性能.航空材料学报,1993,13(1):40-46.
    [11]蒋先明,何伟平.简明红外光谱识谱法.广西:广西师范大学出版社,1992.
    [1]王云英,孟江燕,陈学斌,白杨.复合材料用碳纤维的表面处理.表面技术,2007,36(3):53-57.
    [2]吴则中,田丰,张海晏,郑永生,郑银强.碳纤维复合材料连续抽油杆的特点及应用前景.石油机械,2002,30(2):53-56.
    [3]朱波,蔡华甦,孙乃武.碳纤维复合材料柔性连续抽油杆开发及应用.石油机械,2003,31(1):29-31.
    [4]张强,朱波,蔡华甦.酚醛树脂基碳纤维连续抽油杆特性研究.石油机械,2004, 32(11):22-24.
    [5]黄克均,张建伟.拉挤成型工艺及应用.工程塑料应用,1997,25(3):55-57.
    [6]王荣国,武卫莉,谷万里.复合材料概论.哈尔滨:哈尔滨工业大学出版社,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700