用户名: 密码: 验证码:
宽温域固体润滑材料及涂层的高温摩擦学特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
室温到高温具有良好摩擦学性能的润滑材料是尖端工业领域迫切需要解决的难题。固体润滑剂与传统液体润滑剂相比在高温摩擦领域具有优势,但常用的固体润滑剂石墨、MoS2和低熔点金属在高温易氧化而失去润滑性能;一些稀土化合物和氧化物高温润滑性能好,但室温易导致磨粒磨损。合理运用多种润滑剂的协同润滑效应是实现室温到高温宽温度范围润滑的有效方法之一。以往研究通常是在金属基体中添加固体润滑剂制备复合材料或在金属基体表面沉积润滑涂层,复合材料中润滑剂添加量少对润滑性能改善效果不明显,而润滑剂添加量过多则会导致力学性能的显著下降;而润滑涂层寿命有限,一旦失效将造成灾难性后果。
     本论文从润滑剂组元、表面形貌及润滑渗层等方面设计宽温度范围自润滑材料,用粉末冶金法制备含石墨、Ag、MoS2及Ce02的镍基自润滑复合材料,利用石墨或金属银在低温段润滑,利用硫化物或氧化物在高温段润滑;采用脉冲激光在镍基材料表面刻蚀微孔来存储润滑氧化物;采用双层辉光等离子渗金属技术对微孔化表面渗Mo或Mo/N复合渗处理以改善表面耐磨性能。研究多种润滑剂的协同润滑作用以及表面形貌与润滑渗层的复合运用。固体润滑复合材料表面制备润滑渗层,改善复合材料的表面力学性能和摩擦学性能,该研究对于解决极端工况下工作的转动密封、高温轴承的摩擦润滑问题具有重要的指导意义。
     研究了镍基自润滑复合材料、渗Mo层以及Mo/N复合渗层的力学性能、抗氧化性能以及室温~600℃的摩擦学性能,并探讨了润滑剂添加量、温度、载荷、配副材料及微孔化、渗Mo处理对摩擦学行为的影响。采用光学显微镜、扫描电镜及X射线衍射仪观察分析镍基复合材料及渗层的微观组织形貌,采用白光干涉三维表面轮廓仪观察微孔形貌,利用扫描电子显微镜(SEM)、电子能谱(EDS)、X射线光电子能谱(XPS)分析高温磨损表面形貌及其成分。
     镍基自润滑复合材料中,石墨与钨热压反应生成碳化钨,MoS2与铬反应生成CrxSx+1共晶化合物。添加一定量的MoS2,由于Mo的固溶强化,提高了复合材料的硬度和抗弯强度。添加石墨和MoS2分别有利于降低镍基合金室温段和高温段的摩擦系数,同时添加石墨和MoS2的镍基材料含有硬质相(Mo2C、WC)及润滑相(CrxSx+1、石墨)其室温到700℃的摩擦系数(0.14-0.27)低于添加单一润滑剂的复合材料,且磨损率比添加单一润滑剂的材料低一个数量级。添加MoS2的镍基复合材料,由于低熔点硫化物的摩擦熔融,获得了较低的摩擦系数。润滑剂的添加,降低了材料的抗氧化性能。随润滑剂添加量的增加,复合材料的氧化激活能线性变化。
     添加金属银有利于改善镍基材料中低温段的摩擦学性能,银添加量为10%时,Ni-Ag合金室温摩擦系数降低为0.2。添加Ce02有利于高温摩擦表面致密氧化膜的形成,降低了Ni-Ag合金的高温摩擦系数和磨损率。同时添加Ag、MoS2和Ce02的镍基复合材料含有Ag、CrxSx+1、CeS等润滑相,室温~700℃的摩擦系数降低到0.16-0.26,磨损率下降了一个数量级。
     双层辉光等离子渗金属技术在镍基合金表面获得了厚度为20-30μm的渗Mo层,其表面Mo浓度为34wt%,渗Mo处理提高了镍基合金表面的硬度和弹性模量,降低了合金高温段的摩擦系数和磨损率。渗Mo基础上渗氮处理,在Ni-Ag合金表面形成的MoN化合物层,提高了表面力学性能,但连续的化合物层阻碍了内部润滑剂银的释放,对摩擦学性能产生不利影响。
     激光微孔化处理在镍基合金表面形成直径为150μm,深度为40~50μm,规则排列的微孔。微孔化表面渗Mo处理,Mo的高温润滑性氧化物降低了高温摩擦系数,微孔存储润滑性氧化物,并且存积硬质磨粒,降低了高温磨损率。激光微孔化表面进行Mo/N复合渗处理,Ni-Ag合金中内含的银可以通过微孔向外释放,并且硬质渗层提高了软质润滑膜的承载能力,降低了银的摩擦损耗,提高了高温摩擦学性能。
     镍基复合材料和渗层的动态氧化增重抛物线常数比静态氧化增重高2个数量级。在传统的氧化磨损模型及熔融磨损模型的基础上,建立了更接近于实验值的镍基复合材料及渗层的高温氧化物熔融磨损模型,计算了复合材料的静态和动态氧化激活能,阐述了高温摩擦表面氧化物的生成、剥落/部分熔融以及致密承载层的形成等演化过程。
Solid lubrication over a wide range of temperature is a challenge for decades and has yet to overcome. Most common lubricant performs only within a narrow temperature range, such as graphite, molybdenum disulfide are effective below 400℃in air, above which they will oxidize or decompose and lose their lubricious nature. Some oxides lubricate well above 600-800℃, but are abrasive at lower temperature. The combination of two or more than two lubricants is one of the good methods to realize lubrication over a wide temperature.
     In provious study, the self lubricating composite was usually prepared by adding solid lubricant in the metal matrix and lubricating coating was prepared by deposition technology. The frictional property was less affected if the adding amount of lubricant was too low. However, if the adding amount of lubricant was too high, the mechanical properties would decrease significantly. The wear life of lubricating coating was limited and its failure leaded to catastrophic incident.
     Nickel-based composites containing graphite, sliver, MoS2 and CeO2 were prepared by powder metallurgy (P/M) method. Ni-20Cr powders mixed with tungsten, aluminum, titanium, and different contents of graphite, molybdenum disulfides or silver were hot-pressed in a vuccum furnace. Laser surface texturing (LST) was performed on the Ni-base composite in order to modify its contact state and surface molybdenizing was carried out on the textured composite in order to improve its wear resistance. The molybdenizing and nitriding duplex-treatment was also performed on the textured nickel-base composite. The molybdenizd layer prepared on the solid lubricating composite can relize self lubrication over a wide temperature range and improve its surface mechanical properties. It is meaningful to solve the friction and lubricating problems of transport part and seal in the turbine engine and heavy vehicle, which work under an extreme environment.
     The mechanical properties and anti-oxidization properties of nickel-base composite, molybdenzing and duplex-treated layer were measured. Their tribological properties from room temperature to 700℃were tested on a pin-on-disk trimometer with Al2O3 as counterfaces. The effects of lubricant addition amount, temperature, load, sliding velocity and counter face materials, texturing and molybdenizing on the tribological properties were investigated. The microstructure and morphology were analyzed by X-Ray diffraction (XRD) and scanning electrical microscope (SEM) attached with EDS. The element distributions, micro-hardness of molybdenized layer were investigated. The worn surfaces were observed by optical microscope, SEM, EDS and X-ray photoelectron spectroscopy (XPS).
     Chromium sulfide and tungsten carbide were formed in the composite by adding molybdenum disulfide and graphite in the nickel-base alloy. The nickel-base composite with graphit and MoS2 consisted of hard phases (Mo2C, WC) and lubricant phases (CrxSx+1, graphite). The hardness and anti-bending strength of composites increase after adding MoS2. The high temperature oxidization resistance decreases with the increase of solid lubricant. The activity energy of oxidization increases with the increase of MoS2 adding amount.The addition of MoS2 is favored to the reduction of friction coefficient of composite at high temperature. The lowest friction coefficients (0.14~0.27) and wear rates (1.0~3.5×10-6mm3/(Nm)) from room temperature to 700℃are obtained due to synergetic lubricating action of graphite and molybdenum disulfide. The graphite plays the main role of lubrication at room temperature, while sulfides are responsible for low friction at high temperature.
     The friction coefficient at room temperature decreases after adding silver in the composite. Meanwhile, the wear rates at high temperature are reduced by adding cerium oxide. The wear rates are reduced by more than one order of magnitude after adding silver and CeO2. The SEM analysis of worn surface at high temperature shows that the rare earth compound is helpful for the formation of compact oxide film, which improves the wear resistance at high temperature. The nickel-base silver-containing composite consisted of lubricant phase such as sliver, Cr3S4, and CeS. The friction coefficients of silver and CeO2 containing Ni-base composite from room temperature to 700℃are in the range of 0.16~0.26.
     The molybdenized layer on nickel-base alloy is approximately 20-30μm in thickness. The content of molybdenum on the surface of molybdenized layer reaches 34% and the hardness and elastic modulus is improved by molybdenizing. The friction coefficient and wear rate of alloy decrease after molybdenizing. The diffusion of sliver and the forming of trioxide of molybdenum affected by temperature are responsible for the friction reduction at elevated temperatures. The molybdenizing and nitriding duplex-treated layer shows the similar tribological character with that of molybdenized layer. The compound MoN layer hinders the diffusion of silver.
     The laser surface textured dimples on nickel-base alloy are 150μm in diameter and 45-50 u m in depth and the distances between dimples are 500μm. The friction coefficient of alloys decreases by texturing and molybdnizing duplex-treatment. The wear rate of duplex-treated alloy is one order of magnitude lower than that of pristine alloy at elevated temperature due to the lubrication of trioxides of molybdenum. Furthermore, the micro-dimples can relieve abrasive wear by storing hard wear particles, which is also responsible for the reduction of wear rates. After texturing, the dimples on the MoN layer act as diffusion channels. The MoN layer on textured surface is hard enough to carry the load and protects the silver film.
     The parabolic parameter of dynamic oxidization is two orders of magnitude higher than that of static oxidization. the calculated wear rate of composite based on oxidizing wear model is lower than the experiment value while the calculated wear rate based on melt wear model is two orders of magnitude higher than experiment value. A high temperature melting wear model of oxide is developed for nickel-base composite and molybdenized layer. The oxide on high temperature frictional surface experienced formation, break or partly melt and compaction of compact layer.
引文
[1]薛群基,吕晋军.高温固体润滑研究的现状及发展趋势[J].摩擦学学报,1999,19(1):91-95.
    [2]党鸿辛,高金堂.空间技术用固体润滑的发展现状与展望[J].摩擦学学报,1992,12(1):1-7.
    [3]Voevodin A A, Zabinski J S. Nanocomposite and nanostructured tribologic materials for space applications[J]. Composites Science and Technology,2005,65:741-748.
    [4]戴振东,王珉,薛群基.摩擦体系热力学引论[M].北京:国防工业出版社,2002.
    [5]Bowden F P, Tabor D. The lubrication by thin metallic films and the action of bearing metals[J]. Journal of Apply Physical,1943,14:141-151.
    [6]Dellacorte C. The effect of counterface on the tribological performance of a high temperature solid lubricant composite from 25 to 650℃[J]. Surface & Coatings Technology,1996,86-87:486-492.
    [7]Basnyat P, Luster B, Muratore C, et.al. Surface texturing for adaptive solid lubrication[J]. Surface & Coatings Technology,2008,203(1-2):73-79.
    [8]Erdemir A. A crystal-chemical approach to lubrication by solid oxides [J]. Tribology Letters,2000,8:97-102.
    [9]卢铃,朱定一,汪才良.金属基/石墨固体自润滑材料的研究进展[J].材料导报,2007,21(2):38-42.
    [10]温诗铸,黄平.摩擦学原理(第三版)[M].北京:清华大学出版社,2008.
    [11]朱定一,关祥锋,陈丽娟等.新型Ni3A1/石墨高温固体自润滑材料的制备及其性能[J].中国有色金属学报,2004,14(4):528-533.
    [12]朱定一,陈丽娟.新型Ni-Cu-C合金中石墨的球化处理及其性能[J].中国有色金属学报,2004,14(11):1817-1821.
    [13]浩宏奇,丁华东,李雅文,等.石墨含量对铜基材料摩擦磨损性能的影响[J].中国有色金属学报,1997,7(3):120-123.
    [14]尹延国,郑治祥,马少波,等.温度对铜基自润滑材料减摩耐磨特性的影响[J].中国有色金属学报,2004,14(11):1856-1861.
    [15]宁莉萍,王静波,欧阳锦林,等.铜和石墨对铁基含油自润滑复合材料机械及摩擦学性能的影响[J].摩擦学学报,2001,21(5):335-339.
    [16]Lu J J, Yang S R, Wang J B, et.al. Mechanical and tribological properties of Ni-based alloy/CeFs/graphite high temperature self-lubricating composites[J].Wear,2001, 249(12):1070-1076.
    [17]Peterson M B, Calabrese S J, Stupp B. Lubrication with naturally occurring oxide films. Final report, ONR Contract No.N0014-82-C-0247,1982.
    [18]Peterson M B, Calabrese S J, Li S Z, et.al. Frictional properties of lubricating oxide coatings. Proceeding of the 16th leeds-lyon Symposium on Tribology, held at The intitut national des sciences appliquees, Lyon:Trobology,1989,15-25.
    [19]Peterson M B, Murray S F, Florek J J. Consideration of lubricants for temperature above 1000F[J]. ASLE Trans.,1960,2(2):225-230.
    [20]熊党生,李溪滨.氧化磨损与氧化物润滑[J].粉末冶金材料科学与工程,1996,1(1):49-57.
    [21]Erdemir A. A crystal chemical approach to the formulation of self-lubricating nanocomposite coatings[J]. Surface & Coatings Technology, 2005,200:1792-1796.
    [22]Xiong D S. Lubrication behavior of Ni-Cr-based alloys containing MoS2 at high temperature [J]. Wear,2001,251(1-12):1094-1099.
    [23]Li J L, Xiong D S, Dai J F. Effect of graphite contents on friction and wear properties of Ni-Cr-W composites [J]. Trans.Nonferrous Met.Soc.China,2005,15(S3):171-175.
    [24]Li J L, Xiong D S. Tribological properties of nickel-based self-lubricating composite at elevated temperature and counterface material selection[J]. Wear,2008,265(3-4):533-539.
    [25]Xiong D S, Peng C Q, Huang Q Z. Development of MoS2-containing Ni-Cr based alloys and their high-temperature tribological properties [J]. Trans. Nonferrous. Met. Soc. China, 1998,8(2):226-229.
    [26]Xiong D S. Effects of MoS2 on mechanical and tribological properties of NiCr-based alloys[J]. Trans. Nonferrous. Met. Soc. China, 2000,10(3):328-331.
    [27]Xiong D S, Wan Y, Lin J M, et.al Tribological property and high temperature oxidation of Ni-based alloy[J]. Trans. Nonferrous. Met. Soc. China,2005,15(s3):162-166.
    [28]刘如铁,李溪滨,程时和.金属基固体自润滑材料的研究概况[J].粉末冶金工业,2001,11(3):51-55.
    [29]Wu Y X, Wang F X, Chen Y Q, et.al. A Study of the optimization mechanism of solid lubricant concentration in Ni/MoS2 self-lubricating composite[J]. Wear,1997,205:64-70.
    [30]吴运新.热压工艺对Ni-MoS2自润滑复合材料组织与性能的影响[J].材料科学与工艺,1997,5(1):107-110.
    [31]王莹.含硫镍合金的研制及其高温摩擦学特性[J].摩擦学学报,1996,16(4):289-297.
    [32]Moustafa S F, El-Badry S A, Sanad A M, et al. Friction and wear of copper-graphite composites made with Cu-coated and uncoated graphite powders[J]. Wear,2002,253: 699-710.
    [33]李溪滨,龚雪冰,刘如铁,等.添加CaF2的Ni-Cr-Cu基固体自润滑材料的研究[J].润滑与密封,2003,28(1):30-32.
    [34]李溪滨,刘如铁,杨慧敏.铝铅石墨固体自润滑复合材料的性能[J].中国有色金属学报,2003,13(2):465-468.
    [35]刘如铁,李溪滨,熊党生,等.一种镍基高温自润滑材料摩擦学特性的研究[J].中南工业大学学报,2000,6:260-263.
    [36]朱定一,关翔锋,兑卫真,等.镍-石墨高温自润滑材料的熔炼制备及其组织性能[J].中国有色金属学报,2004,14(5):707-712.
    [37]王砚军,刘佐民.微孔贯通型高温自润滑金属陶瓷的摩擦磨损性能研究[J].摩擦学学报,2006,26(4),348-352.
    [38]阚存一,刘进朱,张国威,等.一种镍-铬-硫合金的研制及其摩擦学特性[J].摩擦学学报,1994,14(3):193-204.
    [39]阚存一,刘近朱,张国威,等.稀土氧化物或合金化元素对Ni-Cr-5S合金物理机械性能和摩擦学性能的影响[J].摩擦学学报,1994,14(4):289-297.
    [40]Lu J J, Xue Q J, Wang J B, et.al. The effect of CeF3 on the mechanical and tribological properties of Ni-based alloy[J]. Tribology International,1997,30(9):659-662.
    [41]Lu J J, Yang S R, Wang J B, et.al. Mechanical and tribological properties of Ni-based alloy/CeF3/graphite high temperature self-lubricating composites [J]. Wear,2001,249(12): 1070-1076.
    [42]孟军虎,吕晋军,王静波,等.两种镍基合金的高温摩擦学性能研究[J].摩擦学学报,2002,22(3):184-188.
    [43]欧阳锦林,牛淑琴,阮虎生,等.镍合金基自润滑复合材料的研究[J].摩擦学学报,1993,13(1):33-47.
    [44]熊党生.氟化镧对镍基自润滑合金力学性能及高温摩擦学特性的影响[J].中国有色金属学报,2002,12(1):106-109.
    [45]熊党生.稀土化合物对镍基自润滑合金机械及高温摩擦特性的影响[J].稀有金属材料与工程,2002,31(2):144-147
    [46]董丽荣,李长生,丁巧党,等.LaF3与MoS2对镍铬基复合材料摩擦学特性的影响[J].润滑与密封,2007,32(10):55-58.
    [47]Peterson M B, Li S Z, Murray S F. Wear-resisting Oxide Films for 900℃[J]. Mater. Sci. Technol.,1997,13:99-106.
    [48]Xiong D S, Li S Z. Lubrication behavior of iron rhenate in relation to matching pairs at elevated temperatures[J]. Lubrication Science,1999,11 (2):197-206.
    [49]熊党生.Fe-Re合金自润滑行为的研究[D].沈阳:中国科学院金属研究所,1994.
    [50]Li J L, Xiong D S, Huo M F. Friction and wear properties of Ni-Cr-W-Al-Ti-MoS2 at elevated temperatures and self-consumption phenomena [J]. Wear,2008,265:533-539.
    [51]Liu Z M. Elevated temperature diffusion self-lubricating mechanisms of a novel cermet sinter with orderly micro-pores[J]. Wear,2007,262 (5-6):600-606.
    [52]魏建军,薛群基.陶瓷摩擦学研究的发展现状[J].摩擦学学报,1993,13(7):268-275.
    [53]桑可正,金志皓.高温自润滑陶瓷复合材料研究进展[J].硅酸盐通报,998,(5):27-32.
    [54]肖汉宁,千田哲也.氧化铝陶瓷在高温摩擦过程中的塑性与自结晶[J].摩擦学学报,1997,17(3):193-198.
    [55]肖汉宁,千田哲也.碳化硅陶瓷的高温摩擦磨损及机理分析[J].硅酸盐学报,1997,25(4):157-162.
    [56]Donnet C, Erdemir A. Solid lubricant coatings:recent developments and future trends[J]. Tribology letters, 2004,17 (3):389-397.
    [57]Donnet C, Erdemir A. Historical developments and new trends in tribological and solid lubricant coatings[J]. Surface and Coatings Technology,2004,180-181:76-84.
    [58]Donnet C. Advanced solid lubricant coatings for high vacuum environments [J]. Surface and Coatings Technology,1996,80:151-156.
    [59]Erdemir A. Review of engineered tribological interfaces for improved boundary lubrication[J]. Tribology international,2005,38:249-256.
    [60]Erdemir A, Erck R A, Fenske G R, Hong H. Solid/liquid lubrication of ceramics at elevated temperatures [J]. Wear,1997,203-204:588-595.
    [61]Bae Y W, Lee W Y, Besmann T M, et.al. Preparation and friction characteristics of self-lubricating TiN-MoS2 composite coatings[J]. Materials science and Engineering A, 1996,209:372-376.
    [62]Gassner G, Mayrhofer P H, Kutschej K,et.al. A new low friction concept for high temperatures:lubricious oxide formation on sputtered VN coatings [J]. Tribology Letters, 2004,17(4):751-756.
    [63]Fateh N, Fontalvo G A, Gassner G, et.al. Influence of high-temperature oxide formation on the tribological behaviour of TiN and VN coatings[J]. Wear,2007, 262(9-10):1152-1158.
    [64]Dellacorte C. The effectes of substrate material and thermal processing atmosphere on the strength of PS304:a high temperature solid lubricating coating[J]. Tribol.Trans.,2003, 46:361-368.
    [65]Ding C H, Li P L, Ran G, Tian Y W, Zhou J N. Tribological property of self-lubricating PM304 composite[J]. Wear,2007,262 (5-6):575-581.
    [66]Voevodin A A, Hu J J, Fitz T A, Zabinski J S. Tribological properties of adaptive nanocomposite coatings made of yttria-stabilized zirconia and gold [J]. Surface and Coating Technology,2001,146-147:351-356.
    [67]Voevodin A A, O'Neill J P, Zabinski J S. Nanocomposite tribological coatings for aerospace applications [J]. Surface and Coatings Technology,1999,116-119:36-45.
    [68]Wu J H, Rigney D A, Falk M L, et.al. Tribological behavior of WC/DLC/WS2 nanocomposite coatings[J]. Surface and coatings technology,2004,188-189:605-611.
    [69]Prasad S V, McDevitt N T, Zabinski J S. Tribology of tungsten disulfide-nanocrystalline zinc oxide adaptive lubricant films from ambient to 500℃[J]. Wear,2000,237:186-196.
    [70]Walck S D, Zabinski J S, McDevitt N T, et.al. Characterization of air-annealed, pulsed deposited ZnO-WS2 solid film luricants by transmission electron microscopy[J]. Thin solid films,1997,305:130-143.
    [71]Zabinski J S, Corneille J, Prasad S V. Lubricious zinc oxide films:synthesis, characterization and tribological behaviour [J]. J. Mater. Sci.,1997,32:5313-5319.
    [72]Polcar T, Evaristo M, Cavaleiro A. The Tribological behavior of W-S-C films in pin-on-disk testing at elevated temperature [J]. Vacuum,2007,81(11-12):1426-1429.
    [73]Hiraoka N, Sasaki A. Effect of discontinuous hard under-coating on the life of solid film lubricant under extreme contact pressure[J]. Tribol. Int.,1997,30:429-434.
    [74]Muratore C, Voevodin A A, Hu J J, et.al. Growth and characterization of nanocomposite yttria-stabilized zirconia with Ag and Mo[J]. Surf. Coat. Technol.,2005,200:1549-1554.
    [75]Muratore C, Voevodin A A, Hu J J, Zabinski J S. Tribology of adaptive nanocomposite yttria-stabilized zirconia coatings containing silver and molybdenum from 25 to 700℃[J]. Wear,2006,261 (7-8):797-805.
    [76]Muratore C, Hu J J, Voevodin A A. Adaptive nanocomposite coatings with a titanium nitride diffusion barrier mask for high-temperature tribological applications [J]. Thin solid films,2007,515(5-6):3638-3643.
    [77]Hu J J, Muratore C, Voevodin A A. Silver diffusion and high-temperature lubrication mechanisms of YSZ-Ag-Mo based nanocomposite coatings [J]. Composites science and technology,2007,67:336-347.
    [78]Murakami T, Ouyang J H, Sasaki S, Umeda K, Yoneyama Y. High-temperature tribological properties of Al2O3, Ni-20 mass% Cr and NiAl spark-plasma-sintered composites containing BaF2-CaF2 phase[J]. Wear,2005,259 (1-6):626-633.
    [79]冯大鹏,刘近朱,毛绍兰,等.热喷涂镍基高温润滑涂层的研究[J].机械工程材料,1999,23(6):15-17.
    [80]王华明,于荣莉,李锁岐.激光熔覆A1203/CaF2陶瓷基高温自润滑耐磨复合材料涂层组织与耐磨性研究[J].应用激光,2002,22(2):86-88.
    [81]涂江平,邹同征,王浪云,等.镍基纳米碳管复合镀层的摩擦磨损性能[J].浙江大学学报(工学版),2004,38,7:931-934.
    [82]Amaro R I, Martins R C, Seabra J O, et.al. Molybdenum disulphide/titanium low friction coating for gears application [J]. Tribology International,2005,38:423-434.
    [83]王海斗,徐滨士,刘家浚,等.金属钼层表面渗硫层的表征与减摩耐磨性能研究[J].稀有金属材料与工程,2005,34(10):1513-1516
    [84]徐重,张高会,张平则,等.双辉等离子表面冶金技术的新进展[J].中国工程科学,2005,7(6):73-78.
    [85]Etsion I. State of the art in laser surface texturing[J]. Trans.ASME J.Tribol.,2005, 127:248-253.
    [86]Etsion I. Improving tribological performance of mechanical components by laser surface texturing[J]. Tribology Letters, 2004,17(4):733-737.
    [87]Etsion I, Kligerman Y, Halperin G. Analytical and experimental investigation of laser-textured mechanical seal faces [J]. Tribology Transactions,1999,42 (3):511-516.
    [88]Schreck S, Zum Gahr K H. Laser-assisted structuring of ceramic and steel surfaces for improving tribological properties [J]. Applied Surface Science, 2005,247:616-622.
    [89]Uehara Y, Wakuda M, Yamauchi Y, et al. Tribological properties of dimpled silicon nitride under oil lubrication [J]. Journal of the European Ceramic society,2004,24:369-373.
    [90]Wang X L, Kato K, Adachi K. The effect of laser texturing of SiC surface on the critical load for the transition of water lubrication mode from hydrodynamic to mixed [J]. Tribology International,2001,34:703-711.
    [91]Wang X L, Kato K, Adachi K, Aizawa K. Loads carrying capacity map for the surface texture design of SiC thrust bearing sliding in water[J]. Tribology International, 2003,36: 189-197.
    [92]Dumitru G, Romano V. Laser microstructuring of steel surfaces for tribological applications[J]. Appl.Phys.,2000, A70:485-487.
    [93]Hamilton D B, Walowit J A, Allen C M. A theory of lubrication by micro-irregularities[J]. Journal of Basic Engineering.,1966,88(1):177-185.
    [94]于新奇,蔡仁良.激光加工多孔端面机械密封[J].河北科技大学学报,2004,(1),26-28.
    [95]万轶,熊党生.激光表面织构化改善摩擦学性能的研究进展[J].摩擦学学报,2006,26(6):603-607.
    [96]万轶,熊党生.激光表面微孔化改善端面密封的摩擦学性能[J].润滑与密封,2007,32(2):29-31.
    [97]郭文渊,王茂才,张晓兵.镍基超合会激光打孔再铸层及其控制研究进展[J].激光杂志,2003,24(4):1-3.
    [98]Moshkovith A, Perfiliev V, Gindin D, et.al. Surface texturing using pulsed air arc treatment[J]. Wear,2007,263(7-12):1467-1469.
    [99]Rapoport L, Moshkovich A, Perfilyev V, et.al. Friction and wear of MoS2 films on laser textured steel surfaces[J]. Surface & Coatings Technology,2008,202(14):3332-3340.
    [100]Voevodin A A, Bultman J, Zabinski J S. Investigation into three-dimensional laser processing of tribological coatings[J]. Surface and coating technology,1998,107:12-19.
    [101]Voevodin A A, Zabinski J S. Laser surface texturing for adaptive solid lubrication[J]. Wear,2006,261:1285-1292.
    [102]Basnyat P, Luster B, Muratore C, et.al. Surface texturing for adaptive solid lubrication [J]. Surface & Coatings Technology,2008,203:73-79.
    [103]Aouadi S M, Paudel Y, Luster B, et.al. Adaptive Mo2N/MoS2/Ag tribological nanocomposite coatings for aerospace applications [J]. Tribology letters, 2008, 29:95-103.
    [104]戴振东,黄政新,薛群基,等.谈谈摩擦学研究中若于哲学问题[J].自然杂志,1997,203:324-329.
    [105]Stachowiak G W, Batchelor A W. Engneering tribology, third edication[M].Amsterdam: Elesver Ltd.,2005.
    [106]Welsh N C. The Dry Wear of Steels, Part Ⅰ-General Pattern of Behaviour [J]. Phil. Trans. Roy. Soc.,1964,257A:31-50.
    [107]Bowden F P, Tabor D. The friction and lubrication of solids[M]. Part Ⅰ.Oxford: Clarendon Press,1954.
    [108]Bowden F P, Tabor D. The friction and lubrication of solids[M]. Part Ⅱ.Oxford: Clarendon Press,1964.
    [109]Baker C C, Hu J J, Voevodin A A. Preparation of Al2O3/DLC/Au/MoS2 chameleon coatings for space and ambient environments [J]. Surface & Coatings Technology,2006, 201:4224-4229.
    [110]Muratore C, Voevodin A A. Molybdenum disulfide as a lubricant and catalyst in adaptive nanocomposite coatings [J]. Surface & Coatings Technology, 2006, 201:4125-4130.
    [111]Muratore C, Clarke D R, Jones J G, et.al. Smart tribological coatings with wear sensing capability[J]. Wear,2008,265:913-920.
    [112]李云,袁超,郭建亭,等.铸造镍基高温合金K35的氧化动力学[J].东北大学学报(自然科学版),2003,24(1):75-78.
    [113]胡传顺,王福会.电子束表面熔凝处理对镍基高温合金熔凝层组织及其抗高温氧化性能的影响[J].金属热处理,2001,26(7):20-22.
    [114]李美栓.金属的高温腐蚀[M].北京:冶金工业出版社,2001.
    [115]樊毅,张金生,高游,等.石墨粒度对Cu-Fe基摩擦材料性能的影响[J].摩擦学学报,2000,20(6):475-477.
    [116]Li J L, Xiong D S. Tribological behavior of graphite-containing nickel-based composite as function of temperature, load and counterface[J].Wear,2009,266:360-367.
    [117]Polcar T, Evaristo M, Colaco R, et.al. Nanoscale triboactivity:The response of Mo-Se-C coatings to sliding[J]. Acta Materialia,2008,56(18):5101-5111.
    [118]Lim S C, Ashby M F. Wear-mechanism maps [J]. Acta metallurgy,1987,35(1):1-24.
    [119]Quinn T F J. Review of oxidation wear. Part Ⅰ.The origins of oxidational wear[J]. Tribology international,1983,16(5):257-271.
    [120]Quinn T F J.Oxidational wear modeling.Part Ⅱ [J].The general theory of oxidational wear. Wear,1994,175:199-208.
    [121]Quinn T F J. Oxidational wear modeling. Part Ⅰ [J]. Wear,1992,153:179-200.
    [122]Quinn T F J. Oxidational wear modeling. Part Ⅲ. The effect of speed and elevated temperature [J]. Wear,1998,216:265-275.
    [123]Stott F H. High-temperature sliding wear of metals [J]. Tribol. Int.,2002,35:489-495.
    [124]Peterson M B, Li S Z, Murray S F. "Wear Resisting Oxide Films for 900℃", Final Report, U.S. Department of Energy, ANL/OTM/CR-5,1994.
    [125]朱旻昊,周仲荣.径向与复合微动的运行和损伤机理研究[M].成都:西南交通大学出版社,2006.
    [126]Aizawa T, Mitsuo A, Yamamoto S, et.al. Self-lubrication mechanism via the in situ formed lubricious oxide tribofilm [J]. Wear,2005,259:708-718.
    [127]赵高敏,王昆林,刘家浚.La203对激光熔覆铁基合金层硬度及其分布的影响[J].金属学报,40(10):115-1120.
    [128]汪德涛.润滑技术手册[M].北京:机械工业出版社,1999.
    [129]Erdemir A, Erck R A. Effect of niobium interlayer on high-temperature sliding friction and wear of silver films on alumina [J]. Tribology Letters,1996,2:23-36.
    [130]Zhang Z Y, Wang Z P, Liang B N, et.al. Effect of CeO2 on friction and wear characteristics of Fe-Ni-Cr alloy coatings[J]. Tribology international,2006,39:981-978.
    [131]Shankar H, Prasad N E, Singh A K, et.al. Low temperature flow behavior of B2 interemtallic phase in Ti3AlNb system[J]. Materials Science and Engineering A,2006, 424:71-76.
    [132]Leyens C, Schmidt M, Peters M, et.al.Sputtered intermetallic Ti3Al3X coatings:Phase formation and oxidation behavior[J]. Materials Science and Engineering A,1997, 239-240:680-687.
    [133]杨丽颖,王砚军,刘佐民.Ti-Al合金高温自润滑材料抗摩擦磨损模型[J].中国机械工程,19(5):602-605.
    [134]黄平,孟永钢,徐华.摩擦学教程[M].北京:高等教育出版社,2008.
    [135]徐重,张高会,张平则,等.双辉等离子表面冶金技术的新进展[J].中国工程科学,2005,7(6):73-78.
    [136]张平则,李忠厚,贺志勇等.钛合金表面双层辉光离子渗Cr研究[J].兵器材料科学与工程,2005,28(1):17-20.
    [137]李成明,谢锡善,徐重,等.双层辉光离子W-Mo共渗的表面状态分析[J].兵工学报,1999,20(2):147-150.
    [138]Xu J Y, Liu Y P, Wang J Z, et.al. A study on double glow plasma surface metallurgy Mo-Cr high speed steel of carbon steel [J]. Surface and Coatings Technology,2007, 201:5093-5096.
    [139]Xu Z, Liu X, Zhang P, et.al. Double glow plasma surface alloying and plasma nitriding[J]. Surface & Coatings Technology,2007,201:4822-4825.
    [140]秦林,唐宾,刘道新,等.钛合金Ti6Al4V表面Mo-N改性层的摩擦性能研究[J].稀有金属材料与工程,2005,34(9):1465-1468.
    [141]Baranowska J, Franklin S E. Characterization of gas-nitrided austenitic steel with an amorphous/nanocrystalline top layer[J]. Wear,2008,264(9-10):899-903.
    [142]Wang H D, Xu B S, Liu J J, et.al. Molybdenum disulfide coating deposited by hybrid treatment and its friction-reduction performance [J]. Surface and coatings technology, 2007,201:6719-6722.
    [143]Gulbinski W, Suszko T. Thin films of Mo2N/Ag nanocomposite-the struture, mechanical and tribological propertie [J]. Surface coatings and technology,2006,201:1469-1474.
    [144]Oliver W C, Pharr G M. An improved technique for determining hardness and elastic-modulus using load and displacement sensing indentation experiments [J]. J. Mater. Res.,1992,7:1564-1583.
    [145]Baker C C, Chromik R R, Wahl K J, et.al. Preparation of chameleon coatings for space and ambient environments [J]. Thin Solid Films,2007,515:6737-6743.
    [146]Ozturk A, Ezirmik K V, Kazmanl K, et.al. Comparative tribological behaviors of TiN-, CrN- and MoN-Cu nanocomposite coatings [J]. Tribology International,2008,41: 49-59.
    [147]Suszko T, Gulbinski W, Jagielski J. Mo2N/Cu thin films-the structure, mechanical and tribological properties [J]. Surface coatings and Technology,2006,200:6288-6292.
    [148]周仲荣,Vincent L微动磨损[M].北京:科学出版社,2002.
    [149]Zum Gahr K. Microsturcture and wear of materials (Tribology series 10) [M]. Amsterdam:Elsevier,1987.
    [150]Stott F H. The role of oxidation in the wear of alloys[J]. Tribology international,1998, 31(1-3):61-71.
    [151]Jiang J, Stott F H, Stack M M. The effect of partial pressure of oxygen on the tribological behaviour of a nickel-based alloy, N80A, at elevated temperatures[J]. Wear, 1997,203-204:615-625.
    [152]Jiang J, Stott F H, Stack M M. A mathematical model for sliding wear of metals at elevated temperatures [J]. Wear,1995,181-183:20-31.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700