用户名: 密码: 验证码:
形貌可控的无机材料及无机/聚合物复合材料的合成
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
长期以来,形貌可控的纳米材料的制备技术研究是胶体微粒研究的重要方向之一。其中无机/聚合物纳米复合微球及无机金属纳米晶体的形貌调控一直是研究的热点。人们采用各种合成方法和合成思路去设计和调控无机/聚合物纳米复合微球的形貌和微观结构,这些方法促使了材料、化学、物理和生物学等多学科的交叉和快速发展。以往,人们主要侧重于具有球形对称性和核壳结构的复合微球的制备方法研究,近来,具有非核壳结构(如草莓、花瓣形貌等)和非对称形貌(如雪人、哑铃、橡木形貌等)的无机/聚合物纳米复合微球的制备技术研究引起了科学界和工业界的共同兴趣。本论文中,主要侧重于具有复杂对称形貌和非对称形貌及表面特性的纳米复合微球的制备技术研究。本文以无机粒子的表面改性结合异相聚合的方法在无机/聚合物纳米复合材料的形貌调控方面,主要完成以下三方面创新性的工作:(一)相对乳液聚合制备草莓形貌时存在的问题,采用细乳液聚合方法制备了草莓形貌的氧化硅/聚苯乙烯纳米复合微球,优化了制备方法;(二)将无机粒子的局部表面改性与乳液聚合方法相结合,制备出新型的半草莓形貌的氧化硅/聚苯乙烯纳米复合微球;(三)采用局部表面改性与细乳液聚合方法相结合的思路发展出具有非对称蘑菇形貌及表面特性的纳米复合微球的制备方法,进一步实现了该复合微球的各向异性表面双功能化。为无机/聚合物纳米复合微球的形貌调控及表面功能化开拓了新的思路。此外,我们在液相体系中分别研究支化银纳米结构和正八面体银氧化物纳米结构的制备方法,并结合各种实验参数的变化探索不同形貌的无机物纳米结构的产生机理。下面按照各章节顺序对本论文工作进行简述:
     第二章,采用细乳液聚合方法,结合氧化硅粒子的γ-甲基丙烯酰氧基丙基三甲基硅烷(MPS)表面改性,制备出草莓形貌的无机/聚合物纳米复合微球。研究表明,细乳液聚合方法的引入是在此粒径更小、改性剂接枝密度较高的无机粒子基础上得到草莓形貌的无机/聚合物纳米复合微球的关键因素,在相同的改性氧化硅粒子上,采用典型的乳液聚合方法,只能得到核壳形貌的复合微球。本文还将这种制备草莓形貌复合微球的细乳液聚合方法拓展到Fe3O4@Silica/PS复合微球体系,从而为同时具备高比表面积和高磁响应性的无机/聚合物磁性纳米复合微球的制备提供了一个新的思路。此外,本文基于经典的乳液聚合方法,在不同粒径的氧化硅粒子基础上制备出花瓣形貌的复合微球,研究不同的MPS接枝密度对复合微球形貌的影响。
     第三章,采用无机粒子的十八烷基三甲氧基硅烷(ODMS)局部表面改性结合细乳液聚合方法制备具有典型非对称形貌和表面特性的蘑菇形貌的氧化硅/聚苯乙烯纳米复合微球。并且研究各种参数对于此纳米复合微球的非对称形貌的影响。研究表明,只要采用无机粒子的局部表面改性结合细乳液聚合的基本思路,改变各种改性或者聚合参数时,复合微球的形貌会有所变化,但是都保持非对称形貌的特征。此外,本文采用带有共聚基团的改性剂MPS对氧化硅进行局部表面改性,再结合传统的乳液聚合方法制备具有半草莓形貌的氧化硅/聚苯乙烯纳米复合微球,并且研究局部表面改性过程中不同接枝密度对此复合形貌的影响。通过将无机粒子的局部表面改性与不同特点的异相聚合方法结合起来设计和制备具有不同结构形貌的纳米复合微球,从而为具有非对称形貌及表面特性的无机/聚合物纳米复合微球的制备技术研究提供了新的思路和探索。
     第四章,在前面一章工作基础上,采用带有羧基的引发剂ACPA引发苯乙烯单体按照细乳液聚合原理聚合,然后再对氧化硅粒子剩余部分表面进行氨基修饰的方法,可以制备出具有各向异性表面双功能化及非对称形貌的氧化硅/聚苯乙烯纳米复合微球。此外,对两种表面基团的荧光素选择性标记,得到了双荧光的纳米复合微球。
     第五章,采用水相法合成了具有高支化度的海藻形状的银纳米结构。并且在极其简单的反应条件下研究各种参数对于支化结构产生的影响,并且通过TEM技术表征了支化结构产生的动态过程,提出了该结构产生的可能机理和必要条件。本文考察了此高支化度银纳米结构的SERS性能,并且以此结构为模板,通过置换反应制备了具有空心结构的Ag/Au合金海藻状纳米结构。此外,本文在设计和研究多元醇溶剂法制备银纳米晶体过程,引入过饱和氧气氛来调节反应动力学条件,制备得到了具有正八面体结构的银氧化物颗粒。本文通过XPS及XRD表征了银氧化物的化学组成,通过电镜技术及光谱表征对反应过程中的氧化蚀刻过程进行了研究,并且考察了不同稳定剂,不同气氛环境对无机粒子形貌的影响。
     总之,本文在无机粒子的可控表面改性及聚合物单体的异相聚合方法基础上,发展了多种调控无机/聚合物纳米复合微球形貌和表面特性的制备方法。丰富了纳米复合微球的非对称形貌和表面功能化的制备方法;这些方法有可能拓展到其它功能性粒子的无机微球/聚合物复合材料的制备和形貌调控。此外,本文通过对反应过程中的成核、增长的调节及反应参数的研究,探索揭示具有高支化度银纳米结构和正八面体结构的银氧化物颗粒的制备方法和产生机理。
In the past decades, morphology-controlled synthesis of nanoparticles was always one of the focuses of research on colloidal science. Among them, the inorganic/polymer composites and inorganic metallic nanocrystals have been attracting intensive interests. A lot of efforts have been made to design and tune the morphology and structure of inorganic/polymer nanocomposites by various synthetic methods and processes, which posed the situation of interdiscipline and rapid development of Materials Science, Chemistry, Physics and Biology. Recently, tailor-made preparation of inorganic/polymer nanocomposites with dissymmetric or symmetric complex morphologies and microstructures have been more important and attractive for both scientific community and industrial circle, while most of effort have been put in the research on synthesis of nanocomposites with symmetry and core-shell structure before. In this thesis, we are focusing on synthesis of inorganic/polymer composite nanoparticles with complex or dissymmetric morphologies. We did three main contributions to this research field based on combination of surface modification of inorganic particles and heterophase polymerization process: (1) synthesize the old morphology (raspberry-like) by novel miniemulsion polymerization method, and improve the preparation techniques, (2) obtain the inorganic/polymer composites with half raspberry-like and surface characters by conventional emulsion polymerization method, (3) develop novel inorganic/polymer composite nanoparticles with asymmetric morphology and surface property via miniemulsion polymerization, and realize the synthesis of composites with anisotropic surface functionalities. Furthermore, the formation and preparation of highly branched silver nanostructures or silver oxide octahedral particles via solution-base process were studied. The possible mechanisms of formation of those nsnostructures were explored by changing the reaction conditions correspondingly. The discribtion of main rdesults in each experimental chapter is lised as follows:
     In Chapter two, the raspberry-like Silica/PS composites were prepared via miniemulsion polymerization of monomer in the presence of methacryloxy(propyl)trimethoxysilane (MPS)-grafted silica particles. It is found that due to the different nucleation mechanism, the morphology of composites varied from raspberry-like in miniemulsion polymerization to core-shell structure in emulsion polymerization based on same modified silica particles. The synthetic route could be applied in synthesis of high surface to volume ratio Fe3O4@Silica/PS nanocomposites with similar morphology too. Furthermore, the Silica/PS composite nanoparticles with daisy-like morphology were prepared based on different size of silica particles modified by MPS with varied grafted density via emulsion polymerization of styrene monomer. The effect of grafted density of MPS on the morphology of composites nanoparticles was studied.
     In chapter three, a novel synthetic route characterized by combination of local surface modification of inorganic particles with n-octadecyltrimethoxysilane (ODMS) to miniemulsion polymerization was developed to prepare dissymmetric silica/polystyrene composite nanoparticles with mushroom-like shape. We also studied different parameters that influenced the morphology of composites. Furthermore, half-raspberry-like shape silica/PS composite nanoparticles were prepared via emulsion polymerization of St monomer based on MPS locally modified silica particles. And the effect of grafted density of MPS molecules on the morphology of composite was investigated. It is proved that the combination of local surface modification of inorganic particles and heterophase polymerization of monomer has provided us with bigger possibility to design and tune the asymmetric shape and structure of inorganic/polymer composite nanoparticles.
     In chapter four, we describe the further preparation of anisotropically dual-functionalized silica/polystyrene composite nanoparticles with asymmetric snowman-like morphology via two-step chemical method. In first step, snowman-like silica/carboxylated polystyrene composite nanoparticles were prepared via miniemulsion polymerization of St monomer initiated by ACPA in the presence of locally surface modified silica particles. And then, the amino groups were introduced into the surface of silica component of the composite by graft of APS molecules. Two kinds of fluorescence were selectively labeled onto the chemical groups on the composites to prepare the two fluorescent color composites, indicating that the anisotropic surface groups have biological reactivity.
     In chapter five, we report that the synthesis of highly branched silver nanostructure by aqueous solution method. Different parameters were studied to see their influence on the extent of branching due to the most simpleness of the reaction. The possible mechanism and needed condition for formation of such highly branched nanostructure was proposed according to the TEM observation of the aliquots taken from one reaction at different reaction time. SERS property of the silver branched nanostructures was examined and hollow Ag/Au alloy branched nanostructures were prepared through galvanic replacement reaction based on silver template. Furthermore, the octahedral silver oxide particles were obtained when we tried to adjust the kinetic condition by bubbling saturated O2 into the reduction of AgNO3 precursor stabilized by PAM in a polyol process. The mixed composition of the final products was analyzed by XPS measurement. We investigated the oxidative etching happened to the twinned seeds through electronic microscopy technique and UV-Vis spectra analysis. The effects of coupling agent and atmosphere on the shape of final product were studied as well.
     In summary, we have developed the methods for preparing the inorganic/polymer composite nanoparticles with different complex or asymmetric morphologies, and extended one of the methods to synthesis of magnetic inorganic/polymer composites with complex morphology. Meanwhile, the composites with anisotropic dual-functionality and two fluorescences were prepared based on the new method. Further more, highly branched silver nanostructures and octahedral silver oxide particles were synthesized respectively when the different reaction condition were controlled.
引文
1. Zou H., Wu S., Shen J., Chem. Rev., 2008, 108, 3893.
    2. Xia Y., Xiong Y., Lim B., Skrabalak S. E., Angew. Chem. Int. Ed., 2009, 48, 60.
    3. Nalwa H. S., Editor, Handbook of Nanostuctured Materials and Nanotechnology, Academic Press, San Diego, 1999, Vols. 1-5.
    4. Charleux B., Pichot C., Llauro M. F., Polymer, 1993, 34, 4352.
    5. Lee K., Winnik M. A., Jao T., J. Polym. Sci., Part A: Polym. Chem., 1994, 32, 2333.
    6. Wang Q., Fu S., Yu T., Prog. Polym. Sci., 1994, 19, 703.
    7. Yan C., Zhang X., Sun Z., Kitano H., Ise N., J. Appl. Polym. Sci., 1990, 40, 89.
    8. Okubo M., Kondo Y., Takahashi M., Colloid Polym. Sci. 1993, 271, 109.
    9. Lovo Y., Antipov A. A., Mamesov A., M?hwald H., Sukhorukov G., Nano Lett., 2001, 1, 125.
    10. Marinakos S. M., Novak J. P., Feldheim D. L., J. Am. Chem. Soc., 1999, 121, 8518.
    11. Zhang J., Coombs N., Kumacheva E., J. Am. Chem. Soc., 2002, 124, 14512.
    12. Gao C., Donath E., M?hwald H., Shen J., Adv. Mater., 2002, 14, 3789.
    13. Han M., Gao X., Su J., Nie S., Nat. Biotechnol. 2001, 19, 631.
    14. Mio C., Marr D. W. M., Langmuir, 1999, 15, 8565.
    15. Perro A., Reculusa S., Ravaine S., Bourgeat-Lami E., Duguet E., J. Mater. Chem., 2005, 15, 3745.
    16. Corcos F., Bourgeat-Lami E., Novat C., Lang J., Colloid Polym. Sci., 1999, 277, 1142.
    17. Chen M., Zhou S., Wu L., Xie S., Chen Y., Macromol. Chem. Phys., 2005, 206, 1896.
    18. Reculusa S., Mingotaud C., Bourgeat-Lami E., Duguet E., Ravaine S., Nano Lett., 2004, 4, 1677.
    19. E. Bourgeat-Lami and J. Lang, J. Colloid Interface Sci., 1998, 197, 293.
    20. S. Reculusa, C. Poncet-Legrand, S. Ravaine, C. Mingotaud,| E. Duguet, and E. Bourgeat-Lami, Chem. Mater., 2002, 14, 2354.
    21. M. S. Fleming, T. K. Mandal, D. R. Walt, Chem. Mater., 2001, 13, 2210.
    22. F. Tiarks, K. Landfester and M. Antonietti, Langmuir, 2001, 17, 5775.
    23. Reculusa S., Mingotaud C., Duguet E. Ravaine S., In Encyclopedia of Nanoscience and Nanotechnology; Dekker Editions: New York, 2004; pp 943-953.
    24. Bernheim-Groswasser A., Wiesner S., Golsteyn R.M., Carlier M.F., Sykes C., Nature, 2002. 417. 308.
    25. Noireaux V., Golsteyn R.M., Friederich E., Prost J., Antony C., Louvard D., Sykes C., Biophys. J., 2000, 78, 1643.
    26. H. Takei, N. Shimizu, Langmuir, 1997, 13, 1865.
    27. H. Gu, Z. Yang, J. Gao, C. K. Chang, B. Xu, J. Am. Chem. Soc., 2005, 127, 34.
    28. M. Giersig, T. Ung, L. M. Liz-Marzan, P. Mulvaney, Adv. Mater., 1997, 9, 570.
    29. H Gu, R. Zheng, X. Zhang, B. Xu, J. Am. Chem. Soc., 2004, 126, 5664.
    30. T. Teranishi, Y. Inoue, M. Nakaya, Y. Oumi, T. Sano, J. Am. Chem. Soc., 2004,
    126, 9914.
    31. H. Yu, M. Chen, P. M. Rice, S. Wang, R. L. White, S. Sun, Nano. Lett., 2005, 5, 379.
    32. Y. Lu, H. Xiong, X. Jiang, Y. Xia, J. Am. Chem. Soc., 2003, 125, 12724.
    33. Z. Nie, W. Li, M. Seo, S. Xu, and E. Kumacheva, J. Am. Chem. Soc., 2006, 128, 9408.
    34. R. Erhardt, M. Zhang, A. B?ker, H. Zettl, C. Abetz, P. Frederik, G. Krausch, V. Abetz, and H. E. Müller et al. J. Am. Chem. Soc., 2003, 125, 3260.
    35. Okubo M., Fujiwara T.. Yamaguchi A., Colloid Polym. Sci., 1998, 276, 186.
    36. Wang D., Dimonie V. L., Sudol E. D., El-Aasser M. S., J. Appl. Polym. Sci., 2002, 84, 2710.
    37. Okubo M., Kanaida K., Matsumoto T., Colloid Polym. Sci., 1987, 265, 876.
    38. Reculusa S., Poncet-Legrand C., Perro A., Duguet E., Bourgeat-Lami E., Mingotaud C., Ravaine S., Chem. Mater., 2005, 17, 3338.
    39. Zhang K., Chen H., Chen X., Chen Z., Cui Z., Yang B., Macromol. Mater. Eng., 2003, 288, 380.
    40. Yin Y., Lu Y., Xia Y., J. Am. Chem. Soc., 2001, 123, 771.
    41. De Gennes P. G., ReV. Mod. Phys., 1992, 64, 645.
    42. Vaia R. A., Wagner H. D., Mater. Today, 2004, 7, 32.
    43. Xu X., Friedman G., Humfeld K. D., Majetich S. A., Asher S. A., Chem. Mater., 2002, 14, 1249.
    44. Xu H., Cui L., Tong N., Gu H., J. Am. Chem. Soc., 2006, 128, 15582.
    45. Xu Z., Mater. Chem. Phys., 2007, 103, 494.
    46. Ge J., Hu Y., Zhang T., Yin Y., J. Am. Chem. Soc., 2007, 129, 8974.
    47. Tissot I., Novat C., Lefebvre F., Bourgeat-Lami E., Macromolecules, 2001, 34, 5737.
    48. Tissot I., J. Reymond P., Lefebvre F., Bourgeat-Lami E., Chem. Mater., 2002, 14, 1325.
    49. Hotta Y., Alberius P. C. A., Bergstr?m L., J Mater. Chem., 2003, 13, 496.
    50. Sertchook H., Avnir D., Chem. Mater., 2003, 15, 1690.
    51. Schmid A., Fujii S., Armes S. P., Langmuir, 2005, 21, 8103.
    52. Philipse A. P., Vrij A., J. Colloid Interface Sci., 1989, 128, 121.
    53. Bourgeat-Lami E., Espiard Ph., Guyot A., Polymer, 1995, 36, 4385.
    54. Ding X. F., Zhao J. Z., Liu Y. H., Zhang H. B., Wang Z. C., Mater. Lett., 2004, 58, 3126.
    55. Ding X. F., Wang Z. C., Han D. X., Zhang Y. J., Shen Y. F., Wang Z. J., Niu L., Nanotechnology, 2006, 17, 4796.
    56. Mahdavian A. R., Ashjari M., Makoo A. B., Eur. Polym. J., 2007, 43, 336.
    57. Furusawa K., Kimura Y., Tagawa T., J. Colloid Interface Sci., 1986, 109, 69.
    58. Luna-Xavier J. L., Bourgeat-Lami E., Guyot A., Colloid Polym. Sci., 2001, 279, 947.
    59. Esumi K., J. Colloid Interface Sci., 2001, 241, 1.
    60. Zhang S., Zhou S., Weng Y., Wu L., Langmuir, 2005, 21, 2124.
    61. Casagrande C., VeyssiéM., C. R. Acad. Sci., Paris 1988, 306, 1423.
    62. Ondarcuhu T., Fabre P., Rapha?l E., VeyssiéM., J. Phys. France, 1990, 51, 1527.
    63. Binks B. P., Fletcher P. D. I., Langmuir, 2001, 17, 4708.
    64. Nakahama K., Kawaguchi H., Fujimoto K., Langmuir, 2000, 16, 7882.
    65. Paunov V. N., Cayre O. J., Adv. Mater., 2004, 16, 788.
    66. Petit L., Sellier E., Duguet E., Ravaine S., Mingotaud C., J. Mater. Chem., 2000, 10, 253.
    67. Takahara Y. K., Ikeda S., Ishino S., Tachi K., Ikeue K., Sakata T., Hasegawa T., Mori H., Matsumura M., Ohtani B., J. Am. Chem. Soc., 2005, 127, 6271.
    68. Duguet E., Poncet-Legrand C., Ravaine S., Bourgeat-Lami E., Reculusa S., Mingotaud C., Delville M. H., Pereira F., French Patent FR 2,862,236 WO 2005/049195 (2005).
    69. Perro A., Reculusa S., Pereira F., Delville M., Mingotaud C., Duguet E., Bourgeat-Lami E., Ravaine S., Chem. Commun., 2005, 5542.
    70. Fujimoto K., Nakahama K., Shidara M., Kawaguchi H., Langmuir, 1999, 15, 4630.
    71. Hugonnot E., Carles A., Delville M.-H., Panizza P., Delville J.-P., Langmuir, 2003, 19, 226.
    72. Bourgeat-Lami E., Lang J., J. Colloid Interface Sci., 1999, 210, 281.
    73. Lascelles S.F., McCarthy G.P., Butterworth M.D., Armes S.P., Colloid Polym. Sci., 1998, 276, 893.
    74.曹同玉,刘庆普,胡金生,聚合物乳液合成原理,性能及应用,化学工业出版社,第一版,1997.
    75. Bourgeat-Lami E., J. Nanosci. Nanotechnol., 2002, 2, 1.
    76. Duguet E., Reculusa S., Perro A., Poncet-Legrand C., Ravaine S., Bourgeat-Lami E., Mingotaud C., Mater. Res. Soc. Symp. Proc., 2005, 847, EE1.1.
    77. Xu P., Wang H., Tong R., Du Q., Zhong W., Colloid Polym. Sci., 2006, 284, 755.
    78. Xu P., Zhong W., Wang H., Tong R., Du Q., Colloid Polym. Sci., 2004, 282, 1409.
    79. Ugelstad J., EI-Aasser M. S., Vanderhoff J. W., J. Polym. Sci., Polym. Lett., 1973, 11, 503.
    80. Antonietti M., Landfester K., Prog. Polym. Sci., 2002, 27, 689.
    81. Qiao X., Chen M., Zhou J., Wu L., J Polym. Sci.: Part A: Polym. Chem., 2007, 45, 1028.
    82. Zhou J., Zhang S., Qiao X., Li X., Wu L., J Polym. Sci.: Part A: Polym. Chem., 2006, 44, 3202.
    83. Erdem B., Sudol D., Dimonie V. L., El-Aasser M., J. Polym. Sci. Part A: Polym. Chem., 2000, 38, 4431.
    84. Erdem B., Sudol D., Dimonie V. L., El-Aasser M., J. Polym. Sci. Part A: Polym. Chem., 2000, 38, 4441.
    85. Bechthold N., Tiarks F., Willert M., Landfester K., Antonietti M., Macromol. Symp., 2000, 151, 549.
    86. Hoffmann D., Landfester K., Antonietti M., Magnetohydrodynamics, 2001, 37, 217.
    87. Tiarks F., Landfester K., Antonietti M., Macromol. Chem. Phys., 2001, 202, 51.
    88. Boutti S., Bourgeat-Lami E., Zydowicz N., Macromol. Rapid Commun., 2005, 26, 1860.
    89. Lu W., Chen M., Wu L., J. Colloid Interface Sci., 2008, 328, 98.
    90. Yoshida M., Roh K.-H., Lahann J., Biomaterials, 2007, 28, 2446.
    91. Yoshida M., Lahann J., ACS Nano, 2008, 2, 1101.
    92. Cayre O., Paunov V. N., Velev O. D., Chem. Commun., 2003, 2296.
    93. Shchukin D. G., Adv. Mater., 2004, 16, 389.
    94. Roh K. H., Martin D. C., Lahann J., Nature. Mater., 2005, 4, 759.
    95. Choi J. S., Jun Y. W., Yeon S. I., Kim H. C., Shin J. S., Cheon J., J. Am. Chem. Soc., 2006, 128, 15982.
    96. Kim J., Kim H., Lee N., Kim T., Kim H., Yu T., Song I., Moon W., Hyeon T.,Angew. Chem. Int. Ed., 2008, 47, 8438.
    97. Kim J., Lee J., Lee S., Yu J., Lee J., Park T., Hyeon T., Adv. Mater., 2008, 20, 478.
    98. Gao J. H., Liang G. L., Zhang B., Kuang Y., Zhang X. X., Xu B., J. Am. Chem. Soc., 2007, 129, 1428.
    99. Xu Z. C., Hou Y. L., Sun S. H., J. Am. Chem. Soc., 2007, 129, 8698.
    100. Yi D. K., Selvan S. T., Lee S. S., Papaefthymiou G. C., Kundaliya D., Ying J. Y., J. Am. Chem. Soc., 2005, 127, 4990.
    101. Zhang Y., Qian X., Xi H., Yin J., Zhu Z., Mater. Lett., 2003, 58, 222.
    102. Ding X., Yu K., Jiang Y., H.-Bala, Zhang H., Wang Z., Mater. Lett., 2004, 58, 3618.
    103. Chen M., Zhou S., You B., Wu L., Macromolecules, 2005, 38, 6411.
    104. Chen J., Lim B., Lee E. P., Xia Y., Nano Today, 2009, 4, 81.
    105. Wiley B., Sun Y., Mayers B., Xia Y., Chem. Eur. J., 2005, 11, 454.
    106. Oaki Y., Imai H., Cryst. Growth Des., 2003, 3, 711.
    107. Witten T. A., Sander L. M., Phys. Rev. Lett., 1981, 47, 1400.
    108. Ben-Jacob E., Godbey R., Goldenfeld N. D., Koplik J., Levine H., Mueller T., Sander L. M., Phys. Rev. Lett., 1985, 55, 1315.
    109. Sawada Y., Dougherty A., Gollub J. P., Phys. Rev. Lett., 1986, 56, 1260.
    110. Ye W., Shen C., Tian J., Wang C., Bao L., Gao H., Electrochem. Commun., 2008, 10, 625.
    111. Zhou Y., Yu S., Wang C., Li X., Zhu Y., Chen Z., Adv. Mater., 1999, 11, 850.
    112. Wu S.-D., Zhu Z., Zhang Z., Zhang L., J. Chem. Research (S) 2002, 342.
    113. Wang S., Xin H., J. Phys. Chem. B, 2000, 104, 5681.
    114. Xiao J., Xie Y., Tang R., Chen M., Tian X., Adv. Mater., 2001, 13, 1887.
    115. Kaniyankandy S., Nuwad J., Thinaharan C., Dey G. K., Pillai C. G. S., Nanotechnology, 2007, 18, 125610.
    116. Fang J., You H., Kong P., Yi Y., Song X., Ding B., Cryst. Growth Des., 2007, 7, 864.
    117. Zhu L.-P., Xiao H.-M., Zhang W.-D., Yang Y., Fu S.-Y., Cryst. Growth Des., 2008, 8, 1113.
    118. Liu X., Yi R., Wang Y., Qiu G., Zhang N., Li X., J. Phys. Chem. C, 2007, 111, 163.
    119. Wen X., Xie Y.-T., Mak M. W. C., Cheung K. Y., Li X.-Y., Renneberg R., Yang S., Langmuir, 2006, 22, 4836.
    120. Rashid M. H., Mandal T. K., J. Phys. Chem. C, 2007, 111, 16750.
    121. Pardi?as-Blanco I., Hoppe C. E., Pi?eiro-Redondo Y., López-Quintela M. A., Rivas J., Langmuir, 2008, 24, 983.
    122. Zhou P., Dai Z., Fang M., Huang X., Bao J., J. Phys. Chem. C, 2007, 111, 12609.
    123. Reisse J., Francois H., Vandercammen J., Fabre O., Kirschdemesmaeker A., Maerschalk C., Delplancke J.-L., Electrochim. Acta, 1994, 39, 37.
    124. Delplancke J.-L., Dille J., Reisse J., Long G. J., Mohan A., Grandjean F., Chem. Mater., 2000, 12, 946.
    125. Zhu J., Liu S., Palchik O., Koltypin Y., Gedanken A., Langmuir, 2000, 16, 6396.
    126. Socol Y., Abramson O., Gedanken A., Meshorer Y., Berenstein L., Zaban A., Langmuir, 2002, 18, 4736.
    127. Qiu X.-F., Xu J.-Z., Zhu J.-M., Zhu J.-J., Xu S., Chen H.-Y., J. Mater. Res., 2003, 18, 1399.
    128. Haas I., Shanmugam S., Gedanken A., Chem. Eur. J., 2008, 14, 4696.
    129. Lim B., Lu X., Jiang M., Camargo P., Cho E., Lee E., Xia Y., Nano Lett., 2008, 8, 4043.
    130. Burt J., Elechiguerra J., Reyes-Gasga J., Montejano-Carrizales J., Jose-Yacaman M., J. Crystal Growth, 2005, 285, 681.
    131. Chen S., Wang Z., Ballato J., Foulger S., Carroll D., J. Am. Chem. Soc., 2003,
    125, 16186.
    132. Mahmoud M. A., Tabor C. E., El-Sayed M. A., Ding Y., Wang Z., J. Am. Chem. Soc., 2008, 130, 4590.
    133. Lou X., Yuan C., Archer L. A., Chem. Mater., 2006, 18, 3921.
    134. Lu L., Kobayashi A., Tawa K., Ozaki Y., Chem. Mater., 2006, 18, 4894.
    135. Fan L., Guo R., Cryst. Growth Des., 2008, 8, 2150.
    136. Fukuyo T., Imai H., J. Crystal Growth, 2002, 241, 193.
    137. Zhao N., Wei Y., Sun N., Chen Q., Bai J., Zhou L., Qin Y., Li M., Qi L., Langmuir, 2008, 24, 991.
    138. Chen J., Herricks T., Geissler M., Xia Y., J. Am. Chem. Soc., 2004, 126, 10854.
    139. Lee E. P., Chen J., Yin Y., Campbell C. T., Xia Y., Adv. Mater., 2006, 18, 3271.
    140. Herricks T., Chen J., Xia Y., Nano Lett., 2004, 4, 2367.
    141. Chen J., Herricks T., Xia Y., Angew. Chem. Int. Ed., 2005, 44, 2589.
    142. Hoefelmeyer J., Niesz K., Somorjai G., Tilley T., Nano Lett., 2005, 5, 435.
    143. Maksimuk S., Teng X., Yang H., J. Phys. Chem. C, 2007, 111, 14312.
    144. Teng X., Yang H., Nano Lett., 2005, 5, 885.
    145. Kuo C.-H., Huang M. H., Langmuir, 2005, 21, 2012
    146. Zhu Y., Zheng H., Li Y., Gao L., Yang Z., Qian Y., Mater. Res. Bull., 2003, 38, 1829.
    147. Zhang X., Wang G., Liu X., Wu H., Fang B., Cryst. Growth Des., 2008, 8, 1430.
    148. Hu C., Gao Z., Yang X., Journal of Crystal Growth, 2007, 306, 390.
    149. Mahima S., Kannan R., Komath I., Aslam M., Pillai V. K., Chem. Mater., 2008, 20, 601.
    150. Aizawa M., Cooper A. M., Malac M., Buriak J. M., Nano Lett., 2005, 5, 815.
    151. Wang Z., Zhao Z., Qiu J., J. Phys. Chem. Solids, 2008, 69, 1296.
    152. Fang J., Ding B., Song X., Han Y., Appl. Phys. Lett., 2008, 92, 173120.
    153. Yan C., Xue D., Cryst. Growth Des., 2008, 8, 1849.
    154. Xiao Y., Shlyahovsky B., Popov I., Pavlov V., Willner I., Langmuir, 2005, 21, 5659.
    155. Willner I., Baron R., Willner B., Adv. Mater., 2006, 18, 1109.
    156. Sui Y. C., Zhao Y., Zhang J., Jaswal S., Li X. Z., Sellmyer D. J., IEEE TRANSACTIONS ON MAGNETICS, 2007, 43, 3115.
    157. Zhang H.-T., Ding J., Chow G.-M., Langmuir, 2008, 24, 375.
    158. Xiong Y., Siekkinen A. R., Wang J., Yin Y., Kim M. J., Xia Y., J. Mater. Chem., 2007, 17, 2600.
    159. Wiley B., Sun Y., Xia Y., Langmuir, 2005, 21, 8077.
    160. Asua J. M., Prog. Polym. Sci., 2002, 27, 1283.
    161. St?ber W., Fink A., Bohn E., J. Colloid Interface Sci. 1968, 26, 62.
    162. Bartholome C., Beyou E., Bourgeat-Lami E., Chaumont P., Zydowicz N., Macromolecules, 2003, 36, 7946.
    163. Bourgeat-Lami E., Lang J., Macromol. Symp., 2000, 151, 377.
    164. Posthumus W., Magusin P.C.M.M., Brokken-Zijp J.C.M., Tinnemans A.H.A., van der Linde R., J. Colloid Interface Sci., 2004, 269, 109.
    165. Nishiyama N., Shick R., Ishida H., J. Colloid Interface Sci., 1991, 143, 146.
    166. Miller J. D., Ishiada H., Surface Science, 1984, 14, 601.
    167. Dinsmore A. D., Hsu M. F., Nikolaides M. G., Marquez M., Bausch A. R., Weitz D. A., Science, 2002, 298, 1006.
    168. Binks B. P., Lumsdon S. O., Langmuir, 2000, 16, 2539.
    169. Aveyard R., Binks B. P., Clint J. H., Adv. Colloid Interface Sci., 2003, 100-102, 503.
    170. Binks B. P., Current Opinion in Colloid & Interface Science, 2002, 7, 21.
    171. Bechthold N., Landfester K., Macromolecules, 2000, 33, 4682.
    172. Chang H.-C., Lin Y.-Y., Chern C.-S., Lin S.-Y., Langmuir, 1998, 14, 6632.
    173. Horák D., Babi? M., MackováH., Bene? M. J., J. Sep. Sci., 2007, 30, 1751.
    174. O’Farrell N., Houlton A., Horrocks B. R., International journal of nanomedicine, 2006, 1, 451.
    175. Slowing I. I., Vivero-Escoto J. L., Wu C.-W., Lin V. S.-Y., Adv. Drug Delivery Rev., 2008, 60, 1278.
    176. Nahar M., Dutta T., Murugesan S., Asthana A., Mishra D., Raikumar V., Tare M., Saraf S., Jain N. K., Critical Reviews in Therapeutic Drug Carrier Systems, 2006, 23, 259.
    177. Bruce I. J., Sen T., Langmuir, 2005, 21, 7029.
    178. Zheng W., Gao F., Gu H., J. Magn. Magn. Mater., 2005, 293, 199.
    179. Manna L., Scher E. C., Alivisatos A. P., J. Cluster Sci., 2002, 13, 521.
    180. Peng X., Adv. Mater., 2003, 15, 459.
    181. Wang D., Lieber C. M., Nat. Mater., 2003, 2, 355.
    182. Yin Y., Alivisatos A. P., Nature, 2005, 437, 664.
    183. Jun Y.-W., Choi J.-S., Cheon J., Angew. Chem. Int. Ed., 2006, 45, 3414.
    184. Niederberger M., Acc. Chem. Res., 2007, 40, 793.
    185. Gao P., Wang Z., J. Phys. Chem. B, 2002, 106, 12653.
    186. Narayanaswamy A., Xu H., Pradhan N., Kim M., Peng X., J. Am. Chem. Soc., 2006, 128, 10310.
    187. Wen B., Huang Y., Boland J. J., J. Phys. Chem. C, 2008, 112, 106.
    188. Zhang Y., Zhu J., Song X., Zhong X., J. Phys. Chem. C, 2008, 112, 5322.
    189. Zhang H., Cao G., Wang Z., Yang Y., Shi Z., Gu Z., Nano Lett., 2008, 8, 2664.
    190. Lu L., Kobayashi A., Tawa K., Ozaki Y., Chem. Mater., 2006, 18, 4894.
    191. Jena B. K., Raj C. R., Chem. Mater., 2008, 20, 3546.
    192. Tian Z.-Q., Ren B., Wu D.-Y., J. Phys. Chem. B, 2002, 106, 9463.
    193. Jiang J., Bosnick K., Maillard M., Brus L., J. Phys. Chem. B, 2003, 107, 9964.
    194. Rashid M. H., Mandal T. K., J. Phys. Chem. C, 2007, 111, 16750.
    195. Mahmoud M. A., Tabor C. E., El-Sayed M. A., Ding Y., Wang Z., J. Am. Chem. Soc., 2008, 130, 4590.
    196. Esumi K., Isono R., Yoshimura T., Langmuir, 2004, 20, 237.
    197. Jana S., Ghosh S. Nath K., S., Pande S., Praharaj S., Panigrahi S., Basu S., Endo T., Pal T., Appl. Catal., A, 2006, 313, 41.
    198. Elder A., Yang H., Gwiazda R., Teng X., Thurston S., He H., Oberd?rster G., Adv. Mater., 2007, 19, 3124.
    199. Hu K.-W, Huang C.-C., Hwu J.-R., Su W.-C., Shieh D.-B., Yeh C.-S., Chem. Eur. J., 2008, 14, 2956.
    200. Yamamoto M., Kashiwagi Y., Sakata T., Mori H., Nakamoto M., Chem. Mater., 2005, 17, 5391.
    201. Xiong Y., Xia Y., Adv. Mater., 2007, 19, 3385.
    202. Xiong Y., Washio I., Chen J., Sadilek M., Xia Y., Angew. Chem. Int. Ed., 2007, 46, 4917.
    203. Elechiguerra J. L., Reyes-Gasga J., Yacaman M. J., J. Mater. Chem., 2006, 16, 3906.
    204. Refer to JCPDS Card File, 04-0783.
    205. Kelly K. L., Coronado E., Zhao L., Schatz G. C., J. Phys. Chem. B, 2003, 107, 668.
    206. Tian Z.-Q., Ren B., Wu D.-Y., J. Phys. Chem. B, 2002, 106, 9463.
    207. Skrabalak S. E., Au L., Li X., Xia Y., Nature Protocols, 2007, 2, 2182.
    208. Sun Y., Xia Y., Science, 2002, 298, 2176.
    209. Dragnevski K., Cochrane R. F., Mullis A.M., Phys. Rev. Lett., 2002, 89, 215502-1.
    210. Skrabalak S. E., Wiley B. J., Kim M., Formo E. V., Xia Y., Nano Lett., 2008, 8,2077.
    211. Wiley B., Sun Y., Xia Y., Acc. Chem. Res., 2007, 40, 1067.
    212. Sundberg D. C., Casassa A. P., Pantazopoulos J., Muscato M. R., J. Appl. Polym. Sci., 1990, 41, 1425.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700