用户名: 密码: 验证码:
材料表面仿生修饰及金属化的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
材料表面改性的方法对材料在研究和工业应用都具有重大的意义。现有材料表面改性的方法各有优缺点。其中,通过具有优异的粘结性能和其他性能的分子和聚合物自组装在材料的表面形成功能层的方法受到大家的广泛关注。这种方法具有成本低,适用于大面积的形状复杂的三维结构基体,可在材料表面形成微米级和纳米级的功能层等优点。受到贝壳类动物分泌的粘附性蛋白质的结构的启发,有学者报道了聚多巴胺的粘附机理和性能。结果表明,多巴胺(3,4-二羟基-苯丙氨酸)以及其他具有类似儿茶酚结构的化合物可沉积在不同材料基体的表面,包括有机、无机和金属材料。通过在不同材料基体表面进行多巴胺氧化聚合以及聚多巴胺沉积可以对材料表面功能化改性。利用聚多巴胺层表面的基团进行进一步反应可以在材料表面形成其他的功能层,包括利用自组装形成单分子层、通过长链分子反应形成聚合物层,通过无电沉积形成金属层以及通过大分子接枝形成的生物活性层。
     在本研究中,我们通过多巴胺聚合对聚酰亚胺膜(PI)以及玻璃微球(Glass beads)表面进行了功能化修饰改性,然后通过紫外光照或者化学镀在功能化后的基体材料表面镀覆银层。具体工作包括以下三个方面:
     (1)首次研究了利用多巴胺功能化修饰及化学还原银制备高导电高反射的聚酰亚胺(PI)薄膜的新方法。在这种方法中,首先将聚酰亚胺(PI)膜浸入多巴胺水溶液中,在氧存在下多巴胺在PI表面聚合并沉积,然后在沉积有聚多巴胺的聚酰亚胺膜(PI-DOPA)表面通过化学还原(electroless plating)的方法沉积金属银层。通过X射线光电子能谱(XPS)测试PI膜表面的组成和结构的变化,结果表明PI膜的表面成功地沉积上聚多巴胺层。在银的还原过程中,由于聚多巴胺具有一定的氧化还原能力,聚多巴胺功能层不仅在化学镀银的过程中作为银离子的吸附点,同时可以提高银层与基体之间的结合力。本研究所制备得到的表面镀银的PI膜(PI/Ag)具有优异的导电性和反射性,其表面电阻为1.5Ω,反射率达95%。
     (2)本文研究了通过紫外光照将银粒子还原在多巴胺功能化的PI膜表面制备抗菌薄膜的方法。研究了溶液pH、多巴胺浓度和反应时间对多巴胺聚合反应的影响。由于聚多巴胺的亲水性,经多巴胺功能化的PI膜表面的水接触角与改性前的PI膜相比有明显降低。利用X射线光电子能谱(XPS)和X射线衍射(XRD)对聚多巴胺修饰的PI膜和紫外光照还原银的PI膜的表面化学组成进行分析。通过扫描电子显微镜(SEM)观察PI表面形貌的变化。经抗菌性实验测试,此复合薄膜具有优异的抗菌性能。
     (3)本文还研究了通过多巴胺功能化以及无电沉积的方法制备表面包覆有银粒子的玻璃微球(Glass beads/Ag)核壳复合微球。通过多巴胺聚合对玻璃微球表面进行功能化修饰,引入酚羟基和含氮基团。在无电沉积银的过程中,通过改变硝酸银溶液的浓度以及相应葡萄糖溶液的浓度得到表面覆盖有不同厚度和致密程度的银层的玻璃微球。通过X射线光电子能谱(XPS)和X射线衍射仪(XRD)对玻璃微球/银复合微球的表面化学组成进行分析。利用扫描电子显微镜(SEM)以及能量散射x射线能谱仪(EDX)表征玻璃微球在镀银前后的表面形貌以及元素组成的变化。在玻璃微球表面形成的多巴胺层可以起到吸附银离子的作用同时可以促进银的还原。由于聚多巴胺的“桥梁”作用,通过该方法制备的核壳结构复合微球中表面银层与玻璃微球基体之间有较强的结合力。
     本文提出的基于仿生技术的多巴胺自聚合方法为不同基体材料表面的功能化修饰提供了新的平台,在此基础上通过无电电镀可以实现薄膜、纤维、微/纳米粒子等各种尺寸及形状材料表面的金属化,为材料表面功能化改性提供了一个崭新的思路。
The techniques to modify substrate surfaces are significant for many industrial and research applications. The toolbox of methods available so far covers a large number of approaches with their specific advantages and limitations. Among them, spontaneous self-assembly and organization of designed molecules and polymers incorporating adhesion and other functions, are particularly attractive as they constitute cost-effective, easy-to-unscale techniques, applicability to large areas and three-dimensional devices of complex shape, and conformity with micro and nano scale surface technologies, while requiring only minimal amounts of materials.
     Recently, inspired by and studied on the composition of adhesive proteins in mussels, the adhesive mechanisms and adhesive behaviors of polydopamine have been reported. The results indicate that dopamine (or 3,4-dihydroxy-phenylalanine) and other catechol compounds perform well as binding agents for coating various substrates, including organic, inorganic and metal materials. The oxidative polymerization of dopamine and the spontaneous deposition of polydopamine on various surfaces provide a powerful route for surface modification and functionalization. Secondary reactions with the polydopamine layer can be used to create a variety of ad-layers, including self-assembled monolayers, through the deposition of long-chain molecular building blocks, metal films by electroless metallization, and bioactive surface via grafting of macromolecules.
     In this work, suface modification of polyimide (PI) films and glass beads were carried out by utilizing dopamine self-polymerization and deposition. Electroless plating of silver on the as-prepared surfaces was performed to prepare conductive or antibacterial surfaces. The details of the work are as follows:
     (1) A novel method was developed for the preparation of reflective and electrically conductive surfacesilvered polyimide (PI) films. Polyimide films were functionalized with poly(dopamine), simply by dipping the PI films into aqueous dopamine solution and mildly stirring at room temperature. Electroless plating of silver was readily carried out on the poly(dopamine) deposited PI (PI-DOPA) surface. The surface compositions of the modified PI films were studied by X-ray photoelectron spectroscopy (XPS). XPS results show that the PI-DOPA surfaces were successfully deposited with ploy(dopamine) and were ready for electroless deposition of silver. The poly(dopamine) layer was used not only as the chemisorption sites for silver particles during the electroless plating of silver, but also as an adhesion promotion layer for the electrolessly deposited silver. The as-prepared silvered PI films show high conductivity and reflectivity, with a surface resistance of 1.5Ωand reflectivity of 95%, respectively.
     (2) Immobilization of silver nanoparticles on the dopamine functionalized polyimide (PI) films was carried out by photo-induced silver ion-reduction under atmosphere conditions. The dopamine was successfully deposited on the PI surface in mild aqueous environments. The effects of pH, dopamine concentration and reaction time on the dopamine polymerization were investigated. The water contact angles of the poly(dopamine) functionalized PI films reduced remarkably in comparison with that of the pristine PI film. The chemical composition and structure of the UV-induced deposited-silver on the modified PI films were characterized by X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD). The topography of the modified PI films was investigated by scanning electron microscope (SEM). The deposited poly(dopamine) layer acted as binding sites for the silver ions. The silver-plated PI films showed good antibacterial activity due to that biofilm formation was inhibited on the polymeric surfaces in contact with bacteria.
     (3) A simple method was developed to prepare silver-coated silica beads which were functionalized by dopamine. Surface modification of prisitine glass beads was carried out by dopamine polymerization and deposition followed by electroless plating. The content of ammonical AgNO3 in deionized water was varied with respective amount of glucose solution in the seeding growth process and a uniform and relative dense coverage of silver nanoparticle seeds on the surface of silica beads was achieved. The chemical composition of the Ag/silica beads core-shell composite particles were studied by X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD). In addition, the morphologies of the composite particles were observed by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDX). The poly(dopamine) layer was used as the chemi-sorption sites for silver particles and promoted the deposition of silver. The conductivity of as-prepared Ag/silver beads composite particles was tested by four-probe resistivity tester and the resistivity of the particles was 10 mQ.
     In conclusion, this paper shows that dopamine is a versatile method to functionalize the surface of substrate materials range from polymers to inorganics with various shapes, and the combination of the following electroless plating technique could prepare surface metalized composites with good adhesion between the metal with the substrate.
引文
[1]Garg D H, Lenk W, Berwald S, etal. Hydrophilization of microporous polypropylene Celgard(?) membranes by the chemical modification technique[J]. Journal of Polymer Science,1998,60(12):2087-2104
    [2]Ranby B, Gao ZM, Hult A, etal. Modification of polymer surfaces by graft copolymerization[J].Meeting of the division of polymer chemistry,1986,38(2):38-39
    [3]Deng J P, Yang W T, Ranby B. Melt-photografting polymerization of maleic anhydride onto LDPE film[J].European polymer journal,2002,38(7):1449-1455
    [4]金朝锋,申屠宝卿,翁志学.高密度聚乙烯表面光接枝丙烯酸行为研究[J].化学反应工程与工艺,2004,20(2):146-150
    [5]Dooley J, Hilton B T. Layer rearrangement in coextrusion[J]. Plast Eng,1994,50(2):25-27
    [6]钱军民,李旭祥.聚乙烯表面改性研究进展[J].化工新型材料,2000,10(28):24-31
    [7]刘倩,张光华,姚耀广等.等离子体处理高密度聚乙烯表面形态的研究[J].高分子材料科学与工程,1992,(1):113-116
    [8]Sharma R, Holcomb E, Trigwell S, etal. Stability of atmospheric-pressure plasma induced changes on polycarbonate surfaces[J]. Journal of Electrostatics,2007,65(4):269-273
    [9]李加深,盛京,原续波等.XPS研究低温等离子体聚苯乙烯表面改性[J].高分子学报,2001,(2):182-185
    [10]冯祥芬,谢涵坤,菁张.低温等离子体表面处理技术在生物医用材料中的应用[J].物理,2002,31(1):27-30
    [11]应锡璋,王蓓蓓,姚侍凯,朱建国,朱立红,邵慧珍,黄明智,周怀发,王弘远.肝素化医用高分子抗凝管的研究[J].生物医学工程学,1996,13(2):168-171
    [12]Osada Y, Yamada K. Preparation and electrical properties of plasma-polymerized copper acetylaeetonate thin films[J]. Thin Solid Films,1987,151(1):71-86
    [13]杨隽,汪建华.等离子体聚合物薄膜的性质及应用进展[J].塑料工业,2004,32(7):1-4
    [14]曾蓉,庞志成,弋峰,朱鹤孙.Nafion膜表面改性[J].高等学校化学学报,2001,22(4):687-690
    [15]Shi D L, Lian J, He P, et al. Plasma coating of carbon nanofibers for enhanced dispersion and interfacial bonding in polymer composites[J]. Appl. Phys. Lett.,2003,83(25): 5301-5303
    [16]吴金坤.聚烯烃的表面改性[J].化工新型材料,1996,24(7):1-4
    [17]王博,刘伟.聚烯烃表面氧化处理的研究[J].化学工业与工程,1999,16(4):207-213
    [18]吕亮,许青青.废旧聚苯乙烯磺化反应研究[J].天津化工,2002(5):11·12
    [19]Carretta N, Tricoli V, Picchioni F. Ionomeric membranes based on partially sulfonated poly(styrene):synthesis, proton conduction and methanol permeation[J]. Journal of Membrane Science,2000,166(2):189-197
    [20]Carretta N, Tricoli V, Picchioni F. Ionomeric membranes based on partially sulfonated poly(styrene):synthesis, proton conduction and methanol permeation[J]. Journal of Membrane Science,2000,166(2):189-197
    [21]Dauginet L, Duwez A S, Legras R, etal. Surface modification of polycarbonate and poly(ethylene terephthalate) films and membranes by polyelectrolyte deposition[J]. Langmuir,2001,17(13):3952-3957
    [22]孙昌,姚淑德,周生强等.离子注入聚碳酸酯表面力学性能改变研究[J].原子能科学技术,2004,38(5):405-409
    [23]熊党生.离子注入超高分子量聚乙烯的摩擦磨损性能研究[J].摩擦学学报,2004,24(3):244-248
    [24]熊党生,徐嘉东.氮离子注入超高分子量聚乙烯的生物摩擦学性能[J].中国生物医学工程学报,2001,20(4):380-383
    [25]Assadi H, Gartner F, Stoltenhoff T, et al. Bonding Mechanism in Cold Gas Spraying[J]. Acta Materialia,2003,51:4379-4394
    [26]Rezaeian A, Chromik R R, Yue S, et al. Characterization of Cold-Sprayed Ni, Ti and Cu Coating Properties for Their Optimizations[C/CD]. Proceedings of International Thermal Spray Conference 2008. Maastrichit:[s.n.],2008
    [27]Yandouzi M, Jodoin B. WC-Based Coating Production by the Pulsed Gas Dynamic Spraying Process:Coatings and Process Analysis [C/CD]/Proceedings of International Thermal Spray Conference 2009. Las Vegas:[s.n.],2009
    [28]Koivuluoto H, Vuoristo P, Nakki J, etal. Structure and Cocosion Behavior of Cold-Sprayed Tantalum Coatings[C/CD]. Proceedings of International Thermal Spray Conference 2009. Las Vegas:[s.n.],2009
    [29]Fukumoto M, Wada H, Tanabe K, etal. Effect of Substrate Temperature on Deposition Behavior of Copper Particle on Substrate Surface in the Cold Spray Process[J]. Journal of Thermal spray Technology,2007,16(56):643-650
    [30]Dofer J L, Gindrat M, Hollenstein C H. Plasma Jet Properties in a New Spraying Process at Low Pressure for Large Erea Thin Film Deposition[c]. Proceeding of the International Thermal Spray Conference,2001:New Sudacesfor a New Millennium. Ohio:ASM International Materials Park,2001:759-764
    [31]周克崧,刘敏,邓畅光,等.LPPS-TF功能薄涂层的制备技术及其应用前景[c].中国工程院化工、冶金与材料工程学部第七届学术会议.2009,天津
    [32]代明江,刘敏,周克崧.The Review Applied Research and Development of Surface Engineering Technology in GZRINM[J].广东有色金属学报,2005,15(2):60-61
    [33]Fan L H, Wong C P. Thermo setting and thermoplastic bisphenol A epoxy/phenoxy resin as encapsulant material [A]. IEEE.2001 International Symposium on Advanced Packaging Materials: Processes, Properties and Interfaces[C]. Chateau Elan Braselton Georgia:IEEE, 200112302235.
    [34]Gordhanbhai N, Patel, Somerset. pre-swelling and etching of plastics for plating[P]. U S Pat:4941940,1990-07-17.
    [35]Takagi S, Susumu A, Katayama S, et al. Pretreatment methods for electroless plating and electrically conductive materials thereby[P]. JP Pat:20012301462,2001-09-28.
    [36]Ryu S K, Su K, et al. Plating method of metal film on the surface of polymer[P]. U S Pat: 20030165633A1,2003-09-04
    [37]Kim M. Method for forming metal interconnections using electroless plating[P]. U S Pat:2003040177,2003-02-27.
    [38]Takahashi K. Coating of quartz glass and ceramics parts for semiconductor manufacture by thermal plasma spraying after blasting surface treatment of substrates[P]. EP Pat:1310466,
    2003-05-14.
    [39]Honma H, Kawahara A, et al. Method of plating nonconductor product[P]. JP Pat: 2002-JP8655,2002-08-28.
    [40]Yamagishi K, Yae S, et al. Adsorbates formed on non-conducting substrates by two-step catalyzation pretreatment for electroless plating[J]. The Surface Finishing Society of Japan, 2003,54(2):150-154
    [41]Yen P W, Chou T C. Formation of palladium metal active sites on styrene-divinybenzene copolymer catalyst by alcohol reduction at room temperature[J]. Applied Catalysis,1999, 182(5):217-223
    [42]Yutaka T, Kouji M, Yashichi O, et al. Application of vapor-deposited carbon and zinc as a substitute for palladium catalyst in the electroless plating of nickel[J]. Surface and Coating Technology,2003,169(1):116-119
    [43]顾朝霞.ABS及ABS合金的电镀工艺[J].兰化科技,1997,15(1):38-43
    [44]Sekiguchi J, Imori T, et al. Agent for conducting pretreatment for electroless plating and electroless plating method using the agent[P]. JP Pat:2003193245A 2,2003-07-09.
    [45]Katayama K, Maeda J, et al. Catalyst application on resin substrate before electroless plating [P] JP Pat:2003041375,2003-02-03.
    [46]Tanaka K, Asami T, et al. Electroless plating of magnesium and magnesium alloy[P]. JP Pat:2003231979,2003-08-19.
    [47]Yang G H, Neoh K G Thermal and Electroless deposition of copper on poly (Tetrafluo roethylene-co-hexafluo ropropylene) films modified by surface graft copolymerization[J]. Transactions on Advanced Packaging,2002,25(3):365-373
    [48]Wu S Y. Surface modification of poly films by graft copolymerization for adhesion improvement with evaporated[J]. Transactions on Advanced Packaging,1999,22(2): 214-220
    [49]章兆兰,张博.低温化学镀镍的研究及其应用[J].陕西师范大学学报,1998,26(4):71-73
    [50]鲍红权,刘强华.化学镀金属导电纤维制备与性能研究[J].玻璃纤维,1997,(4):2-5.
    [51]刘国勤,李延祥.Ni-Co-P/SiC镀层和SiC表面金属化[J].腐蚀与防护,2002,23(9):381-383
    [52]Touyeras F, Hihn J Y, Doche M L, et al. Electroless copper coating of epoxide plates in an ultrasonic field[J]. Ultrasonics Sonochemistry,2001,8:285-290
    [53]陈亚.高品质塑料电镀技术新进展[J].电镀与环保,1999,19(3):3-5
    [54]宋玉芬,姚树人.涂层与基体金属附着力的研究进展[J].材料保护,1999,32(9):21-22
    [55]Huang C J, Yen C C. Chang T C, et al. Studies on the preparation and properties of conductive polymers Ⅳ. novel method to prepare metallized plastics from metal chelates of polyamides[J]. Appl Polym Sci,1991,42 (8):2267-2277
    [56]Yen C C, Chang T C. Studies on the preparation and properties of conductive polymer. Ⅰ. novel method to prepare metalized plastic from metal chelate of poly(vinylalcohol)[J]. Applied Polymer Sci,1990,40(1):53-66
    [57]Toriyama N (Japan). Electroless plating by reducing metal ion on substrate surface [P]. JP Pat:2002363762,2002-12-18.
    [58]刘光炳,湛虹.金属化的高分子薄膜制备与导电性能[J].材料保护,1998,31(6):3-4
    [59]敖辽辉.高精度碳纤维复合材料天线金属化技术[J].电讯技术,1999,39(2):84-86
    [60]夏文干,杨洁.先进复合材料金属化研究的必要性探讨[J].电讯工程,2001,(1):17-26
    [61]吴利英,高建军.复合材料转移法金属化脱模剂工艺研究及应用[J].胶体与聚合物,2001,23(4):1722-1731
    [62]Lee H, Dellatore S M., Miller W M., Messersmith P B. Mussel-inspired surface chemistry for multifunctional coating[J]. Science,2007,19(318):426-430
    [63]Dai J H, Bruening M L. Catalytic nanoparticles formed by reduction of metal ions in multilayered polyelectrolyte films[J]. Nano Letters,2002,2(5):497-501
    [64]Waite J H, Tanzer M L. Polyphenolic substance of Mytilus edulis:novel adhesive containing L-dopa and hydroxyproline[J]. Science,1981,29(212):1038-1040
    [65]Li B, Liu W P, Jiang Z Y, et al. Ultrathin and Stable Active Layer of Dense Composite Membrane Enabled by Poly(dopamine)[J]. Langmuir,2009,25(13):7368-7374
    [66]Xi Z Y, Xu Y Y, Zhu L P, et al. A facile method of surface modification for hydrophobic polymer membranes based on the adhesive behavior of poly(DOPA) and poly(dopamine) [J]. Journal of membrane science,2009, (327):244-253
    [67]Ou J F, Wang J Q, Liu S, et al. Microtribological and electrochemical corrosion behaviors of polydopamine coating on APTS-SAM modified Si substrate[J]. Applied surface science, 2009, (256):894-899
    [68]Fen B, Qian B T, Yang Z Y, et al. Coating carbon nanotubes by spontaneous oxidative polymerization of dopamine[J]. Carbon,2008,46:1792-1828
    [69]Chen S G, Chen Y, Lei Y H, et al. Novel strategy in enhancing stability and corrosion resistance for hydrophobic functional films on copper surfaces[J]. Electrochemistry communication,2009, (11):1675-1679
    [70]Fan X W, Lin L J, Dalsin J L, et al. Biomimetic Anchor for Surface-Initiated Polymerization from Metal Substrates[J]. J. Am. Chem. Soc.2005,127:15843-15847
    [71]Muruganand S, Narayandass S K, Mangalaraj D. Dielectric and conduction properties of pure polyimide films[J]. Polymer International,2001,50(10):1089-1094
    [72]张雯,张露,李家利.国外聚酰亚胺薄膜概况及其应用进展[J].绝缘材料,2001,34(2):21-23
    [73]Wu D Z, Zhang T, Wang W C, Zhang L Q, Jin R G. Reflective and conducitve surface-silvered polyimide films prepared by surface graft copolymerization and electroless plating. Polymers for advanced technologies,2007, (10):1002-1009
    [74]Wang W C, Vora R H, Kang E T, Neoh K G. Electroless plating of copper on fluorinated polyimide films modified by surface graft copolymerization with 1-vinylimidazole and 4-vinylpyridine. Polymer engineering and science,2004,44(2):362-375
    [75]冯乃谦,严建华.银型无机抗菌剂的发展及其应用[J].材料导报,1998,12(4):1-3
    [76]纪旭,熊金钰.抗菌剂研究进展[J].实用药物与临床,2005,8(1):45-47
    [77]墙蔷,倪红卫,幸伟,等.银的抗菌作用机理[J].武汉科技大学学报:自然科学版,2007,30(2):121-124
    [78]Ignatova M, Labaye D, Lenoir S, Strivay D, Jerome R, Jerome C. Immobilization of silver in polypyrrole/polyanion composite coating:preparation, characterization, and antibacterial activity[J]. Langmuir,2003,19(21):8971-8979
    [79]Liu Y, Liu C Y, Rong Q H, Zhang Z. Characteristics of the silver-doped TiO2 nanoparticles[J]. Applied Surface Science,2003, (220):7-11
    [80]Shi Z L, Neoh K G, Kang E T. Surface-grafted viologen for precipitation of silver
    nanoparticles and their combined bacterial activities[J]. Langmuir,2004,20(16): 6847-6852
    [81]Klueh U, Wagner V, Kelly S, Johnson A, Bryers J D. Efficacy of silver-coated fabric to prevent bacterial colonization and subsequent device-based biofilm formation[J]. Journal of biomedical materials research part B:Applied biomaterials,2000,53(6):621-631
    [82]Park J I, Cheon J W. Synthesis of "solid solution" and "core-shell" type cobalt-platinum magnetic nanoparticles via transmetalation reactions[J]. J Am Chem Soc,2001,123: 5743-5746
    [83]Klueh U, Wagner V, Kelly S, Johnson A, Bryers J D. Efficacy of silver-coated fabric to prevent bacterial colonization and subsequent device-based biofilm formation[J]. Journal of biomedical materials research part B:Applied biomaterials,2000,53(6):621-631
    [84]Park J I, Cheon J W. Synthesis of "solid solution" and "core-shell" type cobalt-platinum magnetic nanoparticles via transmetalation reactions[J]. J Am Chem Soc,2001,123: 5743-5746
    [85]Frank C, Marina S, Andrei S, et al. Magnetic nanocomposite particles and hollow spheres constructed by a sequential layering approach[J]. Chem Mater,2001,13:109-116
    [86]杨丽,张玉梅.无机粉末的化学镀Fe-Ni合金[J].新技术新工艺,1997(1):37-39
    [87]陈步明,郭忠诚,杨显万.表面活性剂对空心玻璃微球化学镀银影响的研究[J].电镀与涂饰,2007,26(2):25-28
    [88]常仕英,郭忠诚.玻璃微球化学镀银[J].电镀与涂饰,2007,25(11):17-19
    [89]黄立新,金克宁,邓邦华.二氧化硅/银复合材料研究[J].江西科学,2008,26(5):789-793

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700