用户名: 密码: 验证码:
新型表面分子印迹和识别聚合物材料的制备及其在电化学传感器的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
分子印迹技术是一种制备对模板分子具有识别性能的聚合物的技术。分子印迹聚合物对模板分子的识别具有特异识别性、构效预定性和广泛实用性等特点。分子印迹聚合物具有化学稳定性好、选择性高和容易制备等特点,但是传统分子印迹聚合物存在模板分子去除难、印迹位点少和传质速度慢等缺点,在许多方面的应用受到了限制。为了解决这些问题,研究者通过表面分子印迹技术法制备基于载体的印迹聚合物材料,该表面印迹材料的印迹位点位于材料的表层,可提高目标分子的识别响应速度,降低非特异性吸附,从而提高印迹材料对印迹分子的吸附量和选择性。在制备高吸附量、高选择性的材料方面,除了表面分子印迹技术外,也可以采用表面分子识别技术来达到相应的目的,表面分子识别技术是通过在载体表面嫁接上一些功能团或聚合物的技术,该技术可制备表面分子识别聚合物材料。表面印迹和识别聚合物材料已经应用于电化学传感器、萃取分离等领域。将表面印迹和识别聚合物材料应用于电化学传感器中,可带来测定方法的高灵敏度和高选择性。
     本论文的工作主要集中在制备新型表面印迹和识别聚合物材料,创新性地以烯基化的氧化石墨烯/二氧化硅、还原氧化石墨烯、硼酸化氧化石墨烯、八乙烯基-多面体低聚倍半硅氧烷等材料作为载体,采用自由基聚合法制备四种表面分子印迹聚合物材料:此外,本文在多壁碳纳米管表面制备了识别聚合物材料;这些材料都是基于载体和聚合物的复合材料;本论文同时构筑了基于这些材料的高选择性和高灵敏的电化学传感器,并将其成功地用于生物分子多巴胺、药物分子芦丁、环境污染物的检测。本论文为表面分子印迹技术、生物分析、药物分析和环境污染物的检测以及电化学传感器等研究的拓展开辟了一条新的、有效的途径。全文共分为六章,具体内容如下:
     第一章绪论
     本章对分子印迹技术的原理、发展和应用进行了全面综述。着重介绍了表面分子印迹技术,介绍了表面分子印迹聚合物材料的分类、制备和应用。我们重点介绍了分子印迹与电化学传感技术相结合的研究和应用。此外,我们也介绍了表面分子识别聚合物材料的制备方法与应用。最后阐述了本论文的研究意义和主要研究内容。
     第二章氧化石墨烯/二氧化硅的表面分子印迹聚合物材料制备及其对多巴胺的电化学传感研究
     本章创新性地采用新型印迹合成方法制备了二氧化硅覆盖的氧化石墨烯表面分子印迹聚合物材料(GO/SiO2-MIPs),并成功构筑了GO/SiO2-MIPs的电化学传感器,从而实现了多巴胺的特异性检测。在印迹材料合成过程中,氧化石墨烯首先在碱性条件下采用溶胶-凝胶法合成二氧化硅覆盖的氧化石墨烯(GO/SiO2),然后GO/SiO2首次通过化学键合法接上3-(甲基丙烯酰氧)丙基三甲氧基硅烷(y-MAPS),从而获得富含烯键的MAPS-GO/SiO2;分别以多巴胺和甲基丙烯酸为模板分子和功能单体,乙二醇二甲基丙烯酸酯(EGDMA)为交联剂,采用自由基聚合法制备GO/SiO2-MIPs。我们采用红外光谱、热重分析、拉曼光谱、扫描电镜和原子力显微镜等手段对GO/SiO2-MIPs进行了表征。论文中采用循环伏安法和差分脉冲伏安法(DPV)等手段,对GO/SiO2-MIPs修饰电极的电化学行为进行了考察。结果表明,GO/SiO2-MIPs对多巴胺具有良好的特异性吸附性能,印迹材料的DPV电流响应是非印迹材料的3.21倍;相对于其它结构较类似的分子如肾上腺素和去甲肾上腺素,GO/SiO2-MIPs传感器对多巴胺均有较好的选择性;同时,GO/SiO2-MIPs传感器对多巴胺也具有较高的灵敏度,其电流响应与多巴胺的浓度在5.0x10-8~1.6x104M范围内具有良好的线性关系,检测限为3.0×10-8M(S/N=3)。该表面印迹材料的合成方法简单、方便,同时本章较好地将表面分子印迹技术和电化学传感器相结合,实现了生物分子多巴胺的高选择性、高灵敏度的检测,该检测方法有望在生命科学、临床分析等领域中得到应用。
     第三章还原氧化石墨烯的表面分子印迹聚合物材料制备及其对4-硝基苯酚的电化学传感研究
     本章制备了还原氧化石墨烯的表面分子印迹聚合物材料(RGO-MIPs),并构筑RGO-MIPs的电化学传感器,实现环境水中4-硝基苯酚的特异性检测。本章创新性地以RGO为载体,4-硝基苯酚为模板分子,甲基丙烯酸为功能单体,EGDMA为交联剂,采用表面分子印迹技术制备RGO-MIPs.我们采用红外光谱、热重分析、拉曼光谱和扫描电镜等手段对RGO-MIPs进行表征。论文中应用差分脉冲伏安法手段,对RGO-MIPs修饰传感器的电化学行为进行了考察。结果表明,与酚类和硝基苯类化合物相比,RGO-MIPs传感器对4-硝基苯酚的具有较好的吸附能力和较好的选择性;RGO-MIPs传感器也具有较高的灵敏度,其电流响应与4-硝基苯酚的浓度在0.01~100.0μM范围内呈现良好的线性关系,检测限为0.005μM(S/N=3)。本文所研制的RGO-MIPs电化学传感器用于4-硝基苯酚的测定具有灵敏度高、选择性好、响应速度快等优点,为环境水样中4-硝基苯酚的检测提供了新的方法。
     第四章硼酸化氧化石墨烯的表面分子印迹聚合物制备及其对多巴胺的电化学传感研究
     本章制备了硼酸化氧化石墨烯的表面分子印迹聚合物材料(GOBA-MIPs),并成功构筑了GOBA-MIPs的电化学传感器,实现多巴胺(DA)的特异性检测。氧化石墨烯在EDC·HCl和NHS存在条件下接上3-氨基苯硼酸,从而制备硼酸化的氧化石墨烯;以硼酸化的氧化石墨烯为载体,多巴胺为模板分子,丙烯酰胺为功能单体,EGDMA为交联剂,采用表面印迹技术制备GOBA-MIPs.我们利用循环伏安法和差分脉冲伏安法(DPV)等手段,对GOBA-MIPs修饰电极的电化学行为进行了考察。结果表明,该结构均一、性能稳定的DA印迹的GOBA-MIPs包含与DA分子结构、大小相匹配的特定空穴;此外,其表面含有硼酸基团可特异性结合DA,因此该材料具有对DA分子的双识别能力。该印迹材料对DA具有良好的吸附能力,其DPV电流响应是非印迹材料的3.49倍;GOBA-MIPs传感器也具有较高的灵敏度,其电流响应与多巴胺的浓度在0.5~100.0μM范围内表现良好的线性关系,检测限为0.2μM (S/N/=3)。本工作创新性地把硼酸功能化技术和分子印迹技术的两者优势进行结合,从而达到对DA分子的双识别研究。
     第五章基于POSS的表面分子印迹聚合物材料制备及其用于芦丁的电化学检测
     本章创新性地制备了多面体低聚倍半硅氧烷(POSS)的表面分子印迹聚合物材料(POSS-MIPs),并构筑POSS-MIPs电化学传感器对药片中芦丁的特异性检测。以八乙烯基-POSS为载体,芦丁为模板分子,丙烯酰胺为功能单体,EGDMA为交联剂,采用自由基聚合法制备POSS-MIPs.采用热重分析和扫描电镜等手段对POSS-MIPs进行表征。论文中应用循环伏安法和差分脉冲伏安法等手段,对POSS-MIPs传感器的电化学行为进行了研究。结果表明,POSS-MIPs对芦丁具有良好的吸附能力和较好的选择性,印迹材料响应电流是非印迹材料的3.31倍,与其他结构较类似分子如槲皮素、山奈酚,POSS-MIPs传感器对芦丁均有较好的选择性,其选择性系数达到6.0以上;同时,该传感器的响应电流与芦丁浓度在1.0~70.0μ范围内呈现良好的线性关系,检测限为0.5μM (S/N=3)。本工作的开展为POSS复合材料的制备及其应用提供了新的思路。
     第六章多壁碳纳米管表面聚丙烯酰胺材料的制备及其用于甲基对硫磷的电化学检测
     本章报道了在多壁碳纳米管(MWCNTs)表面进行乙烯基功能化,丙烯酰胺(AAm)为功能单体,在多壁碳纳米管的表面制备聚丙烯酰胺复合材料(MWCNTs-PAAM)。基于MWCNTs-PAAM含有较多胺基官能团,胺基官能团与甲基对硫磷之间具有p-π和氢键作用力,其对甲基对硫磷具有一定的亲合性,因此MWCNTs-PAAM对甲基对硫磷有一定的识别能力。我们用红外光谱、热重分析和扫描电镜等手段对MWCNTs-PAAM进行了表征。论文中采用循环伏安法和差分脉冲伏安法等手段,对MWCNTs-PAAM修饰电极的电化学行为进行了考察;同时研究了MWCNTs-PAAM修饰电极的选择性。结果表明,与金属离子和硝基苯类化合物相比,MWCNTs-PAAM修饰电极对甲基对硫磷有较高的吸附性能和亲和作用,其电流响应与甲基对硫磷的浓度在5.0×10-9~1.0×10-5M范围内呈现良好的线性关系,检测限为2.0×10-9M(S/N=3)。本章所研制的MWCNTs-PAAM电化学传感器用于甲基对硫磷的测定具有响应速度快、灵敏度高、选择性好等优点,为环境水中甲基对硫磷的检测提供了新的方法。
Molecular imprinting technique has become a promising way to prepare molecularly imprinted polymers (MIPs) with tailored selectivity for analytes. MIPs exhibit an affinity for the template molecule over other structurally related compounds. MIPs have some advantages containing their predetermination, specificity and practicability for molecular recognition. However, traditional MIPs have many limitations, such as incomplete template removal, low-affinity binding and slow mass transfer. Therefore, researchers develop surface MIPs materials on the surface of matrix using surface imprinting technique, which enables the template-imprinting sites to situate at the surface or in the proximity of the materials, providing the advantages of favorable selectivity and fast association/dissociation kinetics. Therefore, surface imprinting technique can synthesize materials with high selectivity and amount of adsorption for targets. These materials can also be prepared with surface molecular recognition technique. Using this method, the support matrix was grafted with functional groups or polymers. The materials of surface MIPs and recognizing polymers have been applied in electrochemical sensors and separation media. Analytical methods based on these surface materials can greatly increase the sensitivity and selectivity. After modifying surface MIPs and recognizing materials onto the electrochemical sensor, their combination can lead to high sensitivity and selectivity for electrochemical detection.
     In this dissertation, we laid our emphasis on the novel materials of surface MIPs and recognizing polymers. Through free radical polymerization, four kinds of surface imprinting materials were prepared with vinyl groups functional SiO2-coated graphene oxide, reduced graphene oxide, boronic acid-functionalized graphene oxide, and octavinyl-polyhedral oligomeric silsesquioxane as the support matrix. In addition, a novel material of surface recognizing polymers on multiwalled carbon nanotubes (MWCNTs) was prepared. These materials belonged to composites. We combined materials with electrochemical sensors to detect dopamine of biological molecule, rutin of drug molecule, environmental pollutants, which had good selectivity, stability and sensitivity. This dissertation opens up a new and effective way to develop the fields including surface imprinting technique, electrochemical sensors, bioanalysis, the determination of drug and environmental pollutants.The dissertation contains six chapters. The primary research work is as follows:
     Chapter1. Overview
     The chapter gave a comprehensive overview for the principle, development and application of molecular imprinting technique. The development and application of surface molecular imprinting technique was highlighted. We introduced the classification, preparation and application of surface MIPs materials. In addition, we put emphasis on introducing the research and application of electrochemical sensors modified with surface MIPs materials. Moreover, we introduced the preparation and application of surface recognizing materials. Finally, we expounded our research significance and main contents of the dissertation.
     Chapter2. The preparation of surface molecularly imprinted polymers material based on SiO2-coated graphene oxide and its electrochemical sensing dopamine
     A novel imprinting route based on graphene oxide was proposed for preparing a surface molecularly imprinted polymers material based on SiO2-coated GO (GO/SiO2-MIPs). The sensor based on GO/SiO2-MIPs was applied to the specific determination of dopamine (DA) with satisfactory results. In this route, SiO2-coated GO sheets were synthesized in a water-alcohol mixture with sol-gel technique. Prior to polymerization, the vinyl groups were introduced onto the surface of GO/SiO2through chemical modification with γ-methacryloxypropyl trimethoxysilane (γ-MAPS). Through free radical polymerization, GO/SiO2-MIPs were successfully obtained by the copolymerization in presence of vinyl groups functionalized GO/SiO2, dopamine, methacrylic acid and ethylene glycol dimethacrylate. GO/SiO2-MIPs were characterized by Fourier transform infrared spectrometer (FTIR), Thermal gravimetric analysis (TGA), Raman spectroscopy, Scanning electronic microscopy (SEM) and Atomic force microscopy (AFM). The electrochemical characteristics of GO/SiO2-MIPs modified electrode was investigated by cyclic voltammetry and differential pulse voltammetry (DPV). The DPV current response of GO/SiO2-MIPs sensor was nearly3.21times that of the non-imprinted polymers. In addition, the GO/SiO2-MIPs sensor could recognize DA from its relatively similar molecules of norepinephrine and epinephrine. The GO/SiO2-MIPs sensor had a wide linear range over DA concentration from5.0×10-8to1.6×10-4M with a detection limit of3.0×10-8M (S/N=3). The preparation for GO/SiO2-MIPs was easy. And this paper combined surface imprinting technique and electrochemical sensor to achieve the high selective and sensitive determination for DA. This method should be expected to be used in life science and clinical analysis.
     Chapter3. The preparation of surface molecularly imprinted polymers material based on reduced graphene oxide and its electrochemical sensing4-nitrophenol
     A surface molecularly imprinted polymers material based on reduced graphene oxide (RGO-MIPs) was prepared. The sensor based on RGO-MIPs was applied to the specific determination of4-nitrophenol (4-NP) in environmental samples. RGO-MIPs were synthesized using RGO as the support matrix,4-NP as the template molecule, methacrylic acid as the functional monomer, and EGDMA as the cross-linking agent. RGO-MIPs were characterized by FTIR, TGA, Raman spectroscopy and SEM. The electrochemical characteristics of RGO-MIPs sensor were investigated by differential pulse voltammetry. The RGO-MIPs sensor exhibited a high adsorption and good selectivity toward4-NP compared with some phenolic and nitroaromatic compounds. In addition, RGO-MIPs sensor had high sensitivity for4-NP. The RGO-MIPs sensor had a wide linear range over4-NP concentration from0.01to100.0μM with a detection limit of0.005μM (S/N=3). The electrochemical sensor based on RGO-MIPs shows high sensitivity, selectivity and rapid response, and provides a novel method for detecting4-NP in environmental water samples.
     Chapter4. The preparation of surface molecularly imprinted polymers material based on boronic acid-functionalized graphene oxide and its electrochemical sensing dopamine
     A surface molecularly imprinted polymers material based on boronic acid-functionalized graphene oxide (GOBA-MIPs) was prepared. The sensor based on GOBA-MIPs was applied to the specific determination of dopamine (DA). Boronic acid-functionalized graphene oxide was synthesized in the presence of3-aminobenzeneboronic acid, EDC·HCl and NHS. GOBA-MIPs were prepared using boronic acid-functionalized graphene oxide as the support matrix, DA as the template molecule, acrylamide as the functional monomer, and EGDMA as the cross-linking agent. The electrochemical characteristics of GOBA-MIPs sensor were investigated by cyclic voltammetry and differential pulse voltammetry. It has been demonstrated that this homogeneous and stable molecular imprinting material showed a double-recognition for DA with the specific cavities and boronic acid groups which contained in the materials. The experiment results showed that GOBA-MIPs had a high adsorption capacity toward DA with3.49times current response compared with non-imprinted polymers. The GOBA-MIPs sensor had a wide linear range over DA concentration from0.5to100.0μM with a detection limit of0.2μM (S/N=3). This work innovatively combined boronic acid-functionalized technique with surface imprinting to achieve double-recognition for DA.
     Chapter5. The preparation of surface molecularly imprinted polymers material based on POSS and its application in electrochemical detecting rutin
     A surface molecularly imprinted polymers material based on polyhedral oligomeric silsesquioxane (POSS-MIPs) was prepared. The sensor based on POSS-MIPs was applied to the specific determination of rutin in tablets. Through free radical polymerization, POSS-MIPs were prepared using octavinyl-POSS as the support matrix, rutin as the template molecule, acrylamide as the functional monomer, and EGDMA as the cross-linking agent. POSS-MIPs were characterized by TGA and SEM. The electrochemical characteristics of POSS-MIPs sensor were investigated by cyclic voltammetry and differential pulse voltammetry. The experiment results showed that POSS-MIPs exhibited a high adsorption capacity toward rutin with3.31times current response compared with non-imprinted polymers. In addition, the POSS-MIPs sensor could recognize rutin from its relatively similar molecules of kaempferol and quercetin. Its selectivity coefficient for rutin over kaempferol or quercetin was larger than6.0. The POSS-MIPs sensor had a wide linear range over rutin concentration from1.0to70.0μM with a detection limit of0.5μM (S/N=3). This work provides new ideas for the preparation and application of POSS composite.
     Chapter6. The preparation of surface poly(acrylamide) material based on MWCNTs and its application in electrochemical detecting methyl parathion
     In this chapter, a surface poly(acrylamide) material based on MWCNTs (MWCNTs-PAAM) was prepared using vinyl-functionalized MWCNTs as the support matrix, acrylamide as the monomer. MWCNTs-PAAM had high content of amide groups, which had affinity for methyl parathion (MP) through p-π and hydrogen-bond interaction. So MWCNTs-PAAM had a certain recognition for MP. MWCNTs-PAAM were characterized by FTIR, TGA and SEM. The electrochemical characteristics of MWCNTs-PAAM modified electrode were investigated by cyclic voltammetry and differential pulse voltammetry. The selectivity of MWCNTs-PAAM sensor was investigated. The MWCNTs-PAAM modified electrode exhibited a high adsorption and strong affinity for methyl parathion compared with some metal ions and nitroaromatic compounds. The MWCNTs-PAAM modified electrode had a wide linear range over MP concentration from5.0×10-9to1.0×10-5M with a detection limit of2.0×10-9M (S/N=3). The MWCNTs-PAAM modified electrode was proved to be a suitable sensing tool for the fast, sensitive and selective determination of methyl parathion in environmental water samples.
引文
[1]L. Pauling, J. Am. Chem. Soc.62 (1940) 2643-3657.
    [2]F. H. Dickey, Proc. Natl. Acak. Sci USA 35 (1949) 227-229.
    [3]G. Wulff, A. Sarhan, Angew. Chem. Int. Ed.11 (1972) 341-344.
    [4]G Vlatakis, L.I. Andersson, R. Muller, K. Mosbach, Nature 361 (1993) 645-647.
    [5]W.J. Lian, S. Liu, J.H. Yu, J. Li, M. Cui, W. Xu, J.D. Huang, Biosens. Bioelectron. 44 (2013) 70-76.
    [6]M. Bompart, Y De Wilde, K. Haupt, Adv. Mater.22 (2010) 2343-2348.
    [7]H.M. Qiu, C.N. Luo, M. Sun,F.G. Lu, L.L. Fan, X. J.Li, Anal. Chim. Aota 744 (2012) 75-81.
    [8]R Zhu, W. H.Zhao, M.J. Zhai, F.D. Wei, Z. Cai, N. Sheng, Q. Hu, Anal. Chim. Acta 658 (2010) 209-216.
    [9]C. Baggiani, P. Baravalle, C. Giovannoli, L. Anfossi, G Giraudi, Anal. Bioanal. Chem.397 (2010) 815-822.
    [10]P. Lenain,J. Diana Di Mavungu, P. Dubruel, J. Robbens, S. De Saeger, Anal. Chem.84 (2012) 10411-10418.
    [11]H. Sambe, K. Hoshina, R. Moaddel, I.W. Wainer, J. Haginaka, J. Chromatogr. A 1134 (2006) 88-94.
    [12]B.Y Huang, YC. Chen, GR. Wang, C.Y Liu, J. Chromatogr. A 1218 (2011) 849-855.
    [13]L.X. Chen, S.F. Xu, J.H. Li, Chem. Soc. Rev.40 (2011) 2922-2942.
    [14]W. Zhang, X.W. He, Y Chen, W.Y. Li, Y.K. Zhang, Biosens. Bioelectron.31 (2012) 84-89.
    [15]G Wulff, A. Sarchan, K. Zabrocki, Tetrahedron, lett.14 (1973) 4329-4332.
    [16]G Wulff, A Sarchan, Angew. Chem. Int. Ed.11 (1972) 341-342.
    [17]U. Andersson, B. Sellergren, K. Mosbach, Tetrahcdron. Lett.25 (1984) 5211-5214.
    [18]B. Sellergren, M. Lepisto, K. Mosbach, J. Am. Chem. Soc.110 (1988) 5853-5860.
    [19]M.J. Whitcombe, M.E. Rodriguez, P. Villar, E. N. Vulfson, J. Am. Chem. Soc. 117(1995)7105-7111.
    [20]S.A. Piletsky, E.V. Piletskaya, K. Yano, A. Kugimiya, A.V. Elgersama, R. Levi, V. Kahlow, T. Takeuchi, I. Karube, Anal. Lett.29 (1996) 157-170.
    [21]X. Shen, L.H. Zhu, N. Wang, L. Ye, H.Q. Tang, Chem. Commun.48 (2012) 788.
    [22]R. Carabias-Martinez, E. Rodriguez-Gonzalo, E. Herrero-Hernandez, J. Chromatogr. A 1085 (2005) 199-206.
    [23]Y.Q. Liu, K. Hoshina, J. Haginaka, Talanta 80 (2010) 1713-1718.
    [24]J. Haginaka, H. Tabo, C. Kagawa, J. Pharm. Biomed. Anal.46 (2008) 877-881.
    [25]H.Y. Yan, K.H. Row, Int. J. Mol. Sci.7 (2006) 155-178.
    [26]Y.S. Chang, T.H. Ko, T.J. Hsu, M.J. Syu, Anal. Chem.81 (2009) 2098-2105.
    [27]X.H. Tan, B.H. Li, K.Y. Liew, C.Y. Li, Biosens. Bioelectron.26 (2010) 868-871.
    [28]A.K. Roy, V.S. Nisha, C. Dhand, B.D. Malhotra, J. Mol. Recognit.24 (2011) 700-706.
    [29]X.Y. Zheng, R.Y. Lin, X.C. Zhou, L.L. Zhang, W.X. Lin, Anal. Methods 4 (2012) 482-487.
    [30]A. Tiwari, S.R. Deshpande, H. Kobayashi, A.P.F. Turner, Biosens. Bioelectron. 35(2012)224-229.
    [31]J.P. Li, J. Zhao, X.P. Wei, Sens. Actuators. B 140 (2009) 663-669.
    [32]D. Tonelli, B. Ballarin, L. Guadagnini, A. Mignani, E. Scavetta, Electrochim. Acta 56 (2011) 7149-7154.
    [33]F. Berti, S. Todros, D. Lakshmi, M.J. Whitcombe, I. Chianella, M. Ferroni, S.A. Piletsky, A.P.F. Turner, G Marrazza, Biosens. Bioelectron.26 (2010) 497-503.
    [34]J.Y. Huang, Z.X Wei, J.C. Chen, Sens. Actuators. B 134 (2008) 573-578.
    [35]F. Chapuis, V. Pichon, F. Lanza, B. Sellergren, M.C. Hennion, J. Chromatogr. B 804(2004)93-101.
    [36]C. Baggiani, L. Anfossi, P. Baravalle, C. Giovannoli, C. Tozzi, Anal. Chim. Acta 531 (2005) 199-207.
    [37]M. Kawaguchi, Y. Hayatsu, H. Nakata, Y. Ishii, R. Ito, K. Saito, H. Nakazawa, Anal. Chim. Acta 539 (2005) 83-89.
    [38]T. Jing, X.D. Gao, P. Wang, Y. Wang, Y.F. Lin, X.Z. Hu, Q.L. Hao, Y.K. Zhou, S.R. Mei, Anal. Bioanal. Chem.393 (2009) 2009-2018.
    [39]C.H. Lu, W.H. Zhou, B. Han, H.H. Yang, X. Chen, X.R. Wang, Anal. Chem.79 (2007) 5457-5461.
    [40]Z.H. Zhang, M.L. Zhang, L.J. Luo, X.A. Yang, Y.F. Hu, H.B. Zhang, S.Z. Yao, J. Sep. Sci.33 (2010) 2854-2861.
    [41]Y. Li, C.K. Dong, J. Chu, J.Y Qi, X. Li, Nanoscale 3 (2011) 280-287.
    [42]R.Z. Ouyang, J.P. Lei, H.X. Ju, Chem. Commun. (2008) 5761-5763.
    [43]A. Menaker, V. Syritski, J. Reut, A. Opik, V. Horvath, R.E. Gyurcsanyi, Adv. Mater.21 (2009) 2271-2275.
    [44]Y.T. Liu, J. Deng, X.L. Xiao, L. Ding, YL. Yuan, H. Li, X.T. Li, X.N. Yan, L.L. Wang, Electrochim. Acta 56 (2011) 4595-4602.
    [45]Y.V. Ulyanova, A.E. Blackwell, S.D. Minteer, Analyst 131 (2006) 257-261.
    [46]C.G Xie, H.F. Li, S.Q. Li, J. Wu, Z.P. Zhang, Anal. Chem.82 (2010) 241-249.
    [47]P. Liu, X.H. Zhang, W. Xu, C.H. Guo, S.F. Wang, Sens. Actuators. B 163 (2012) 84-89.
    [48]Z.H. Zhang, L.J. Luo, H.J. Chen, M.L. Zhang, X. Yang, S.Z. Yao, J.X. Li, M.J. Peng, Electroanal.23 (2011) 2446-2455.
    [49]J.P. Li, Y.P. Li, Y. Zhang, G. Wei, Anal. Chem.84 (2012) 1888-1893.
    [50]Y. Ben-Amram, R. Tel-Vered, M. Riskin, Z.G Wang, I. Willner, Chem. Sci.3 (2012) 162-167.
    [51]X.W. Kan, H. Zhou, C. Li, A.H. Zhu, Z.L. Xing, Z. Zhao, Electrochim. Acta 63 (2012) 69-75.
    [52]M. Riskin, Y. Ben-Amram, R. Tel-Vered, V. Chegel, J. Almog, I. Willner, Anal. Chem.83 (2011) 3082-3088.
    [53]H.F. Men, H.Q. Liu, Z.L. Zhang, J. Huang, J. Zhang, Y.Y. Zhai, L. Li, Environ. Sci. Pollut. R.19 (2012) 2271-2280.
    [54]Q. Lu, X.M. Chen, L. Nie, J. Luo, H.J. Jiang, L.N. Chen, Q. Hu, S.H. Du, Z.P. Zhang, Talanta 81 (2010) 959-966.
    [55]X. Chen, Z.H. Zhang, X. Yang, J.X. Li, Y.N. Liu, H.J. Chen, W. Rao, S.Z. Yao, Talanta 99 (2012) 959-965.
    [56]M.S. Zhang, J.R. Huang, P. Yu, X. Chen, Talanta,81 (2010) 162-166.
    [57]J.X. Liu, H. Chen, Z. Lin, J.M. Lin, Anal. Chem.82 (2010) 7380-7386.
    [58]M.H. Lee, Y.C. Chen, M.H. Ho, H.Y. Lin, Anal. Bioanal.Chem.397 (2010) 1457-1466.
    [59]L.M. Chang, S. Wu, S.N. Chen, X. Li, J. Mater. Sci.46 (2011) 2024-2029.
    [60]Y. Mao, Y. Bao, S.Y. Gan, F.H. Li, L. Niu, Biosens. Bioelectron.28 (2011) 291-297.
    [61]H. Zeng, Y.Z. Wang, C. Nie, J.H. Kong, X.J. Liu, Analyst 137 (2012) 2503-2512.
    [62]J.M. Pan, B. Wang, J.D. Dai, X.H. Dai, H. Hang, H.X. Ou, Y.S. Yan, J. Mater. Chem.22 (2012) 3360-3369.
    [63]X. Kong, R.X. Gao, X.W. He, L.X. Chen, Y.K. Zhang, J. Chromatogr. A 1245 (2012) 8-16.
    [64]S.F. Xu, J.H. Li, L.X. Chen, J. Mater. Chem.21 (2011) 4346-4351.
    [65]Q.Q. Gai, F. Qu, Z.J. Liu, R.J. Dai, Y.K. Zhang, J. Chromatogr. A 1217 (2010) 5035-5042.
    [66]Y. Li, X. Li, C. Dong, J.Y. Qi, X.J. Han, Carbon 48 (2010) 3427-3433.
    [67]L.M. Chang, S.N. Chen, X. Li, Appl. Surf. Sci.258 (2012) 6660-6664.
    [68]Y.L. Liu, Y.Y. Huang, J.Z. Liu, W.Z. Wang, G.Q. Liu, R. Zhao, J. Chromatogr. A 1246(2012)15-21.
    [69]W.H. Zhou, C.H. Lu, X.C. Guo, F.R. Chen, H.H. Yang, X.R. Wang, J. Mater. Chem.20 (2010) 880-883.
    [70]T. Jing, H.R. Du, Q. Dai, H.A. Xia, J.W. Niu, Q.L. Hao, S.R. Mei, Y.K. Zhou, Biosens. Bioelectron.26 (2010) 301-306.
    [71]T. Shiomi, M. Matsui, F. Mizukami, K. Sakaguchi, Biomaterials 26 (2005) 5564-5571.
    [72]Z.A. Lin, Z.W. Xia, IN. Zheng, D. Zheng, L. Zhang, H.H. Yang, G.N. Chen, J. Mater. Chem.22 (2012) 17914-17922.
    [73]D.M. Gao, Z.P. Zhang, M.H. Wu, C.G Xie, GJ. Guan, D.P. Wang, J. Am. Chem. Soc.129 (2007) 7859-7866.
    [74]Q.Y. Yang, Q. Sun, T.S. Zhou, GY Shi, L.T. Jin, J. Agric. Food. Chem.57 (2009) 6558-6563.
    [75]W.H. Chi, H.G Shi, W. Shi, Y. Guo, T.Y. Guo, J. Hazard. Mater.227-228 (2012) 243-249.
    [76]X. Chen, Z.H. Zhang, X. Yang, Y.N. Liu, J.X. Li, M. J. Peng, S.Z. Yao, J Sep Sci, 35 (2012) 2414-2421.
    [77]Z.H. Zhang, X. Yang, H.B. Zhang, M.L. Zhang, L.J. Luo, Y.F. Hu, S.Z. Yao, J. Chromatogr. B 879 (2011) 1617-1624.
    [78]R.X. Gao, X. Q.Su, X. W.He, L.X. Chen, Y.K. Zhang, Talanta 83 (2011) 757-764.
    [79]D. Zhang, D.J. Yu, W.J. Zhao, Q.Y Yang, H. Kajiura, Y.M. Li, T.S. Zhou, GY Shi, Analyst 137 (2012) 2629-2636.
    [80]R.X. Gao, X. Kong, F.H. Su, X.W. He, L.X. Chen, Y.K. Zhang, J. Chromatogr. A 1217 (2010) 8095-8102.
    [81]X.W. Kan, Y. Zhao, Z.R. Geng, Z.L. Wang, J.J. Zhu, J. Phys. Chem. C 112 (2008) 4849-4854.
    [82]H.B. Zhang, Z.H. Zhang, YF. Hu, X.A. Yang, S.S. Yao, J. Agric. Food Chem.59 (2011) 1063-1071.
    [83]H.Y. Lin, M.S. Ho, M.H. Lee, Biosens. Bioelectron.25 (2009) 579-586.
    [84]H.L. Liu, D.R. Liu, GZ. Fang, F.F. Liu, C.C. Liu, Y.K. Yang, S. Wang, Anal. Chim. Acta 762 (2013) 76-82.
    [85]H.T. Lian, B. Liu, Y.P. Chen, X.Y. Sun, Anal. Biochem.426 (2012) 40-46.
    [86]W. Zhang, X.W. He, Y. Chen, W.Y Li, Y.K. Zhang, Biosens. Bioelectron.26 (2011) 2553-2558.
    [87]H.B. Li, Y.L. Li, J. Cheng, Chem. Mater.22 (2010) 2451-2457.
    [88]S.E. Diltemiz, R. Say, S. Buyuktiryaki, D. Hur, A. Denizli, A. Ersoz, Talanta 75 (2008) 890-896.
    [89]W. Zhang, X.W. He, W.Y. Li, Y.K. Zhang, Chem. Commun.48 (2012) 1757-1759.
    [90]Y Liang, L. Gu, X.Q. Liu, Q.Y Yang, H. Kajiura, Y.M. Li, T.S. Zhou, GY. Shi, Chem. Eur. J.17 (2011) 5989-5997.
    [91]H.M. Qiu, C.N. Luo, M. Sun, F.G Lu, L.L. Fan, X.J. Li, Carbon 50 (2012) 4052-4060.
    [92]H.M. Qiu, C.N. Luo, M. Sun, F.G. Lu, L.L. Fan, X.J. Li, Talanta 98 (2012) 226-230.
    [93]D.J. Yu, Y.B. Zeng, Y.X. Qi, T.S. Zhou, G.Y. Shi, Biosens. Bioelectron.38 (2012) 270-277.
    [94]A. Mehdinia, M. Ahmadifar, M.O. Aziz-Zanjani, A. Jabbari, M.S. Hashtroudi, Analyst 137 (2012) 4368-4374.
    [95]A. Mehdinia, M.O. Aziz-Zanjani, M. Ahmadifar, A. Jabbari, Biosens. Bioelectron. 39 (2013) 88-93.
    [96]Y. Liu, Z.C. Liu, J. Gao, J.D. Dai, J.A. Han, Y. Wang, J.M. Xie, Y.S. Yan, J. Hazard. Mater.186 (2011) 197-205.
    [97]K. Qian, GZ. Fang, S. Wang, Chem. Commun.47 (2011) 10118-10120.
    [98]P.S. Sharma, F. D'Souza, W. Kutner, Trac-Trend. Anal. Chem.34 (2012) 59-77.
    [99]Z.H. Zhang, H.B. Zhang, Y.F. Hu, S.Z. Yao, Anal. Chim. Acta 661 (2010) 173-180.
    [100]H. Yan, F. Qiao, K.H. Row, Anal. Chem.79 (2007) 8242-8248.
    [101]Z.F. Guo, L.X. Zhang, C.Y. Song, X.X. Zhang, Analyst 136 (2011) 3016-3022.
    [102]J.X. He, S. Wang, GZ. Fang, H.P. Zhu, Y. Zhang, J Agric. Food Chem.56 (2008) 2919-2925.
    [103]C.Y. Long, Z.B. Mai, Y.F. Yang, B.H. Zhu, X.M. Xu, L. Lu, X.Y. Zou, J. Chromatogr. A1216 (2009) 8379-8385.
    [104]L.G Chen, J. Liu, Q.L. Zeng, H. Wang, A.M. Yu, H.Q. Zhang, L. Ding, J. Chromatogr. A1216 (2009) 3710-3719.
    [105]B.J. Gao, Y.X. Chen, J.Y. Men, J. Chromatogr. A1218 (2011) 5441-5448.
    [106]M. Lammerhofer, A. Gargano, J. Pharm. Biomed. Anal.53 (2010) 1091-1123.
    [107]P. Qu, J.P. Lei, L. Zhang, R.Z. Ouyang, H. X.Ju, J. Chromatogr. A1217 (2010) 6115-6121.
    [108]B.Q. Liu, D.P. Tang, B. Zhang, X.H. Que, H.H. Yang, GN. Chen, Biosens. Bioelectron.41 (2013) 551-556.
    [109]B.B. Prasad, I. Pandey, Electrochim. Acta 88 (2013) 24-34.
    [110]Y.F. Hu, Z.H. Zhang, J.X. Li, H.B. Zhang, L.J. Luo, S.Z. Yao, Biosens. Bioelectron.31 (2012) 190-196.
    [111]W.J. Lian, S. Liu, J.H. Yu, X.R. Xing, J. Li, M. Cui, J.D. Huang, Biosens. Bioelectron.38 (2012) 163-169.
    [112]D.X. Nie, D.W. Jiang, D. Zhang, Y. Liang, Y. Xue, T.S. Zhou, L.T. Jin, GY. Shi, Sens. Actuators. B 156 (2011) 43-49.
    [113]H.D. Li, H.M. Guan, H. Dai, Y.J. Tong, X.E. Zhao, W.J. Qi, S. Majeed, GB. Xu, Talanta 99 (2012) 811-815.
    [114]M.F. Pan, GZ. Fang, Z.J. Duan, L.J. Kong, S. Wang, Biosens. Bioelectron.31 (2012) 11-16.
    [115]T. Alizadeh, M.R. Ganjali, M. Zare, Anal. Chim. Acta 689 (2011) 52-59.
    [116]M.C. Blanco-Lopez, M.J. Lobo-Castanon, A.J. Miranda-Ordieres, P. Tunon-Blanco, Trac-Trend. Anal. Chem.23 (2004) 36-48.
    [117]V. Suryanarayanan, C.T. Wu, K.C. Ho, Electroanal.22 (2010) 1795-1811.
    [118]R.N. Liang, R. M.Zhang, W. Qin, Sens. Actuators. B 141 (2009) 544-550.
    [119]R. Thoelen, R. Vansweevelt, J. Duchateau, F. Horemans, J. D'Haen, L. Lutsen, D. Vanderzande, M. Ameloot, M. Vandeven, T.J. Cleij, Biosens. Bioelectron.23 (2008) 913-918.
    [120]L. Feng, Y.J. Liu, Y.Y Tan, J.M. Hu, Biosens. Bioelectron.19 (2004) 1513-1519.
    [121]C. Fang, C.L. Yi, Y Wang, Y.H. Cao, X.Y. Liu, Biosens. Bioelectron.24 (2009) 3164-3169.
    [122]S.A. Trammell, M. Zeinali, B.J. Melde, P.T. Charles, F.L. Velez, M.A. Dinderman, A. Kusterbeck, M.A. Markowitz, Anal. Chem.80 (2008) 4627-4633.
    [123]T. Alizadeh, M. Zare, M.R. Ganjali, P. Norouzi, B. Tavana, Biosens. Bioelectron. 25(2010) 1166-1172.
    [124]D. Lakshmi, A. Bossi, M.J. Whitcombe, I. Chianella, S.A. Fowler, S. Subrahmanyam, E.V. Piletska, S.A. Piletsky, Anal. Chem.81 (2009) 3576-3584.
    [125]N. Singh, R.C. Mulrooney, N. Kaur, J.F. Callan, J. Fluoresc.19 (2009) 777-782.
    [126]C.P. Han, H.B. Li, Small 4 (2008) 1344-1350.
    [127]A.H. Gore, D.B. Gunjal, M.R. Kokate, V. Sudarsan, P.V. Anbhule, S.R. Patil, GB. Kolekar, ACS Appl. Mater. Interfaces 4 (2012) 5217-5226.
    [128]Z.A. Lin, J.N. Zheng, F. Lin, L. Zhang, Z.W. Cai, G.N. Chen, J. Mater. Chem. 21(2011)518-524.
    [129]L.Z. Yang, Y. Xu, X.H. Wang, J. Zhu, R.Y. Zhang, P.G He, Y.Z. Fang, Anal. Chim. Acta 689 (2011) 39-46.
    [130]B. Kong, A.W. Zhu, Y.P. Luo, Y. Tian, Y.Y. Yu, G.Y. Shi, Angew. Chem. Int. Ed. 50 (2011) 1837-1840.
    [131]O. Adegoke, E. Hosten, C. McCleland, T. Nyokong, Anal. Chim. Acta 721 (2012) 154-161.
    [132]W. Wu, H.R. Zhu, L.Z. Fan, D.F. Liu, R. Renneberg, S.H. Yang, Chem. Commun. (2007) 2345-2347.
    [133]Z.A. Lin, J.N. Zheng, Z.W. Xia, H.H. Yang, L. Zhang, GN. Chen, RSC Adv.2 (2012) 5062-5065.
    [134]Y.Q. Dong, R.X. Wang, G Li, C.Q. Chen, Y.W. Chi, GN. Chen, Anal. Chem.84 (2012) 6220-6224.
    [135]P. Singh, Chalcogenide Lett.7 (2010) 389-396.
    [136]X.M. Liu, Z.D. Huang, S.W. Oh, B. Zhang, P.C. Ma, M.M.F. Yuen, J.K. Kim, Compos. Sci. Technol.72 (2012) 121-144.
    [137]S.W. Li, X.L. Yu, GJ. Zhang, Y. Ma, J.N. Yao, P. de Oliveira, Carbon 49 (2011) 1906-1911.
    [138]Q.T. Hu, Z.B. Gan, X.W. Zheng, Q.F. Lin, B.F. Xu, A.H. Zhao, X. Zhang, Superlattice. Microst.49 (2011) 537-542.
    [139]L. Agui, P. Yanez-Sedeno, J.M. Pingarron, Anal. Chim. Acta 622 (2008) 11-47.
    [140]G Pandey, E.T. Thostenson, Polym. Rev.52 (2012) 355-416.
    [141]C. Dhand, S.K. Arya, M. Datta, B.D. Malhotra, Anal. Biochem.383 (2008) 194-199.
    [142]Z. Spitalsky, D. Tasis, K. Papagelis, C. Galiotis, Prog. Polym. Sci.35 (2010) 357-401.
    [143]W. Du, F.Q. Zhao, B.Z. Zeng, J. Chromatogr. A1216 (2009) 3751-3757.
    [144]D.D. Shao, X.M. Ren, J. Hu, Y.X. Chen, X.K. Wang, Colloids Surf. A 360 (2010) 74-84.
    [145]P. Manisankar, P.L.A. Sundari, R. Sasikumar, S.P. Palaniappan, Talanta 76 (2008) 1022-1028.
    [1]A.K. Geim, K.S. Novoselov, Nat. Mater.6 (2007) 183-191.
    [2]L.M. Lu, H.B. Li, F. Qu, X.B. Zhang, G.L. Shen, R.Q. Yu, Biosens. Bioelectron. 26(2011)3500-3504.
    [3]D. Li, M.B. Muller, S. Gilje, R.B. Kaner, GG Wallace, Nat. Nanotechnol.3 (2008) 101-105.
    [4]K. Andre Mkhoyan, A.W. Contryman, J. Silcox, D.A. Stewart, G Eda, C. Mattevi, S. Miller, M. Chhowalla, Nano. Lett.9 (2009) 1058-1063.
    [5]G.M. Scheuermann, L. Rumi, P. Steurer, W. Bannwarth, R. Mulhaupt, J. Am. Chem. Soc.131 (2009) 8262-8270.
    [6]Y. Gao, H.L. Yip, K.S. Chen, K.M. O'Malley, O. Acton, Y. Sun, G Ting, H. Chen, A.K. Jen, Adv. Mater.23 (2011) 1903-1908.
    [7]C.Z. Zhu, J.F. Zhai, D. Wen, S.J. Dong, J. Mater. Chem.22 (2012) 6300-6306.
    [8]L.A. Kou, C. Gao, Nanoscale 3 (2011) 519-528.
    [9]W.B. Lu, Y.L. Luo, GH. Chang, X.P. Sun, Biosens. Bioelectron. 26 (2011) 4791-4797.
    [10]R.Q. Liu, S.M. Liang, X.Z. Tang, D. Yan, X.F. Li, Z.Z. Yu, J. Mater. Chem.22 (2012) 14160-14167.
    [11]G.L. Li, G Liu, M. Li, D. Wan, K.G Neoh, E.T. Kang, J. Phys. Chem. C 114 (2010) 12742-12748.
    [12]H. Bai, K.X. Sheng, P.F. Zhang, C. Li, GQ. Shi, J. Mater. Chem.21 (2011) 18653-18658.
    [13]Y.W. Cao, J.C. Feng, P.Y. Wu, J. Mater. Chem.22 (2012) 14997-15005.
    [14]Y. Li, X. Li, C. Dong, J.Y. Qi, X.J. Han, Carbon 48 (2010) 3427-3433.
    [15]H.M. Qiu, C.N. Luo, M. Sun, F.G Lu, L.L. Fan, X.J. Li, Carbon 50 (2012) 4052-4060.
    [16]Y. Mao, Y. Bao, D.X. Han, F.H. Li, L. Niu, Biosens. Bioelectron.38 (2012) 55-60.
    [17]D.J. Yu, Y.B. Zeng, Y.X. Qi, T.S. Zhou, G.Y Shi, Biosens. Bioelectron.38 (2012) 270-277.
    [18]C. Baggiani, C. Giovannoli, L. Anfossi, C. Passini, P. Baravalle, G Giraudi, J. Am. Chem. Soc.134 (2012) 1513-1518.
    [19]Y. Ge, A.P.F. Turner, Chem. Eur. J.15 (2009) 8100-8107.
    [20]Y. Mao, Y. Bao, S.Y. Gan, F.H. Li, L. Niu, Biosens. Bioelectron.28 (2011) 291-297.
    [21]M. Riskin, R. Tel-Vered, T. Bourenko, E. Granot, I. Willner, J. Am. Chem. Soc. 130 (2008) 9726-9733.
    [22]X.R. Xing, S. Liu, J.H. Yu, W.J. Lian, J.D. Huang, Biosens. Bioelectron.31 (2012) 277-283.
    [23]J. Ma, L.H. Yuan, M.J. Ding, S. Wang, F. Ren, J. Zhang, S.H. Du, F. Li, X.M. Zhou, Biosens. Bioelectron.26 (2011) 2791-2795.
    [24]R.X. Gao, X. Kong, F.H. Su, X.W. He, L.X. Chen, Y.K. Zhang, J. Chromatogr. A 1217 (2010) 8095-8102.
    [25]Y. Li, C.K. Dong, J. Chu, J.Y. Qi, X. Li, Nanoscale 3 (2011) 280-287.
    [26]X.W. Kan, Y. Zhao, Z.R. Geng, Z.L. Wang, J.J. Zhu, J. Phys. Chem. C 112 (2008) 4849-4854.
    [27]H.B. Zhang, Z.H. Zhang, Y.F. Hu, X. Yang, S.Z. Yao, J. Agric. Food. Chem.59 (2011) 1063-1071.
    [28]Y. Liang, L. Gu, X.Q. Liu, Q.Y. Yang, H. Kajiura, Y.M. Li, T.S. Zhou, G.Y. Shi, Chem. Eur. J.17 (2011) 5989-5997.
    [29]K. Qian, G. Fang, S. Wang, Chem. Commun.47 (2011) 10118-10120.
    [30]D.M. Gao, Z.P. Zhang, M.H. Wu, C.G Xie, G.J. Guan, D.P. Wang, J. Am. Chem. Soc.129 (2007) 7859-7866.
    [31]O. Akhavan, Carbon 49 (2011) 11-18.
    [32]L.J. Cote, F. Kim, J,X. Huang, J. Am. Chem. Soc.131 (2009) 1043-1049.
    [33]J.L. Chen, X.P. Yan, K. Meng, S.F. Wang, Anal. Chem.83 (2011) 8787-8793.
    [34]Y. Lin, J. Jin, M. Song, J. Mater. Chem.21 (2011) 3455-3461.
    [35]W.L. Zhang, H.J. Choi, Langmuir 28 (2012) 7055-7062.
    [36]H.A. Becerril, J. Mao, Z.F. Liu, R.M. Stoltenberg, Z. Bao, Y.S. Chen, ACS Nano 2 (2008) 463-470.
    [37]J.I. Paredes, S. Villar-Rodil, P. Solis-Fernandez, A. Martinez-Alonso, J.M.D. Tascon, Langmuir 25 (2009) 5957-5968.
    [38]K.N. Kudin, B. Ozbas, H.C. Schniepp, R.K. Prud'homme, I.A. Aksay, R. Car, Nano. Letters.8 (2008) 36-41.
    [39]C.Z. Zhu, L. Han, P. Hu, S.J. Dong, Nanoscale 4 (2012) 1641-1646.
    [40]Y. Wang, Y.M. Li, L.H. Tang, J. Lu, J.H. Li, Electrochem. Commun.11 (2009) 889-892.
    [41]M.S. Goh, M. Pumera, Anal. Chem.82 (2010) 8367-8370.
    [42]N. Gao, Z. Xu, F. Wang, S.J. Dong, Electroanal. 19 (2007) 1655-1660.
    [43]D. Lakshmi, A. Bossi, M.J. Whitcombe, I. Chianella, S.A. Fowler, S. Subrahmanyam, E.V. Piletska, S.A. Piletsky, Anal. Chem.81 (2009) 3576-3584.
    [44]J.P. Li, J. Zhao, X.P. Wei, Sens. Actuators. B 140 (2009) 663-669.
    [45]Y. Zhang, R. Yuan, Y.Q. Chai, W.J. Li, X. Zhong, H.A. Zhong, Biosens. Bioelectron.26 (2011) 3977-3980.
    [46]X.W. Kan, H. Zhou, C. Li, A.H. Zhu, Z.L. Xing, Z. Zhao, Electrochim. Acta 63 (2012) 69-75.
    [1]K. Asadpour-Zeynali, P. Soheili-Azad, Environ. Monit. Assess.184 (2012) 1089-1096.
    [2]S.Y. Zhu, W.X. Niu, H.J. Li, S. Han, G.B. Xu, Talanta 79 (2009) 1441-1445.
    [3]M.A. El Mhammedi, M. Achak, M. Bakasse, A. Chtaini, J. Hazard Mater.163 (2009) 323-328.
    [4]J. Tang, D.P. Tang, B.L. Su, J.X. Huang, B. Qiu, GN. Chen, Biosens. Bioelectron. 26(2011)3219-3226.
    [5]Y. Wei, L.T. Kong, R. Yang, L. Wang, J.H. Liu, X.J. Huang, Langmuir 27 (2011) 10295-10301.
    [6]A. Almasi, E. Fischer, P. Perjesi, Sci. Pharm.79 (2011) 837-847.
    [7]A. Almasi, E. Fischer, P. Perjesi, J. Biochem. Biophys. Methods 69 (2006) 43-50.
    [8]J. Liu, H. Chen, Z. Lin, J.M. Lin, Anal. Chem.82 (2010) 7380-7386.
    [9]J.H. Li, D.Z. Kuang, Y.L. Feng, F.X. Zhang, Z.F. Xu, M.Q. Liu, J. Hazard. Mater. 201 (2012) 250-259.
    [10]Jaidev, S. Ramaprabhu, J. Mater. Chem.22 (2012) 18775-18783.
    [11]Z. Song, T. Xu, M.L. Gordin, Y.B. Jiang, I.T. Bae, Q. Xiao, H. Zhan, J. Liu, D. Wang, Nano Lett.12 (2012) 2205-2211.
    [12]S.D. Wu, W. Lv, J. Xu, D. Han, X. Chen, P. Wang, Q.H. Yang, J. Mater. Chem. 22 (2012) 17204-17209.
    [13]J.H. Yang, S.H. Lin, YD. Lee, J. Mater. Chem.22 (2012) 10805-10815.
    [14]N. Griffete, H. Frederich, A. Maitre, S. Ravaine, M.M. Chehimi, C. Mangeney, Langmuir 28 (2012) 1005-1012.
    [15]Y. Ben-Amram, R. Tel-Vered, M. Riskin, Z.G Wang, I. Willner, Chem. Sci.3 (2012) 162-167.
    [16]M.J. Ding, X.L. Wu, L.H. Yuan, S. Wang, Y. Li, R.Y. Wang, T.T. Wen, S.H. Du, X.M. Zhou, J. Hazard. Mater.191 (2011) 177-183.
    [17]R.X. Gao, X.Q. Su, X.W. He, L.X. Chen, Y.K. Zhang, Talanta 83 (2011) 757-764.
    [18]S.F. Xu, J.H. Li, L.X. Chen, J. Mater. Chem.21 (2011) 4346-4351.
    [19]R.X. Gao, X. Kong, F.H. Su, X.W. He, L.X. Chen, Y.K. Zhang, J. Chromatogr. A 1217(2010)8095-8102.
    [20]H.B. Li, Y.L. Li, J.Cheng, Chem. Mater.22 (2010) 2451-2457.
    [21]Y. Mao, Y Bao, S.Y. Gan, F.H. Li, L. Niu, Biosens. Bioelectron.28 (2011) 291-297.
    [22]L.J. Cote, F. Kim, J.X. Huang, J. Am. Chem. Soc.131 (2009) 1043-1049.
    [23]L.Y. Kan, Z. Xu, C. Gao, Macromolecules 44 (2011) 444-452.
    [24]T. Alizadeh, M.R. Ganjali, P. Norouzi, M. Zare, A. Zeraatkar, Talanta 79 (2009) 1197-1203.
    [25]Y.E. Gu, Y.Z. Zhang, F.Y Zhang, J.P. Wei, C.M. Wang, Y.L. Du, W.C. Ye, Electrochim. Acta 56 (2010) 953-958.
    [26]J.M. Xu, Y.P. Wang, Y.Z. Xian, L.T. Jin, K. Tanaka, Talanta 60 (2003) 1123-1130.
    [27]L. Chu, L. Han, X.L. Zhang, J. Appl. Electrochem.41 (2011) 687-694.
    [28]W. Sun, M.X. Yang, Q. Jiang, K. Jiao, Chinese Chem. Lett.19 (2008) 1156-1158.
    [29]A. Niaz, J. Fischer, J. Barek, B. Yosypchuk, Sirajuddin, M.I. Bhanger, Electroanal.21 (2009) 1786-1791.
    [30]H.S. Yin, Y.L. Zhou, S.Y. Ai, X.G Liu, L.S. Zhu, L.N. Lu, Microchim. Acta 169 (2010) 87-92.
    [31]I.G Casella, M. Contursi, J. Electrochem. Soc.154 (2007) D697-D702.
    [1]C.P. Han,H.B. Li, Small 4 (2008) 1344-1350.
    [2]YJ. Guo, S.J. Guo, J.T. Ren, Y.M. Zhai, S.J. Dong, E.K. Wang, ACS Nano.4 (2010) 4001-4010.
    [3]L.Z. Yang, Y. Xu, X.H. Wang, J. Zhu, R.Y. Zhang, P.G He, Y.Z. Fang, Anal. Chim. Acta 689 (2011) 39-46.
    [4]P.H. Deng, Z.F. Xu, Y.L. Feng, J. Electroanal. Chem.683 (2012) 47-54.
    [5]G Springsteen, B.H. Wang, Tetrahedron 58 (2002) 5291-5300.
    [6]B. Kong, A.W. Zhu, Y.P. Luo, Y. Tian, Y.Y. Yu, GY. Shi, Angew. Chem. Int. Ed. 50 (2011) 1837-1840.
    [7]W. Wu, H.R. Zhu, L.Z. Fan, D.F. Liu, R. Renneberg, S.H. Yang, Chem. Commun. (2007) 2345-2347.
    [8]E. Turiel, A. Martin-Esteban, Anal. Chim. Acta 668 (2010) 87-99.
    [9]C. Baggiani, C. Giovannoli, L. Anfossi, C. Passini, P. Baravalle, G Giraudi, J. Am. Chem. Soc.134(2012) 1513-1518.
    [10]N.M. Maier, W. Lindner, Anal. Bioana. Chem.389 (2007) 377-397.
    [11]K.L. Xie, Y.L. Zhang, S. Chen, J. Organomet. Chem.695 (2010) 687-691.
    [12]X.W. Kan, Y. Zhao, Z.R Geng, Z.L. Wang, J.J. Zhu, J. Phys. Chem. C 112 (2008) 4849-4854.
    [13]Y. Yang, Y.Y. Long, Q. Cao, K.A. Li, F. Liu, Anal. Chim. Acta 606 (2008) 92-97.
    [14]Z.H. Zhang, X. Yang, H.B. Zhang, M.L. Zhang, L.J. Luo, Y.F. Hu, S.Z. Yao, J. Chromatogr. B 879 (2011) 1617-1624.
    [15]E. Turiel, A. Martin-Esteban, J. Sep. Sci.32 (2009) 3278-3284.
    [16]M. Frasconi, R. Tel-Vered, M. Riskin, I. Willner, Anal. Chem.82 (2010) 2512-2519.
    [17]J. Tan, H.F. Wang, X.P. Yan, Anal. Chem.81 (2009) 5273-5280.
    [18]M.L. Liu, J.H. Deng, Q. Chen, Y Huang, LP. Wang, Y. Zhao, Y.Y. Zhang, H.T. Li, S.Z. Yao, Biosens. Bioelectron.41 (2013) 275-281.
    [19]K. Andre Mkhoyan, A.W. Contryman, J. Silcox, D.A. Stewart, G Eda, C. Mattevi, S. Miller, M. Chhowalla, Nano. Lett.9 (2009) 1058-1063.
    [20]J. Shi, H. Zhang, A. Snyder, M.X. Wang, J. Xie, D. Marshall Porterfield, L.A. Stanciu, Biosens. Bioelectron.38 (2012) 314-320.
    [21]Y. Gao, H.L. Yip, K.S. Chen, K.M. O'Malley, O. Acton, Y. Sun, G. Ting, H. Chen, A.K. Jen, Adv. Mater.23 (2011) 1903-1908.
    [22]X. Yang, Y. Tu, L. Li, S. Shang, X.M. Tao, ACS Appl. Mater. Interfaces 2 (2010) 1707-1713.
    [23]R.Q. Liu, S.M. Liang, X.Z. Tang, D. Yan, X.F. Li, Z.Z. Yu, J. Mater. Chem.22 (2012) 14160-14167.
    [24]GL. Li, G Liu, M. Li, D. Wan, K.G Neoh, E.T. Kang, J. Phys. Chem. C 114 (2010) 12742-12748.
    [25]H. Bai, K.X. Sheng, P.F. Zhang, C. Li, GQ. Shi, J. Mater. Chem.21 (2011) 18653-18658.
    [26]Y.W. Cao, J.C. Feng, P.Y. Wu, J. Mater. Chem.22 (2012) 14997-15005.
    [27]Y. Li, X. Li, C. Dong, J.Y. Qi, X.J. Han, Carbon 48 (2010) 3427-3433.
    [28]H.M. Qiu, C.N. Luo, M. Sun, F.G Lu, L.L. Fan, X.J. Li, Carbon 50 (2012) 4052-4060.
    [29]L.J. Cote, F. Kim, J.X. Huang, J. Am. Chem. Soc.131 (2009) 1043-1049.
    [30]Y. Mao, Y. Bao, S.Y. Gan, F.H. Li, L. Niu, Biosens. Bioelectron.28 (2011) 291-297.
    [31]H.A. Becerril, J. Mao, Z.F. Liu, R.M. Stoltenberg, Z. Bao, Y.S. Chen, ACS Nano 2 (2008) 463-470.
    [32]M.S. Goh, M. Pumera, Anal. Chem.82 (2010) 8367-8370.
    [33]D. Lakshmi, A. Bossi, M.J. Whitcombe, I. Chianella, S.A. Fowler, S. Subrahmanyam, E.V. Piletska, S.A. Piletsky, Anal. Chem.81 (2009) 3576-3584.
    [34]X.W. Kan, Y. Zhao, Z.R. Geng, Z.L. Wang, J.J. Zhu, J. Phys. Chem. C 112 (2008) 4849-4854.
    [1]S.V. Asmussen, I.E. dell'Erba, W.F. Schroeder, C.I. Vallo, Eur. Polym. J.48 (2012)309-317.
    [2]A. Durmus, A. Kasgoz, N. Ercan, D. Akm, S. nh, Polymer 53 (2012) 5347-5357.
    [3]K. Tanaka, Y. Chujo, J. Mater. Chem.22 (2012) 1733-1746.
    [4]R. Sastre, V. Martin, L. Garrido, J.L. Chiara, B. Trastoy, O. Garcia, A. Costela, I. Garcia-Moreno, Adv. Funct. Mater.19 (2009) 3307-3316.
    [5]X.F. Shen, Y. Cui, Y.H. Pang, H. Qian, Electrochim. Acta 59 (2012) 91-99.
    [6]Y.C. Zheng, L. Wang, S.X. Zheng, Eur. Polym. J.48 (2012) 945-955.
    [7]J.Q. Zhao, Y. Fu, S.M. Liu, Polym. Polym. Compos.16 (2008) 483-500.
    [8]Y.C. Sheen, C.H. Lu, C.F. Huang, S.W. Kuo, F.C. Chang, Polymer 49 (2008) 4017-4024.
    [9]V.K. Daga, E.R. Anderson, S.P. Gido, J.J. Watkins, Macromolecules 44 (2011) 6793-6799.
    [10]F. Mammeri, C. Bonhomme, F.o. Ribot, F. Babonneau, S. Dire, Chem. Mater.21 (2009)4163-4171.
    [11]P.H. Deng, Z.F. Xu, J.H. Li, J. Pharm. Biomed. Anal.76 (2013) 234-242.
    [12]H.W. Wu, M.L. Chen, Y.C. Fan, F. Elsebaei, Y. Zhu, Talanta 88 (2012) 222-229.
    [13]W. Sun, M.X. Yang, Y.Z. Li, Q. Jiang, S.F. Liu, K. Jiao, J. Pharm. Biomed. Anal. 48 (2008) 1326-1331.
    [14]M.L. Liu, J.H. Deng, Q. Chen, Y. Huang, L.P. Wang, Y. Zhao, Y.Y. Zhang, H.T. Li, S.Z. Yao, Biosens. Bioelectron.41 (2013) 275-281.
    [15]P.H. Deng, Z.F. Xu, Y.L. Feng, J. Electroanal. Chem.683 (2012) 47-54.
    [16]N.A. Santagati, L. Salerno, G. Attaguile, F. Savoca, G. Ronsisvalle, J. Chromatogr. Sci.46 (2008) 150-156.
    [17]V. Kuntic, N. Pejic, B. Ivkovic, Z. Vujic, K. Ilic, S. Micic, V. Vukojevic, J. Pharm. Biomed. Anal.43 (2007) 718-721.
    [18]C.H. Li, A.J. Chen, X.F. Chen, Z.D. Hu, J. Pharm. Biomed. Anal.39 (2005) 125-131.
    [19]Y.H. Chen, F.S. Tian, Luminescence 27 (2012) 59-62.
    [20]J. Haginaka, H. Tabo, H. Matsunaga, Anal. Chim. Acta 748 (2012) 1-8.
    [21]M. Doue, E. Bichon, G. Dervilly-Pinel, V. Pichon, F. Chapuis-Hugon, E. Lesellier, C. West, F. Monteau, B. Le Bizec, J. Chromatogr. A 1270 (2012) 51-61.
    [22]Y.X. Li, Y.J. Li, L.H. Huang, Q. Bin, Z.Y. Lin, H.H. Yang, Z.W. Cai, G.N. Chen, J. Mater. Chem. B.1 (2013) 1256-1262.
    [23]H.L. Liu, D.R. Liu, G.Z. Fang, F.F. Liu, C.C. Liu, Y.K. Yang, S.O. Wang, Anal. Chim. Acta 762 (2013) 76-82.
    [24]K. Qian, G.Z. Fang, S.O. Wang, Chem. Commun.47 (2011) 10118-10120.
    [25]A. Mehdinia, M. Ahmadifar, M.O. Aziz-Zanjani, A. Jabbari, M.S. Hashtroudi, Analyst 137 (2012) 4368-4374.
    [26]A. Mehdinia, M.O. Aziz-Zanjani, M. Ahmadifar, A. Jabbari, Biosens. Bioelectron.39 (2013) 88-93.
    [1]H.L. Tcheumi, I.K. Tonle, E. Ngameni, A. Walcarius, Talanta 81 (2010) 972-979.
    [2]M. Tankiewicz, J. Fenik, M. Biziuk, Trac-Trend Anal. Chem.29 (2010) 1050-1063.
    [3]G. Lagaly, Appl. Clay. Sci.18 (2001) 205-209.
    [4]M.A. Islam, V. Sakkas, T.A. Albanis, J. Hazard. Mater.170 (2009) 230-238.
    [5]J.J. Yang, C. Yang, H. Jiang, C.L. Qiao, Biodegradation 19 (2008) 831-839.
    [6]M. Lecoeur-Lorin, R. Delepee, P. Morin, Electrophoresis 30 (2009) 2931-2939.
    [7]T. Hyotylainen, K. Luthje, M. Rautiainen-Rama, M.L. Riekkola, J. Chromatogr. A 1056 (2004) 267-271.
    [8]S. Moinfar, M.R.M. Hosseini, J. Hazard. Mater.169 (2009) 907-911.
    [9]J. Hassan, A. Farahani, M. Shamsipur, F. Damerchili, J. Hazard. Mater.184 (2010) 869-871.
    [10]H. Parham, N. Rahbar, J. Hazard. Mater.177 (2010) 1077-1084.
    [11]H.B. Li, J. Li, Z.J. Yang, Q. Xu, X.Y. Hu, Anal. Chem.83 (2011) 5290-5295.
    [12]M. Sbai, H. Essis-Tome, U. Gombert, T. Breton, M. Pontie, Sens. Actuators B 124 (2007) 368-375.
    [13]F.N. Kok, V. Hasirci, Biosens. Bioelectron.19 (2004) 661-665.
    [14]R.P. Deo, J. Wang, I. Block, A. Mulchandani, K.A. Joshi, M. Trojanowicz, F. Scholz, W. Chen, Y.H. Lin, Anal. Chim. Acta 530 (2005) 185-189.
    [15]G.D. Liu, Y.H. Lin, Anal. Chem.78 (2006) 835-843.
    [16]D. Du, W.J. Chen, W.Y. Zhang, D.L. Liu, H.B. Li, Y.H. Lin, Biosens. Bioelectron.25 (2010) 1370-1375.
    [17]J.M. Gong, L.Y. Wang, L.Z. Zhang, Biosens. Bioelectron.24 (2009) 2285-2288.
    [18]J.H. Zhou, C.Y. Deng, S.H. Si, S.E. Wang, Microchim. Acta 172 (2011) 207-215.
    [19]B. Huang, W.D. Zhang, C.H. Chen, Y.X. Yu, Microchim. Acta 171 (2010) 57-62.
    [20]T.F. Kang, F. Wang, L.P. Lu, Y. Zhang, T.S. Liu, Sens. Actuators B 145 (2010) 104-109.
    [21]M. Wang, Z.Y. Li, Sens. Actuators B 133 (2008) 607-612.
    [22]J.M. Gong, X.J. Miao, H.F. Wan, D.D. Song, Sens. Actuators B 162 (2012) 341-347.
    [23]Y.H. Bian, C.Y. Li, H.B. Li, Talanta 81 (2010) 1028-1033.
    [24]D. Du, X.P. Ye, J.D. Zhang, Y. Zeng, H.Y. Tu, A.D. Zhang, D.L. Liu, Electrochem. Commun.10 (2008) 686-690.
    [25]D. Pan, S.M. Ma, X.J. Bo, L.P. Guo, Microchim. Acta 173 (2011) 215-221.
    [26]S.C. Xia, J.F. Zhang, C.Y. Li, Anal. Bioanal. Chem.396 (2009) 697-705.
    [27]I. Tapsoba, S. Bourhis, T. Feng, M. Pontie, Electroanal. 21 (2009) 1167-1176.
    [28]D. Du, M.H. Wang, J.M. Zhang, J. Cai, H.Y. Tu, A.D. Zhang, Electrochem. Commun.10 (2008) 85-89.
    [29]J.C. Ma, W.D. Zhang, Microchim. Acta 175 (2011) 309-314.
    [30]S. Iijima, Nature 354 (1991) 56-58.
    [31]Z. Spitalsky, D. Tasis, K. Papagelis, C. Galiotis, Prog. Polym. Sci.35 (2010) 357-401.
    [32]P.Y. Chen, P.C. Nien, C.W. Hu, K.C. Ho, Sens. Actuators B 146 (2010) 466-471.
    [33]P. Manisankar, P.L.A. Sundari, R. Sasikumar, S.P. Palaniappan, Talanta 76 (2008) 1022-1028.
    [34]C. Dhand, S.K. Arya, M. Datta, B.D. Malhotra, Anal. Biochem.383 (2008) 194-199.
    [35]Y. Li, Y. Umasankar, S.M. Chen, Talanta 79 (2009) 486-492.
    [36]H.A. Zhong, R. Yuan, Y.Q. Chai, W.J. Li, X. Zhong, Y. Zhang, Talanta 85 (2011) 104-111.
    [37]H. Bagheri, Z. Ayazi, E. Babanezhad, Microchem. J.94 (2010) 1-6.
    [38]C. Zheng, M. Feng, Y.H. Du, H.B. Zhan, Carbon 47 (2009) 2889-2897.
    [39]W.H. Zhao, N. Sheng, R. Zhu, F.D. Wei, Z. Cai, M.J. Zhai, S.H. Du, Q. Hu, J. Hazard. Mater.179 (2010) 223-229.
    [40]G.D. Liu, Y.H. Lin, Anal. Chem.77 (2005) 5894-5901.
    [41]J.H. Li, D.Z. Kuang, Y.L. Feng, F.X. Zhang, Z.F. Xu, M.Q. Liu, J. Hazard. Mater. 201-202 (2012) 250-259.
    [42]H.S. Yin, L. Cui, S.Y. Ai, H. Fan, L.S. Zhu, Electrochim. Acta 55 (2010) 603-610.
    [43]F. Anson, Anal. Chem.36 (1964) 932-934.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700