用户名: 密码: 验证码:
功能性半导体纳米晶组装体系的制备及其可见光响应性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光催化技术是指利用半导体材料受到光激发后产生的价带空穴和导电电子进行氧化和还原反应对有机污染物进行降解和光解水产氢的高级技术。光催化技术的关键是光催化剂,但是以TiO2为代表的传统光催化材料存在着不能利用可见光、量子效率低等缺点,进而限制了其应用。发展高效光催化剂需要拓展催化剂对可见光的光学吸收能力和提高光生载流子分离效率。通过对半导体纳米晶材料进行组装,可以利用窗口效应实现催化剂对光的多级吸收;同时,构筑异质结材料,可以为光生电子-空穴分离提供驱动力。本论文围绕以上内容,主要开展了以下几个方面的工作:
     (1)采用光辅助电沉积的方法制备了CdSe纳米晶簇负载的TiO2纳米管阵列光电极。在光活化和电沉积反应的协同作用下,制备的CdSe纳米晶簇呈现良好的结晶性能并均匀沉积在电极表面和纳米管孔道内。透射电镜(TEM)和表面光电压谱(SPV)测试表明制备的CdSe纳米晶簇由尺寸不同的CdSe纳米晶粒梯度排列组装而成。在100mW cm-2的可见光照射下,CdSe纳米晶簇负载的TiO2纳米管阵列光电极在0 V(vs. SCE)偏压时,光电流密度达到了16 mA cm-2,比CdSe膜电极提高了8倍。CdSe纳米晶簇组装结构不仅可以实现对可见光的多级吸收,也有利于光生载流子在体系内的矢量传递。
     (2)结合超声和水热还原法,制备了石墨烯负载的金属纳米簇(Au、Pt、Pd)复合材料,直径~2.0 nm的金属纳米簇均匀生长在石墨烯表面。XPS谱图表明,与金本征材料相比,负载在石墨烯表面的金属纳米簇的电子结构发生变化,从而具有优异的电学和催化性质。结合沉积-沉淀和光还原方法制备了石墨烯组装的金属纳米晶等离子共振光催化剂Ag@AgCl/RGO,在可见光区域表现出了强烈的Ag纳米晶的等离子共振吸收带。与Ag@AgCl相比,Ag@AgCl/RGO对罗丹明B的光催化降解速率提高了4倍以上。石墨烯的存在提供了激发态Ag纳米晶光生电子快速迁移的通道,从而抑制了等离子共振光催化体系内光生载流子的复合。
     (3)采用室温沉积-沉淀法制备了石墨烯氧化物组装的磷酸银微球光催化剂。GO在Ag3PO4生长过程中起表面活性剂作用,Ag3PO4/GO异质结微球的结构形貌可以通过调整GO浓度和石墨烯氧化程度进行调整。可见光下,Ag3PO4/GO异质结微球在4min内实现了对10 ppm罗丹明B的完全降解,与单纯的Ag3PO4相比,光催化速率提高了4倍。活性物种检测试验发现光生空穴和O2·-自由基控制了光催化反应过程,石墨烯氧化物的存在利于Ag3PO4内光生电子-空穴对的分离,从而产生更多的活性氧物种参与光催化反应。
     (4)以CdSe/CdS量子点为基本单元,β-环糊精为连接剂,利用超分子作用自组装制备了量子点组装结构。量子点表面负载的β-环糊精以二聚体形式存在,从而在量子点组装体系内形成了纳米空腔。这种新的结构不仅具备量子点的荧光性能,也具备了环糊精的分子识别能力。分析发现环糊精组装的量子点体系的荧光强度随双酚A分子浓度的升高而增强,在双酚A浓度0.04 ppm到2 ppm的浓度范围内,表现出良好的荧光响应特性。
     以上结果表明,合理设计半导体纳米晶组装结构,可以显著增强光催化剂对可见光的吸收效果并实现光生载流子在催化剂体系内的高效矢量传递与分离,同时保持了光催化剂的稳定性。本论文对半导体纳米晶组装结构与其光学吸收能力、载流子分离效率之间关系的探索,为设计高效半导体纳米晶光催化剂提供了可行的手段,有利于推动光催化技术在污染控制领域的应用。
Photocatalytic reaction over semiconductor photocatalyst is an advantage process that employing photogenerated hole in valance band and excited electrons in conduction band in semiconductor, which could degrade organic pollutants via oxidation/reduction reaction and generate hydrogen via water splitting. The effectiveness of sunlight-driven photocatalytic processes is mainly dependent on the semiconductor's absorption capacity toward visible light and the quantum yield of photoconversion. However, the traditional photocatalyst, such as TiO2, can not absorb visible light as well as low quantum yield, which limit the development of photocatalysis. Nanostructure architectures assembled by semiconductor nanocrystal with well-defined geometrical shapes would facilitate multilevel absorption toward visible light. The heterojunction in the assembled system can provide a driving force for the seperation of photogenerated charge carriers. In this dissertation, several works have been done as follows:
     (1) "Mulberry-like" CdSe nanoclusters with well-defined crystallinity have been assembled into vertically aligned TiO2 nanotubes by photo-assisted electrodeposition method to form new architecture for fabricating semiconductor nanocrystal sensitized photoelectrodes. The multiple staked "mulberry-like" CdSe nanoclusters, caused by the synergistic effect of photoetching and electrodeposition, broaden the absorption spectra to entire visible region with a promising behavior of photoinduced charge separation. A photocurrent density of 16 mA cm-2 was achieved under 100 mW cm-2 visible light illumination with 0 V bias potential (vs. SCE). The remarkable photoresponse should be ascribed to the high-quality of 3-D multij unction structure and the driving force for electron transfer in "mulberry-like" nanoclusters.
     (2) Ultrafine metal nanodots with a size of -2.0 nm in a narrow size distribution are uniformly decorated on graphene sheet through a sonolytic followed by hydrothermal reduction route without extra reducing agent. X-rays photoelectron spectroscopy (XPS) spectra suggest the size-dependent alternation of electronic structure of metal nanodot on graphene sheet, giving rise to unusual electronic and catalytic properties. Graphene sheet grafted Ag@AgCl composite is fabricated by photoreducing AgCl/graphene oxide (GO) hybrids prepared by deposition-precipitation method. UV-vis absorption spectra of Ag@AgCl/reduced GO (RGO) hybrids exhibit strong absorbance in the visible region due to the surface plasmon resonance (SPR) absorption of Ag nanocrystal. Compared with bare Ag@AgCl nanoparticle, a four-fold enhancement in the photodegradation rate toward rhodamine B is observed over Ag@AgCl/RGO hybrids under visible light irradiation.
     (3) Ag3PO4/graphene oxide (GO) hybrid microsphere was synthesized by a facile deposition-precipitation method. The morphology of the prepared hybrids microspheres could be modulated by the concentration of GO in the starting solution and the degree of oxidation of graphene sheet. In situ assembled Ag3PO4/GO microspheres exhibited almost four-fold enhancement in the photodegradation rate toward rodamine B under visible light compared with that of bare Ag3PO4. The specified photocatalytic experiments revealed that direct hole oxidation and O2·- radicals oxidation governed the photodegradation process over Ag3PO4/GO heteroj unction. This finding indicates that the heterojunction in the hybrids system facilitates charge separation and transfer from photo-excited Ag3PO4, keeping the high reactivity of the photogenerated charge carriers.
     (4) Novel three-dimensionally nanostructure derived from CdSe/CdS quantum dot andβ-cyclodextrin was synthesized. Supramolecular interactions between the adjacentβ-cyclodextrins anchored on quantum dots are believed to drive the formation of nanocage structure in the frameworks. The novel nanostructure possesses both the optic properties of quantum dots and the molecule recognition ability of cyclodextrins, which allow a highly sensitive determination of bisphenol A at a dynamic range from 0.04 ppm to 2 ppm via significant fluorescence enhancement.
     The above results illuminated that the well-defined nanostructure architectures assembled by semiconductor nanocrystal would efficiently expand the optical absorption of photocatalyst toward visible light and faciliate the photogenerated charge carriers transfer in the photocatalyst system, as well as keep the photostability of photocatalyst. These studies provide a feasible approach to design photocatalyst with high activity, which would promot the application of photocatalytic technology in pollution controlling.
引文
[1]Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode [J]. Nature, 1972,238(5358):37-38.
    [2]Carey J H, Lawrence J, Tosine H M. Photodechlorination of PCB's in the presence of titanium dioxide in aqueous suspensions [J]. Bull. Environ. Contam. Toxicol.,1976,16(6):697-701.
    [3]Hoffmann M R, Martin S T, Choi W, et al. Environmental applications of semiconductor photocatalysis [J]. Chem. Rev.,1995,95(1):69-96.
    [4]Maeda K, Domen K. New Non-oxide photocatalysts designed for overall water splitting under Visible light [J]. J. Phys. Chem. C,2007,111(22):7851-7861.
    [5]Skinner D E, Colombo D P, Cavaleri J J, et al. Femtosecond investigation of electron trapping in semiconductor nanoclusters [J]. J. Phys. Chem.,1995,99(20):7853-7856.
    [6]Xu Y, Schoonen M A A. The absolute energy positions of conduction and valence bands of selected semiconducting minerals [J]. Am. Mineral.,2000,85(3-4):543-556.
    [7]Choi W, Termin A, Hoffmann M R. The role of metal ion dopants in quantum-sized TiO2:correlation between photoreactivity and charge carrier recombination dynamics [J]. J. Phys. Chem.,1994,98(51): 13669-13679.
    [8]Asahi R, Morikawa T, Ohwaki T, et al. Visible-light photocatalysis in nitrogen-doped titanium oxides [J]. Science,2001,293(5502):269-271.
    [9]Yu J C, Ho W K, Yu J G, et al. Efficient visible-light-induced photocatalytic disinfection on sulfur-doped nanocrystalline titania [J]. Environ. Sci. Technol.,2005,39(4):1175-1179.
    [10]Park J H, Kim S, Bard A J. Novel carbon-doped TiO2 nanotube arrays with high aspect ratios for efficient solar water splitting [J]. Nano Lett.,2006,6(1):24-28.
    [11]Lu N, Quan X, Li J Y, et al. Fabrication of boron-doped TiO2 nanotube array electrode and investigation of its photoelectrochemical capability [J]. J. Phys. Chem. C,2007,111(32): 11836-11842.
    [12]Maeda K, Teramura K, Takata T, et al. Overall water splitting on (Ga1-xZnx)(N1-xOx) solid solution photocatalyst:Relationship between physical properties and photocatalytic activity [J]. J. Phys. Chem. B,2005,109(43):20504-20510.
    [13]Youn H, Baral S, Fendler J H. Dihexadecyl phosphate, vesicle-stabilized and in situ generated mixed CdS and ZnS semiconductor particles. Preparation and utilization for photosensitized charge separation and hydrogen generation [J]. J. Phys. Chem.,1988,92(22):6320-6327.
    [14]Tsuji I, Kato H, Kobayashi H, et al. Photocatalytic H2 evolution reaction from aqueous solutions over band structure-controlled (AgIn)xZn2(1-x)S2 solid solution photocatalysts with visible-light response and their surface nanostructures [J]. J. Am. Chem. Soc.,2004,126(41):13406-13413.
    [15]Kambe S, Fujii M, Kawai T, et al. Photocatalytic hydrogen production with Cd(S, Se) solid solution particles:determining factors for the highly efficient photocatalyst [J]. Chem. Phys. Lett.,1984, 109(1):105-109.
    [16]Hagfeldt A, Graetzel M. Light-induced redox reactions in nanocrystalline systems [J]. Chem. Rev., 1995,95(1):49-68.
    [17]Zhang H, Zong R L, Zhao J C, et al. Dramatic visible photocatalytic degradation performances due to synergetic effect of TiO2 with PANI [J]. Environ. Sci. Technol.,2008,42(10):3803-3807.
    [18]Robert D. Photosensitization of TiO2 by MxOy and MxSy nanoparticles for heterogeneous photocatalysis applications [J]. Catal. Today,2007,122(1-2):20-26.
    [19]Zou Z, Ye J, Sayama K, et al. Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst [J]. Nature,2001,414:625-627.
    [20]Ye J, Zou Z, Matsushita A. A novel series of water splitting photocatalysts NiM2O6 (M=Nb,Ta) active under visible light [J]. Int. J. Hydrogen Energ.,2003,28(6):651-655.
    [21]Ye J, Zou Z, Oshikiri M, et al. A novel hydrogen-evolving photocatalyst InVO4 active under visible light irradiation [J]. Chem. Phys. Lett.,2002,356(3-4):221-226.
    [22]Zhou J, Zou Z, Ray A K, et al. Preparation and characterization of polycrystalline bismuth titanate Bi12TiO2o and its photocatalytic properties under visible light irradiation [J]. Ind. Eng. Chem. Res., 2007,46(3):745-749.
    [23]Tang J, Zou Z, Ye J. Effects of Substituting Sr2+ and Ba2+ for Ca2+ on the Structural Properties and Photocatalytic Behaviors of CaIn2O4 [J]. Chem. Mater.,2004,16(9):1644-1649.
    [24]Kim H G, Becker O S, Jang J S, et al. A generic method of visible light sensitization for perovskite-related layered oxides:Substitution effect of lead [J]. J. Solid State Chem.,2006,179(4): 1214-1218.
    [25]Zou Z, Ye J, Arakawa H. Role of R in Bi2RNbO7 (R=Y, Rare Earth):Effect on band structure and photocatalytic properties [J]. J. Phys. Chem. B,2001,106(3):517-520.
    [26]Zou Z G, Ye J H, Arakawa H. Photocatalytic properties and electronic structure of a novel series of solid photocatalysts, Bi2RNbO7 (R= Y, rare earth) [J]. Top Catal.,2003,22(1-2):107-110.
    [27]Sato J, Saito N, Nishiyama H, et al. Photocatalytic water decomposition by RuO2-loaded antimonates, M2Sb2O7 (M=Ca, Sr), CaSb2O6 and NaSbO3, with d10 configuration [J]. J. Photoch. Photobio. A: Chem.,2002,148(1-3):85-89.
    [28]Sato J, Kobayashi H, Saito N, et al. Photocatalytic activities for water decomposition of RuO2-loaded AInO2 (A=Li, Na) with d10 configuration [J]. J. Photoch. Photobio. A:Chem.,2003,158(2-3): 139-144.
    [29]Spanhel L, Weller H, Henglein A. Photochemistry of semiconductor colloids.22. Electron ejection from illuminated cadmium sulfide into attached titanium and zinc oxide particles [J]. J. Am. Chem. Soc.,1987,109(22):6632-6635.
    [30]Chen X, Mao S S. Titanium dioxide nanomaterials:synthesis, properties, modifications, and applications [J]. Chem. Rev.,2007,107(7):2891-2959.
    [31]刘恩科,朱秉升,罗晋生.半导体物理学[M].北京:国防工业出版社,2010.
    [32]Gao Y M, Lee W, Trehan R, et al. Improvement of photocatalytic activity of titanium(Ⅳ) oxide by dispersion of Au on TiO2 [J]. Mater. Res. Bull.,1991,26(12):1247-1254.
    [33]Subramanian V, Wolf E E, Kamat P V. Catalysis with Ti02/Gold nanocomposites. Effect of metal particle size on the fermi level equilibration [J]. J. Am. Chem. Soc.,2004,126(15):4943-4950.
    [34]Kim J Y, Lee K, Coates N E, et al. Efficient tandem polymer solar cells fabricated by all-solution processing [J]. Science,2007,317(5835):222-225.
    [35]Bessekhouad Y, Robert D, Weber J V. Bi2S3/Ti02 and CdS/TiO2 heterojunctions as an available configuration for photocatalytic degradation of organic pollutant [J]. J. Photoch. Photobio. A:Chem., 2004,163(3):569-580.
    [36]Brahimi R, Bessekhouad Y, Bouguelia A, et al. Improvement of eosin visible light degradation using PbS-sensititized TiO2 [J]. J. Photoch. Photobio. A:Chem.,2008,194(2-3):173-180.
    [37]Ratanatawanate C, Chyao A, Balkus K J. S-nitrosocysteine-decorated PbS QDs/TiO2 nanotubes for enhanced production of singlet oxygen [J]. J. Am. Chem. Soc.,2011,133(10):3492-3497.
    [38]Hou Y, Li X Y, Zou X J, et al. Photoeletrocatalytic activity of a Cu2O-loaded self-organized highly oriented TiO2 nanotube array electrode for 4-chlorophenol degradation [J]. Environ. Sci. Technol., 2009,43(3):858-863.
    [39]Agrawal M, Gupta S, Pich A, et al. A facile approach to fabrication of ZnO-TiO2 hollow spheres [J]. Chem. Mater.,2009,21(21):5343-5348.
    [40]Higashimoto S, Sakiyama M, Azuma M. Photoelectrochemical properties of hybrid WO3/TiO2 electrode. Effect of structures of WO3 on charge separation behavior [J]. Thin Solid Films,2006, 503(1-2):201-206.
    [41]Tae Kwon Y, Yong Song K, In Lee W, et al. Photocatalytic behavior of WO3-loaded TiO2 in an oxidation reaction [J]. J. Catal.,2000,191(1):192-199.
    [42]Fuerte A, Hernandez-Alonso M D, Maira A J, et al. Nanosize Ti-W mixed oxides:effect of doping level in the photocatalytic degradation of toluene using sunlight-type excitation [J]. J. Catal.,2002, 212(1):1-9.
    [43]Levy B, Liu W, Gilbert S E. Directed photocurrents in nanostructured TiO2/SnO2 heterojunction diodes [J]. J. Phys. Chem. B,1997,101(10):1810-1816.
    [44]Bedja I, Kamat P V. Capped semiconductor colloids. Synthesis and photoelectrochemical behavior of TiO2 capped SnO2 nanocrystallites [J]. J. Phys. Chem.,1995,99(22):9182-9188.
    [45]Vinodgopal K, Bedja I, Kamat P V. Nanostructured semiconductor films for photocatalysis. photoelectrochemical behavior of SnO2/TiO2 composite systems and its role in photocatalytic degradation of a textile azo dye [J]. Chem. Mater.,1996,8(8):2180-2187.
    [46]Yu H M, Zhang Q H, Qi L J, et al. Thermal behavior of nitrided TiO2/In2O3 by TG-DSC-MS combined with PulseTA [J]. Thermochim Acta,2006,440(2):195-199.
    [47]Yang D J, Liu H W, Zheng Z F, et al. An efficient photocatalyst structure:TiO2(B) nanofibers with a shell of anatase nanocrystals [J]. J. Am. Chem. Soc.,2009,131(49):17885-17893.
    [48]Kundu P, Deshpande P A, Madras G, et al. Nanoscale ZnO/CdS heterostructures with engineered interfaces for high photocatalytic activity under solar radiation [J]. J. Mater. Chem.,2011,21(12): 4209-4216.
    [49]Wang X W, Liu G, Chen Z G, et al. Enhanced photocatalytic hydrogen evolution by prolonging the lifetime of carriers in ZnO/CdS heterostructures [J]. Chem. Commun.,2009,45(23):3452-3454.
    [50]Cui Y M, Sun W Z. Degradation of BPB in photocatalysis enhanced by photosensitizer [J]. Rare Metals,2006,25(2):138-343.
    [51]Sivula K, Le Formal F, Gratzel M. WO3-Fe2O3 photoanodes for water splitting:A host scaffold, guest absorber approach [J]. Chem. Mater.,2009,21(13):2862-2867.
    [52]Chang W K, Koteswara R K, Kuo H C, et al. A novel core-shell like composite In2O3@CaIn2O4 for efficient degradation of Methylene Blue by visible light [J]. Appl. Cata. A:Gen.,2007,321(1):1-6.
    [53]Long M, Cai W M, Cai J, et al. Efficient photocatalytic degradation of phenol over Co3O4/BiVO4 composite under visible light irradiation [J]. J. Phys. Chem. B,2006,110(41):20211-20216.
    [54]Zong X, Yan H, Wu G, et al. Enhancement of photocatalytic H2 evolution on CdS by loading MoS2 as cocatalyst under visible light irradiation [J]. J. Am. Chem. Soc.,2008,130(23):7176-7177.
    [55]Kisch H, WeiB H. Tuning photoelectrochemical and photocatalytic properties through electronic semiconductor-support interaction [J]. Adv. Funct. Mater.,2002,12(8):483-488.
    [56]Fu X, Clark L A, Yang Q, et al. Enhanced photocatalytic performance of titania-based binary metal oxides:TiO2/SiO2 and TiO2/ZrO2 [J]. Environ. Sci. Technol.,1996,30(2):647-653.
    [57]Chen C C, Ma W H, Zhao J C. Semiconductor-mediated photodegradation of pollutants under visible-light irradiation [J]. Chem. Soc. Rev.,2010,39(11):4206-4219.
    [58]Abe R, Sayama K, Domen K, et al. A new type of water splitting system composed of two different TiO2 photocatalysts (anatase, rutile) and a IO3-/I- shuttle redox mediator [J]. Chem. Phys. Lett.,2001, 344(3-4):339-344.
    [59]Higashi M, Abe R, Ishikawa A, et al. Z-scheme overall water splitting on modified-TaON photocatalysts under visible light (λ<500 nm) [J]. Chem. Lett.,2008,37(2):138-139.
    [60]Abe R, Takata T, Sugihara H, et al. Photocatalytic overall water splitting under visible light by TaON and WO3 with an IO3-/I- shuttle redox mediator [J]. Chem. Commun.,2005,41(30):3829-3831.
    [61]Wang X, Liu G, Chen Z-G, et al. Enhanced photocatalytic hydrogen evolution by prolonging the lifetime of carriers in ZnO/CdS heterostructures [J]. Chem. Commun.,2009,45(23):3452-3454.
    [62]Sayama K, Mukasa K, Abe R, et al. Stoichiometric water splitting into H2 and O2 using a mixture of two different photocatalysts and an IO3-/I- shuttle redox mediator under visible light irradiation [J]. Chem. Commun.,2001,37(23):2416-2417.
    [63]Tada H, Mitsui T, Kiyonaga T, et al. All-solid-state Z-scheme in CdS-Au-TiO2 three-component nanojunction system [J]. Nat. Mater.,2006,5(10):782-786.
    [64]Gratzel M. Photoelectrochemical cells [J]. Nature,2001,414(6861):338-344.
    [65]Nakato Y, Tsubomura H. Structures and functions of thin metal layers on semiconductor electrodes [J]. J. Photochem.,1985,29(1-2):257-266.
    [66]Nakato Y, Shioji M, Tsubomura H. Photoeffects on the potentials of thin metal films on a n-TiO2 crystal wafer. The mechanism of semiconductor photocatalysts [J]. Chem. Phys. Lett.,1982,90(6): 453-456.
    [67]De Tacconi N R, Carmona J, Rajeshwar K. Chemically modified Ni/TiO2 nanocomposite films:charge transfer from photoexcited TiO2 particles to hexacyanoferrate redox centers within the film and unusual photoelectrochemical behavior [J]. J. Phys. Chem. B,1997,101(49):10151-10154.
    [68]Kamat P V, Flumiani M, Dawson A. Metal-metal and metal-semiconductor composite nanoclusters [J]. Colloids Surf. A,2002,202(2-3):269-279.
    [69]Hiesgen R, Meissner D. Nanoscale photocurrent variations at metal-modified semiconductor surfaces [J]. J. Phys. Chem. B,1998,102(34):6549-6557.
    [70]Lahiri D, Subramanian V, Bunker B A, et al. Probing photochemical transformations at TiO2/Pt and TiO2/Ir interfaces using x-ray absorption spectroscopy [J]. J. Chem. Phys.,2006,124(20):204720.
    [71]Tian Y, Tatsuma T. Mechanisms and Applications of Plasmon-Induced Charge Separation at TiO2 Films Loaded with Gold Nanoparticles [J]. J. Am. Chem. Soc.,2005,127(20):7632-7637.
    [72]Hirakawa T, Kamat P V. Photoinduced electron storage and surface plasmon modulation in Ag@TiO2 clusters [J]. Langmuir,2004,20(14):5645-5647.
    [73]Dawson A, Kamat P V. Semiconductor-metal nanocomposites. Photoinduced fusion and photocatalysis of gold-capped TiO2 (TiO2/Gold) nanoparticles [J]. J. Phys. Chem. B,2001,105(5): 960-966.
    [74]Cozzoli P D, Comparelli R, Fanizza E, et al. Photocatalytic Synthesis of Silver Nanoparticles Stabilized by TiO2 Nanorods:A Semiconductor/Metal Nanocomposite in Homogeneous Nonpolar Solution [J]. J. Am. Chem. Soc.,2004,126(12):3868-3879.
    [75]Alivisatos A P. Semiconductor clusters, nanocrystals, and quantum dots [J]. Science,1996, 271(5251):933-937.
    [76]Linsebigler A L, Lu G, Yates J T. Photocatalysis on TiO2 surfaces:principles, mechanisms, and selected results [J]. Chem. Rev.,1995,95(3):735-758.
    [77]Brus L E. A Simple-model for the Ionization-Potential, Electron-Affinity, and Aqueous Redox Potentials of Small Semiconductor Crystallites [J]. J. Chem. Phys.,1983,79(11):5566-5571.
    [78]Micic O I, Cheong H M, Fu H, et al. Size-dependent spectroscopy of InP quantum dots [J]. J. Phys. Chem. B,1997,101(25):4904-4912.
    [79]Pokrant S, Whaley K B. Tight-binding studies of surface effects on electronic structure of CdSe nanocrystals:the role of organic ligands, surface reconstruction, and inorganic capping shells [J]. Eur. Phys. J. D,1999,6(2):255-267.
    [80]Klimov V I, Mikhailovsky A A, Mcbranch D W, et al. Quantization of multiparticle Auger rates in semiconductor quantum dots [J]. Science,2000,287(5455):1011-1013.
    [81]Klimov V I. Spectral and dynamical properties of multilexcitons in semiconductor nanocrystals [J]. Annu. Rev. Phys. Chem.,2007,58:635-673.
    [82]Luo J W, Franceschetti A, Zunger A. Carrier Multiplication in Semiconductor Nanocrystals: Theoretical Screening of Candidate Materials Based on Band-Structure Effects [J]. Nano Lett.,2008, 8(10):3174-3181.
    [83]Fisher B, Caruge J M, Zehnder D, et al. Room-temperature ordered photon emission from multiexciton states in single CdSe core-shell nanocrystals [J]. Phys. Rev. Lett.,2005,94(8):087403.
    [84]Dooley C J, Dimitrov S D, Fiebig T. Ultrafast electron transfer dynamics in CdSe/CdTe donor-acceptor nanorods [J]. J. Phys. Chem. C,2008,112(32):12074-12076.
    [85]Wenger B, Gratzel M, Moser J-E. Rationale for kinetic heterogeneity of ultrafast light-induced electron transfer from Ru(II) complex sensitizers to nanocrystalline TiO2 [J]. J. Am. Chem. Soc., 2005,127(35):12150-12151.
    [86]Yu P, Nedeljkovic J M, Ahrenkiel P A, et al. Size Dependent femtosecond electron cooling dynamics in CdSe quantum rods [J]. Nano Lett.,2004,4(6):1089-1092.
    [87]Robel I, Subramanian V, Kuno M, et al. Quantum dot solar cells. Harvesting light energy with CdSe nanocrystals molecularly linked to mesoscopic TiO2 films [J]. J. Am. Chem. Soc.,2006,128(7): 2385-2393.
    [88]Robel I, Kuno M, Kamat P V. Size-dependent electron injection from excited CdSe quantum dots into TiO2 nanoparticles [J]. J. Am. Chem. Soc.,2007,129(14):4136-4137.
    [89]Marcus R A. On Theory of electron-transfer reactions. VI. Unified treatment for homogeneous and electrode reactions [J]. J. Chem. Phys.,1965,43(2):679-701.
    [90]Murray C B, Kagan C R, Bawendi M G. Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies [J]. Annu. Rev. Mater. Sci.,2000,30:545-610.
    [91]Nozik A J. Quantum dot solar cells [J]. Physica E,2002,14(1-2):115-120.
    [92]Kamat P V. Quantum dot solar cells. Semiconductor nanocrystals as light harvesters [J]. J. Phys. Chem. C,2008,112(48):18737-18753.
    [93]Gorer S, Hodes G. Quantum size effects in the study of chemical solution deposition mechanisms of semiconductor films [J]. J. Phys. Chem.,1994,98(20):5338-5346.
    [94]Nasr C, Hotchandani S, Kim W Y, et al. Photoelectrochemistry of composite semiconductor thin films. Photosensitization of SnO2/CdS coupled nanocrystallites with a ruthenium polypyridyl complex [J]. J. Phys. Chem. B,1997,101(38):7480-7487.
    [95]Tena-Zaera R, Katty A, Bastide S, et al. Annealing effects on the physical properties of electrodeposited ZnO/CdSe core-shell nanowire arrays [J]. Chem. Mater.,2007,19(7):1626-1632.
    [96]Semonin O E, Johnson J C, Luther J M, et al. Absolute photoluminescence quantum yields of IR-26 dye, PbS, and PbSe quantum dots [J]. J. Phys. Chem. Lett.,2010,1(16):2445-2450.
    [97]Talgorn E, Abellon R D, Kooyman P J, et al. Supercrystals of CdSe quantum dots with high charge mobility and efficient electron transfer to TiO2 [J]. ACS Nano,2010,4(3):1723-1731.
    [98]Shalom M, Albero J, Tachan Z, et al. Quantum dot-dye bilayer-sensitized solar cells:breaking the limits imposed by the low absorbance of dye monolayers [J]. J. Phys. Chem. Lett.,2010,1(7): 1134-1138.
    [99]Gur I, Fromer N A, Geier M L, et al. Air-stable all-inorganic nanocrystal solar cells processed from solution [J]. Science,2005,310(5747):462-465.
    [100]Kongkanand A, Tvrdy K, Takechi K, et al. Quantum dot solar cells. Tuning photoresponse through size and shape control of CdSe-TiO2 architecture [J]. J. Am. Chem. Soc.,2008,130(12): 4007-4015.
    [101]Kamat P V. Photovoltaics:capturing hot electrons [J]. Nat. Chem.,2010,2(10):809-810.
    [102]Pandey A, Guyot-Sionnest P. Hot electron extraction from colloidal quantum dots [J]. J. Phys. Chem. Lett.,2009,1(1):45-47.
    [103]Wang G, Yang X, Qian F, et al. Double-sided CdS and CdSe quantum dot co-sensitized ZnO nanowire arrays for photoelectrochemical hydrogen generation [J]. Nano Lett.,2010,10(3): 1088-1092.
    [104]Baker D R, Kamat P V. Disassembly, reassembly, and photoelectrochemistry of etched TiO2 nanotubes [J]. J. Phys. Chem. C,2009,113(41):17967-17972.
    [105]Lee W, Lee J, Lee S, et al. Enhanced charge collection and reduced recombination of CdS/TiO2 quantum-dots sensitized solar cells in the presence of single-walled carbon nanotubes [J]. Appl. Phys. Lett.,2008,92(15):153510.
    [106]Nishijima Y, Ueno K, Yokota Y, et al. Plasmon-assisted photocurrent generation from visible to near-infrared wavelength using a Au-nanorods/TiO2 electrode [J]. J. Phys. Chem. Lett.,2010,1(13): 2031-2036.
    [107]Wang Q, Zhu K, Neale N R, et al. Constructing ordered sensitized heterojunctions:bottom-up electrochemical synthesis of p-type semiconductors in oriented n-TiO2 nanotube arrays [J]. Nano Lett.,2009,9(2):806-813.
    [108]Lee M, Yang R, Li C, et al. Nanowire-quantum dot hybridized cell for harvesting sound and solar energies [J]. J. Phys. Chem. Lett.,2010,1(19):2929-2935.
    [109]Franzman M A, Schlenker C W, Thompson M E, et al. Solution-phase synthesis of SnSe nanocrystals for use in solar cells [J]. J. Am. Chem. Soc.,2010,132(12):4060-4061.
    [110]Li L, Coates N, Moses D. Solution-processed inorganic solar cell based on in situ synthesis and film deposition of CuInS2 nanocrystals [J]. J. Am. Chem. Soc.,2010,132(1):22-23.
    [111]Pan D, Wang X, Zhou Z H, et al. Synthesis of quaternary semiconductor nanocrystals with tunable band gaps [J]. Chem. Mater.,2009,21(12):2489-2493.
    [112]Panthani M G, Akhavan V, Goodfellow B, et al. Synthesis of CuInS2, CuInSe2, and Cu(InxGa1-x)Se2 (CIGS) nanocrystal "inks" for printable photovoltaics [J]. J. Am. Chem. Soc.,2008,130(49): 16770-16777.
    [113]Steinhagen C, Panthani M G, Akhavan V, et al. Synthesis of Cu2ZnSnS4 nanocrystals for use in low-cost photovoltaics [J]. J. Am. Chem. Soc.,2009,131(35):12554-12555.
    [114]Lee J, Govorov A O, Kotov N A. Bioconjugated superstructures of CdTe nanowires and nanoparticles:multistep cascade Forster resonance energy transfer and energy channeling [J]. Nano Lett.,2005,5(10):2063-2069.
    [115]Son D H, Hughes S M, Yin Y D, et al. Cation exchange reactions-in ionic nanocrystals [J]. Science, 2004,306:1009-1012.
    [116]Lakowicz J R. Principles of Fluorescence Spectroscopy [M]. New York:Kluwer Academic Publishers,1999.
    [117]Somers R C, Bawendi M G, Nocera D G. CdSe nanocrystal based chem-/bio-sensors [J]. Chem. Soc. Rev.,2007,36(4):579-591.
    [118]Lazzeri M, Vittadini A, Selloni A. Erratum:structure and energetics of stoichiometric TiO2 anatase surfaces [J]. Phys. Rev. B,2002,65(11):119901.
    [119]Yang H G, Sun C H, Qiao S Z, et al. Anatase TiO2 single crystals with a large percentage of reactive facets [J]. Nature,2008,453(7195):638-641.
    [120]Han X G, Kuang Q, Jin M S, et al. Synthesis of titania nanosheets with a high percentage of exposed (001) facets and related photocatalytic properties [J]. J. Am. Chem. Soc.,2009,131(9): 3152-3153.
    [121]Liu S W, Yu J G, Jaroniec M. Tunable photocatalytic selectivity of hollow TiO2 microspheres composed of anatase polyhedra with exposed{001} facets [J]. J. Am. Chem. Soc.,2010,132(34): 11914-11916.
    [122]Zhang H M, Han Y H, Liu X L, et al. Anatase TiO2 microspheres with exposed mirror-like plane {001} facets for high performance dye-sensitized solar cells (DSSCs) [J]. Chem. Commun.,2010, 46(44):8395-8397.
    [123]Zhang L, Chen D, Jiao X. Monoclinic structured BiVO4 nanosheets:hydrothermal preparation, formation mechanism, and coloristic and photocatalytic properties [J]. J. Phys. Chem. B,2006, 110(6):2668-2673.
    [124]Bi Y, Ouyang S, Umezawa N, et al. Facet effect of single-crystalline Ag3PO4 sub-microcrystals on photocatalytic properties [J]. J. Am. Chem. Soc.,2011,133(17):6490-6492.
    [125]Kuznetsova IN, Blaskov V, Stambolova I, et al. TiO2 pure phase brookite with preferred orientation, synthesized as a spin-coated film [J]. Mater. Lett.,2005,59(29-30):3820-3823.
    [126]Lin J, Lin Y, Liu P, et al. Hot-fluid annealing for crystalline titanium dioxide nanoparticles in stable suspension [J]. J. Am. Chem. Soc.,2002,124(38):11514-11518.
    [127]Chae S Y, Park M K, Lee S K, et al. Preparation of size-controlled TiO2 nanoparticles and derivation of optically transparent photocatalytic films [J]. Chem. Mater.,2003,15(17):3326-3331.
    [128]Ahmad M I, Fasel C, Mayer T, et al. High temperature stability of nanocrystalline anatase powders prepared by chemical vapour synthesis under varying process parameters [J]. Appl. Surf. Sci.,2011, 257(15):6761-6767.
    [129]Ho W, Yu J C. Sonochemical synthesis and visible light photocatalytic behavior of CdSe and CdSe/TiO2 nanoparticles [J]. J. Mol. Catal. A:Chem.,2006,247(1-2):268-274.
    [130]Chen H, Chen S, Quan X, et al. Fabrication of TiO2-Pt coaxial nanotube array Schottky structures for enhanced photocatalytic degradation of phenol in aqueous solution [J]. J. Phys. Chem. C,2008, 112(25):9285-9290.
    [131]Zeng S, Tang K, Li T, et al. Hematite with the urchinlike structure:its shape-selective synthesis, magnetism, and enhanced photocatalytic performance after TiO2 encapsulation [J]. J. Phys. Chem. C,2009,114(1):274-283.
    [132]Goh C, Coakley K M, Mcgehee M D. Nanostructuring titania by embossing with polymer molds made from anodic alumina templates [J]. Nano Lett.,2005,5(8):1545-1549.
    [133]Hagedorn K, Forgacs C, Collins S, et al. Design considerations for nanowire heterojunctions in solar energy conversion/storage applications [J]. J. Phys. Chem. C,2010,114(27):12010-12017.
    [134]Yang Y, Meng G, Liu X, et al. Aligned SiC porous nanowire arrays with excellent field emission properties converted from Si nanowires on silicon wafer [J]. J. Phys. Chem. C,2008,112(51): 20126-20130.
    [135]Lin Y-C, Lu K-C, Wu W-W, et al. Single crystalline PtSi nanowires, PtSi/Si/PtSi nanowire heterostructures, and nanodevices [J]. Nano Lett.,2008,8(3):913-918.
    [136]Sivakov V, Andra G, Gawlik A, et al. Silicon nanowire-based solar cells on glass:synthesis, optical properties, and cell parameters [J]. Nano Lett.,2009,9(4):1549-1554.
    [137]Pedersen J G, Xiao S S, Mortensen N A. Limits of slow light in photonic crystals [J]. Phys. Rev. B, 2008,78(15):153101.
    [138]Chen H, Chen S, Quan X, et al. Structuring a TiO2-based photonic crystal photocatalyst with Schottky junction for efficient photocatalysis [J]. Environ. Sci. Technol.,2009,44(1):451-455.
    [139]Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films [J]. Science,2004,306(5696):666-669.
    [140]Katsnelson M I. Graphene:carbon in two dimensions [J]. Mater. Today,10(1-2):20-27.
    [141]Novoselov K S, Geim A K, Morozov S V, et al. Two-dimensional gas of massless Dirac fermions in graphene [J]. Nature,2005,438(7065):197-200.
    [142]傅强,包信和.石墨烯的化学研究进展[J].科学通报,2009,54(18):2657-2666.
    [143]Mak K F, Sfeir M Y, Wu Y, et al. Measurement of the optical conductivity of graphene [J]. Phys. Rev. Lett.,2008,101(19):196405.
    [144]Breusing M, Ropers C, Elsaesser T. Ultrafast Carrier Dynamics in Graphite [J]. Phys. Rev. Lett., 2009,102(8):086809.
    [145]Kampfrath T, Perfetti L, Schapper F, et al. Strongly coupled optical phonons in the ultrafast dynamics of the electronic energy and current relaxation in graphite [J]. Phys. Rev. Lett.,2005, 95(18):187403.
    [146]Lazzeri M, Piscanec S, Mauri F, et al. Electron transport and hot phonons in carbon nanotubes [J]. Phys. Rev. Lett.,2005,95(23):236802.
    [147]Sun Z P, Hasan T, Torrisi F, et al. Graphene mode-locked ultrafast laser [J]. ACS Nano,2010,4(2): 803-810.
    [148]Eda G, Lin Y Y, Mattevi C, et al. Blue photoluminescence from chemically derived graphene oxide [J]. Adv. Mater.,2010,22(4):505-509.
    [149]Park S, Ruoff R S. Chemical methods for the production of graphenes [J]. Nat. Nanotechnol.,2009, 4(4):217-224.
    [150]Stankovich S, Dikin D A, Dommett G H B, et al. Graphene-based composite materials [J]. Nature, 2006,442(7100):282-286.
    [151]Ito J, Nakamura J, Natori A. Semiconducting nature of the oxygen-adsorbed graphene sheet [J]. J. Appl. Phys.,2008,103(11):113712.
    [152]Yeh T F, Syu J M, Cheng C, et al. Graphite oxide as a photocatalyst for hydrogen production from water [J]. Adv. Funct. Mater.,2010,20(14):2255-2262.
    [153]Luo Z T, Vora P M, Mele E J, et al. Photoluminescence and band gap modulation in graphene oxide [J]. Appl. Phys. Lett.,2009,94(11):111909.
    [154]Cuong T V, Pham V H, Tran Q T, et al. Photoluminescence and Raman studies of graphene thin films prepared by reduction of graphene oxide [J]. Mater. Lett.,2010,64(3):399-401.
    [155]Pan D Y, Zhang J C, Li Z, et al. Hydrothermal route for cutting graphene sheets into blue-luminescent graphene quantum dots [J]. Adv. Mater.,2010,22(6):734-738.
    [156]Koos M, Veres M, Fule M, et al. Ultraviolet photoluminescence and its relation to atomic bonding properties of hydrogenated amorphous carbon [J]. Diamond Relat. Mater.,2002,11(1):53-58.
    [157]Yan X, Cui X, Li B S, et al. Large, Solution-processable graphene quantum dots as light absorbers for photovoltaics [J]. Nano Lett.,2010,10(5):1869-1873.
    [158]Stankovich S, Piner R D, Nguyen S T, et al. Synthesis and exfoliation of isocyanate-treated graphene oxide nanoplatelets [J]. Carbon,2006,44(15):3342-3347.
    [159]Niyogi S, Bekyarova E, Itkis M E, et al. Solution properties of graphite and graphene [J]. J. Am. Chem. Soc.,2006,128(24):7720-7721.
    [160]Xu Y F, Liu Z B, Zhang X L, et al. A graphene hybrid material covalently functionalized with porphyrin:synthesis and optical limiting property [J]. Adv. Mater.,2009,21(12):1275-1279.
    [161]黄毅,陈永胜.石墨烯的功能化及相关应用[J].中国科学B辑:化学,2009,39(9):887-896.
    [162]Hong W J, Xu Y X, Lu G W, et al. Transparent graphene/PEDOT-PSS composite films as counter electrodes of dye-sensitized solar cells [J]. Electrochem. Commun.,2008,10(10):1555-1558.
    [163]Liu Z F, Liu Q, Huang Y, et al. Organic photovoltaic devices based on a novel acceptor material: graphene [J]. Adv. Mater.,2008,20(20):3924-3930.
    [164]Tung V C, Huang J H, Tevis I, et al. Surfactant-free water-processable photoconductive all-carbon composite [J]. J. Am. Chem. Soc.,2011,133(13):4940-4947.
    [165]Seger B, Kamat P V. Electrocatalytically active graphene-platinum nanocomposites. Role of 2-D carbon support in PEM fuel cells [J]. J. Phys. Chem. C,2009,113(19):7990-7995.
    [166]Yoo E, Okata T, Akita T, et al. Enhanced electrocatalytic activity of Pt subnanoclusters on graphene nanosheet surface [J]. Nano Lett.,2009,9(6):2255-2259.
    [167]Zhang S, Shao Y Y, Liao H G, et al. Graphene decorated with PtAu alloy nanoparticles:facile synthesis and promising application for formic acid oxidation [J]. Chem. Mater.,2011,23(5): 1079-1081.
    [168]Shin H-J, Choi W M, Choi D, et al. Control of electronic structure of graphene by various dopants and their effects on a nanogenerator [J]. J. Am. Chem. Soc.,2010,132(44):15603-15609.
    [169]Luo Z T, Somers L A, Dan Y P, et al. Size-selective nanoparticle growth on few-layer graphene films [J]. Nano Lett,.2010,10(3):777-781.
    [170]Zhou H Q, Qiu C Y, Liu Z, et al. Thickness-dependent morphologies of gold on n-layer graphenes [J]. J. Am. Chem. Soc.,2010,132(3):944-946.
    [171]Xiong Z, Zhang L L, Ma J, et al. Photocatalytic degradation of dyes over graphene-gold nanocomposites under visible light irradiation [J]. Chem. Commun.,2010,46(33):6099-6101.
    [172]Xiong Z, Zhang L L, Zhao X S. Visible-light-induced dye degradation over copper-modified reduced graphene oxide [J]. Chem. Eur. J.,2011,17(8):2428-2434.
    [173]Cao A, Liu Z, Chu S, et al. A facile one-step method to produce graphene-CdS quantum dot nanocomposites as promising optoelectronic materials [J]. Adv. Mater.,2010,22(1):103-106.
    [174]Geng X, Niu L, Xing Z, et al. Aqueous-processable noncovalent chemically converted graphene-quantum dot composites for flexible and transparent optoelectronic films [J]. Adv. Mater., 2010,22(5):638-642.
    [175]Zhu C, Guo S, Wang P, et al. One-pot, water-phase approach to high-quality graphene/TiO2 composite nanosheets [J]. Chem. Commun.,2010,46(38):7148-7150.
    [176]Zhang H, Lv X, Li Y, et al. P25-graphene composite as a high performance photocatalyst [J]. ACS Nano,2009,4(1):380-386.
    [177]Williams G, Seger B, Kamat P V. TiO2-graphene nanocomposites. UV-assisted photocatalytic reduction of graphene oxide [J]. ACS Nano,2008,2(7):1487-1491.
    [178]Williams G, Kamat P V. Graphene-semiconductor nanocomposites:excited-state interactions between ZnO nanoparticles and graphene oxide [J]. Langmuir,2009,25(24):13869-13873.
    [179]Lee J M, Pyun Y B, Yi J, et al. ZnO Nanorod-graphene hybrid architectures for multifunctional conductors [J]. J. Phys. Chem. C,2009,113(44):19134-19138.
    [180]Wang H L, Robinson J T, Diankov G, et al. Nanocrystal growth on graphene with various degrees of oxidation [J]. J. Am. Chem. Soc.,2010,132(10):3270-3271.
    [181]Li F H, Song J F, Yang H F, et al. One-step synthesis of graphene/SnO2 nanocomposites and its application in electrochemical supercapacitors [J]. Nanotechnology,2009,20(45):455602.
    [182]Paek S M, Yoo E, Honma I. Enhanced cyclic performance and lithium storage capacity of SnO2/graphene nanoporous electrodes with three-dimensionally delaminated flexible structure [J]. Nano Lett.,2009,9(1):72-75.
    [183]Wu Z-S, Ren W, Wen L, et al. Graphene anchored with Co3O4 nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance [J]. ACS Nano,2010,4(6): 3187-3194.
    [184]Chen S, Zhu J, Wu X, et al. Graphene oxide-MnO2 nanocomposites for supercapacitors [J]. ACS Nano,2010,4(5):2822-2830.
    [185]Lightcap I V, Kosel T H, Kamat P V. Anchoring semiconductor and metal nanoparticles on a two-dimensional catalyst mat. Storing and shuttling electrons with reduced graphene oxide [J]. Nano Lett.,2010,10(2):577-583.
    [186]Liu J C, Bai H W, Wang Y J, et al. Self-assembling TiO2 nanorods on large graphene oxide sheets at a two-phase interface and their anti-recombination in photocatalytic applications [J]. Adv. Funct. Mater.,2010,20(23):4175-4181.
    [187]Manga K K, Zhou Y, Yan Y L, et al. Multilayer hybrid films consisting of alternating graphene and titania nanosheets with ultrafast electron transfer and photoconversion properties [J]. Adv. Funct. Mater.,2009,19(22):3638-3643.
    [188]Zhang Y H, Tang Z R, Fu X Z, et al. TiO2-graphene nanocomposites for gas-phase photocatalytic degradation of volatile aromatic pollutant:Is TiO2-graphene truly different from other TiO2-carbon composite materials? [J]. ACS Nano,2010,4(12):7303-7314.
    [189]Chen C, Cai W M, Long M C, et al. Synthesis of visible-light responsive graphene oxide/TiO2 composites with p/n heterojunction [J]. ACS Nano,2010,4(11):6425-6432.
    [190]Yin Z Y, Wu S X, Zhou X Z, et al. Electrochemical deposition of ZnO nanorods on transparent reduced graphene oxide electrodes for hybrid solar cells [J]. Small,2010,6(2):307-312.
    [191]Hwang J O, Lee D H, Kim J Y, et al. Vertical ZnO nanowires/graphene hybrids for transparent and flexible field emission [J]. J. Mater. Chem.,2011,21(10):3432-3437.
    [192]Zhang L L, Xiong Z G, Zhao X S. Pillaring chemically exfoliated graphene oxide with carbon nanotubes for photocatalytic degradation of dyes under visible light irradiation [J]. ACS Nano,2010, 4(11):7030-7036.
    [193]Yang S B, Feng X L, Wang L, et al. Graphene-based nanosheets with a sandwich structure [J]. Angew. Chem. Int. Edit.,2010,49(28):4795-4799.
    [194]Akhavan O. Graphene nanomesh by ZnO nanorod photocatalysts [J]. ACS Nano,2010,4(7): 4174-4180.
    [195]Zhang L M, Diao S O, Nie Y F, et al. Photocatalytic patterning and modification of graphene [J]. J. Am. Chem. Soc.,2011,133(8):2706-2713.
    [196]Weller H. Quantized semiconductor particles-a novel state of matter for materials science [J]. Adv. Mater.,1993,5(2):88-95.
    [197]Nozik A J, Beard M C, Luther J M, et al. Semiconductor quantum dots and quantum dot arrays and applications of multiple exciton generation to third-generation photovoltaic solar cells [J]. Chem. Rev.,2010,110(11):6873-6890.
    [198]Kongkanand A, Tvrdy K, Takechi K, et al. Quantum dot solar cells. Tuning photoresponse through size and shape control of CdSe-TiO2 architecture [J]. J. Am. Chem. Soc.,2008,130(12): 4007-4015.
    [199]Macak J M, Tsuchiya H, Schmuki P. High-aspect-ratio TiO2 nanotubes by anodization of titanium [J]. Angew. Chem. Int. Edit.,2005,44(14):2100-2102.
    [200]Carrillo-Carrion C, Cardenas S, Simonet B M, et al. Quantum dots luminescence enhancement due to illumination with UV/Vis light [J]. Chem. Commun.,2009,45(35):5214-5226.
    [201]Van Sark W G J H M, Frederix P L T M, Van Den Heuvel D J, et al. Photooxidation and photobleaching of single CdSe/ZnS quantum dots probed by room-temperature time-resolved spectroscopy [J]. J. Phys. Chem. B,2001,105(35):8281-8284.
    [202]Liu Z, Sun D D, Guo P, et al. An efficient bicomponent TiO2/SnO2 nanofiber photocatalyst fabricated by electrospinning with a side-by-side dual spinneret method [J]. Nano Lett.,2006,7(4): 1081-1085.
    [203]Luth H. Surfaces and interfaces of solids [M].2nd ed. Berlin:Springer,1993.
    [204]Chan C H, Chen H S, Kao C W, et al. Investigation of multilayer electronic vertically coupled InAs/GaAs quantum dot structures using surface photovoltage spectroscopy [J]. Appl. Phys. Lett., 2006,89(2):022114.
    [205]Sun B Q, Lu Z D, Jiang D S, et al. Photovoltage and photoreflectance spectroscopy of InAs/GaAs self-organized quantum dots [J]. Appl. Phys. Lett.,1998,73(18):2657-2659.
    [206]Zidon Y, Shapira Y, Dittrich T, et al. Light-induced charge separation in thin tetraphenyl-porphyrin layers deposited on Au [J]. Phys. Rev. B,2007,75(19):195327.
    [207]Macak J M, Gong B G, Hueppe M, et al. Filling of TiO2 nanotubes by self-doping and electrodeposition [J]. Adv. Mater.,2007,19(19):3027-3031.
    [208]Marcus R A, Sutin N. Electron transfers in chemistry and biology [J]. Biochim. Biophys. Acta, 1985,811(3):265-322.
    [209]Kreibig U. V M. Optical properties of metal clusters [M]. Berlin:Springer-Verlag,1995.
    [210]Zheng J, Zhang C W, Dickson R M. Highly fluorescent, water-soluble, size-tunable gold quantum dots [J]. Phys. Rev. Lett.,2004,93(7):077402.
    [211]Bonaccorso F, Sun Z, Hasan T, et al. Graphene photonics and optoelectronics [J]. Nat. Photonics, 2010,4(9):611-622.
    [212]Guo S J, Dong S J. Graphene nanosheet:synthesis, molecular engineering, thin film, hybrids, and energy and analytical applications [J]. Chem. Soc. Rev.,2011,40(5):2644-2672.
    [213]Hummers W S, Offeman R E. Preparation of graphitic oxide [J]. J. Am. Chem. Soc.,1958,80(6): 1339-1339.
    [214]Liu Z, Robinson J T, Sun X M, et al. PEGylated nanographene oxide for delivery of water-insoluble cancer drugs [J]. J. Am. Chem. Soc.,2008,130(33):10876-10877.
    [215]Swathi R S, Sebastian K L. Resonance energy transfer from a dye molecule to graphene [J]. J. Chem. Phys.,2008,129(5):054703.
    [216]Xie L M, Ling X, Fang Y, et al. Graphene as a substrate to suppress fluorescence in resonance raman spectroscopy [J]. J. Am. Chem. Soc.,2009,131(29):9890-9891.
    [217]Turner M, Golovko V B, Vaughan O P H, et al. Selective oxidation with dioxygen by gold nanoparticle catalysts derived from 55-atom clusters [J]. Nature,2008,454(7207):981-983.
    [218]Wertheim G K, Dicenzo S B. Cluster growth and core-electron binding-energies in supported metal-clusters [J]. Phys. Rev. B,1988,37(2):844-847.
    [219]Mo Y W, Kleiner J, Webb M B, et al. Activation-energy for surface-diffusion of Si on Si(001)-a Scanning-Tunneling-Microscopy study [J]. Phys. Rev. Lett.,1991,66(15):1998-2001.
    [220]Ma L Y, Tang L, Guan Z L, et al. Quantum size effect on adatom surface diffusion [J]. Phys. Rev. Lett.,2006,97(26):266102.
    [221]Shin H J, Choi W M, Choi D, et al. Control of electronic structure of graphene by various dopants and their effects on a nanogenerator [J]. J. Am. Chem. Soc.,2010,132(44):15603-15609.
    [222]Gunes F, Shin H J, Biswas C, et al. Layer-by-layer doping of few-layer graphene film [J]. ACS Nano,2010,4(8):4595-4600.
    [223]Chan T L, Wang C, Hupalo M, et al. Quantum size effect on the diffusion barriers and growth morphology of Pb/Si(111) [J]. Phys. Rev. Lett.,2006,96(22):226102.
    [224]Tejeda J, Shevchik N J, Braun W, et al. Valence bands of AgCl and AgBr:uv photoemission and theory [J]. Phys. Rev. B,1975,12(4):1557.
    [225]Wang P, Huang B B, Qin X Y, et al. Ag@AgCl:A highly efficient and stable photocatalyst active under visible light [J]. Angew. Chem. Int. Edit.,2008,47(41):7931-7933.
    [226]Hu C, Peng T W, Hu X X, et al. Plasmon-Induced Photodegradation of Toxic Pollutants with Ag-Agl/Al2O3 under Visible-Light Irradiation [J]. J. Am. Chem. Soc.,2010,132(2):857-862.
    [227]Ferrari A C. Raman spectroscopy of graphene and graphite:Disorder, electron-phonon coupling, doping and nonadiabatic effects [J]. Solid State Commun.,2007,143(1-2):47-57.
    [228]Tong L M, Li Z P, Zhu T, et al. Single gold-nanoparticle-enhanced Raman scattering of individual single-walled carbon nanotubes via atomic force microscope manipulation [J]. J. Phys. Chem. C, 2008,112(18):7119-7123.
    [229]Kim Y K, Na H K, Lee Y W, et al. The direct growth of gold rods on graphene thin films [J]. Chem. Commun.,2010,46(18):3185-3187.
    [230]Wu T X, Liu G M, Zhao J C, et al. Photoassisted degradation of dye pollutants. V. Self-photosensitized oxidative transformation of Rhodamine B under visible light irradiation in aqueous TiO2 dispersions [J]. J. Phys. Chem. B,1998,102(30):5845-5851.
    [231]Wang D, Wan L J, Wang C, et al. In situ STM evidence for adsorption of rhodamine B in solution [J]. J. Phys. Chem. B,2002,106(16):4223-4226.
    [232]Torimoto T, Ito S, Kuwabata S, et al. Effects of adsorbents used as supports for titanium dioxide loading on photocatalytic degradation of propyzamide [J]. Environ. Sci. Technol.,1996,30(4): 1275-1281.
    [233]Kako T, Kikugawa N, Ye J. Photocatalytic activities of AgSbO3 under visible light irradiation [J]. Catal. Today,2008,131(1-4):197-202.
    [234]Kato H, Kobayashi H, Kudo A. Role of Ag+ in the band structures and photocatalytic properties of AgMO3 (M:Ta and Nb) with the perovskite structure [J]. J. Phys. Chem. B,2002,106(48): 12441-12447.
    [235]Yi Z G, Ye J H, Kikugawa N, et al. An orthophosphate semiconductor with photooxidation properties under visible-light irradiation [J]. Nature Mater.,2010,9(7):559-564.
    [236]Serpone N, Lawless D, Khairutdinov R. Size effects on the photophysical properties of colloidal anatase TiO2 particles:size quantization versus direct transitions in this indirect semiconductor? [J]. J. Phys. Chem.,1995,99(45):16646-16654.
    [237]Zhang H, Zong R, Zhao J, et al. Dramatic visible photocatalytic degradation performances due to synergetic effect of TiO2 with PANI [J]. Environ. Sci. Technol.,2008,42(10):3803-3807.
    [238]Ma X G, Lu B, Li D, et al. Origin of photocatalytic activation of silver orthophosphate from first-principles [J]. J. Phys. Chem. C,2011,115(11):4680-4687.
    [239]Wang X, Zhi L J, Mullen K. Transparent, conductive graphene electrodes for dye-sensitized solar cells [J]. Nano Lett.,2008,8(1):323-327.
    [240]Loh K P, Bao Q L, Eda G, et al. Graphene oxide as a chemically tunable platform for optical applications [J]..Nature Chem.,2010,2(12):1015-1024.
    [241]Kottas G S, Clarke L I, Horinek D, et al. Artificial molecular rotors [J]. Chem. Rev.,2005,105(4): 1281-1376.
    [242]Kang J H, Kondo F, Katayama Y. Human exposure to bisphenol A [J]. Toxicology,2006,226(2-3): 79-89.
    [243]Sumpter J P, Johnson A C. Lessons from endocrine disruption and their application to other issues concerning trace organics in the aquatic environment [J]. Environ. Sci. Technol.,2005,39(12): 4321-4332.
    [244]Rogach A L, Nagesha D, Ostrander J W, et al. "Raisin bun"-type composite spheres of silica and semiconductor nanocrystals [J]. Chem. Mater.,2000,12(9):2676-2685.
    [245]Rojas M T, Koniger R, Stoddart J F, et al. Supported monolayers containing preformed binding sites. Synthesis and interfacial binding-properties of a thiolated beta-cyclodextrin derivative [J]. J. Am. Chem. Soc.,1995,117(1):336-343.
    [246]Liu J, Mendoza S, Roman E, et al. Cyclodextrin-modified gold nanospheres. Host-guest interactions at work to control colloidal properties [J]. J. Am. Chem. Soc.,1999,121(17):4304-4305.
    [247]Feng J, Miedaner A, Ahrenlkiel P, et al. Self-assembly of photoactive TiO2-cyclodextrin wires [J]. J. Am. Chem. Soc.,2005,127(43):14968-14969.
    [248]Miyake K, Yasuda S, Harada A, et al. Formation process of cyclodextrin necklace-Analysis of hydrogen bonding on a molecular level [J]. J. Am. Chem. Soc.,2003,125(17):5080-5085.
    [249]Bonnet P, Jaime C, Morin-Allory L. α,β,and γ-cyclodextrin dimers. Molecular modeling studies by molecular mechanics and molecular dynamics simulations [J]. J. Org. Chem.,2001,66(3):689-692.
    [250]Brey W. Physical chemistry and its biological applications [M]. New York:Academic Press,1978.
    [251]Chen Y F, Rosenzweig Z. Luminescent CdS quantum dots as selective ion probes [J]. Anal. Chem., 2002,74(19):5132-5138.
    [252]Hiratani T, Konishi K. Surface-cap-mediated host-guest chemistry of semiconductor CdS: intercalative cation accumulation around a phenyl-capped CdS cluster and its notable effects on the cluster photoluminescence [J]. Angew. Chem. Int. Edit.,2004,43(44):5943-5946.
    [253]Kitano H, Taira Y. Inclusion of bisphenols by a self-assembled monolayer of thiolated cyclodextrin on a gold electrode [J]. Langmuir,2002,18(15):5835-5840.
    [254]Wang X, Zeng H L, Wei Y L, et al. A reversible fluorescence sensor based on insoluble beta-cyclodextrin polymer for direct determination of bisphenol A (BPA) [J]. Sens. Actuators B-Chem.,2006,114(2):565-572.
    [255]Odashima K, Soga T, Koga K. Substrate selective inclusion by a series of water-soluble paracyclophanes. Host-guest recognition of steric structure and charge [J]. Tetrahedron Lett.,1981, 22(52):5311-5314.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700