用户名: 密码: 验证码:
可控带隙改性TiO_2光阳极的制备与光电性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究以纳米TiO_2粉体和薄膜为基底,中压氨气为氮源,在高压反应釜内利用氨气的还原性质对TiO_2粉体强制掺氮,通过控制反应釜内温度、压力和反应时间,制备形貌、颗粒均一的TiO_xN_y纳米粒子,并探讨反应条件、掺氮量、带隙和光电转化效率之间的关系。采用扫描电镜对氮掺杂改性的TiO_2纳米材料的形貌及膜层的表面和新鲜截面处的形貌、组织结构进行观察;通过紫外–可见光谱的吸收带边计算得到光学带隙;利用表面光电压谱和表面瞬态谱对光生电荷进行动力学研究。实验结果表明:中压氨气为氮源,在高压反应釜中,能够有效控制纳米TiO_2氮粉体的氮掺杂,调节掺氮工艺参数,得到不同掺氮量的TiO_xN_y。随着焙烧温度在一定范围内的降低(600~300℃),压强的减小(0.8~0.2MPa),反应时间的增加(12h, 24h),N掺杂含量升高,紫外–可见光谱分析表明,TiO_xN_y纳米粉体的光学带隙随着掺氮量的增加而减小,TiO_xN_y封装成染料敏化太阳能电池(DSSCs)器件后其光电转化效率η增强。表面光电压谱和表面瞬态谱研究表明:掺氮TiO_xN_y纳米粉体的光电活性从紫外到可见区形成连续光谱,光生电荷的寿命增加,载流子复合速度变慢。
     在探索气–固强制掺氮TiO_2薄膜工艺中得到沿[103]方向择优生长的一维TiO_xN_y纳米线,并对其生长条件进行探索。通过透射电镜观察纳米线的定向生长方向、相结构、形态以及分布等微观结构信息。实验结果证实,纳米线的长度和密度受体系压强影响较大,纳米线随氨气含量的增加而变长,且单位面积上生长的数量减少;纳米颗粒形貌转化成纳米线后,光电转化效率增强。
     考虑到DSSCs仅对紫外和中波段可见光的吸收,为了充分利用全光谱太阳光,采用d~(10)族过渡金属配合物与N719染料共敏化TiO_2光阳极,根据所制备的纳米TiO_2多孔电极具有很大的比表面的特点,同时在TiO_2多孔电极上修饰两种不同光谱吸收范围的单层染料,即在TiO_2多孔电极上修饰过渡金属系列配合物M1(Zn1, Cd1, Hg1)和N719两种染料,制备出双染料复合TiO_2电极,使电极在可见光区呈现较宽的光电响应区域和较好的光电转换特性。共敏化的方法可以在可见光范围内有效提高电池的吸光率,使得电池的性能比单独使用N719敏化有一定幅度的提高。
     采用循环伏安测试研究配合物的氧化还原性质,利用交流阻抗结合适当的等效电路和数学物理模型,模拟双染料复合电极中的电化学过程以及内部电阻。电化学研究表明:(1)该类化合物在铂电极上的电化学反应是可逆过程。出现一对氧化还原峰,归属于配合物中心离子的两电子还原过程。通过对扫速、电解质、溶剂、溶液中配合物的浓度等测试条件的优化,得到最佳测试条件:1mmol/L的M1,0.1 mol/L TBAPF_6作为电解质,CH_2Cl_2为溶剂,200mV·s-1为扫速进行测试研究对象的循环伏安曲线。(2)交流阻抗测试表明:复合电极阻抗弧随着质子数增加而增大,这与光电池性能规律一致。论文提出合理的等效电路,对交流阻抗谱进行拟合,其拟合等效电路为R_s(Q_1R_1)(Q_2(R_2Z_w)),并对电子在染料敏化TiO_2纳米晶电极中的扩散传输机理进行初步探究。结合配合物的电化学性能与分子晶体空间结构,探讨结构与性能之间的关系:在配合物分子内,金属―N键长越短,二面角的角度越大,分子的共平面性越好,越利于电子的传输;在分子间,氢键作用越弱,越利于电子的传输,最终使得组装的电池效率较高。
In this thesis, we choose porous nano-TiO_2 as substrate, ammonia as Nitrogen source, autoclave as experimental equipment. In autoclave, we prepared TiO_xN_y nanoparticles with good morphology, uniform size utilizing the reduction properties of ammonia and by changing temperature, pressure and reaction time. Also, we studied the relationships among the doping content, the band gap, the nanoparticles size and the photoelectric conversion efficiency of the N-doped TiO_2 photoelectrodes. By scanning electron microscopy the surface morphology and the cross-section, fresh appearance and structure of nitrogen doped TiO_2 nano-materials were observed. The optical band gap was calculated by the absorption edge of the ultraviolet visible spectrum. Moreover, the optical activity and dynamics of electric charge were investigated by the surface photovoltage spectrum and the transient photovoltage spectrum. Experimental results indicate that an efficient way was discovered to control the composition of N-doped TiO_2 powders using NH_3 as gaseous precursor in autoclave. For instance, the concentration of N-doped TiO_2 was increased with sintering time(12, 24h) or the decrease in reaction temperature(600~300℃) or pressure(0.8~0.2MPa). And the band gap of semiconductor was narrowed by increasing the concentration of N-doped TiO_2. The study about the photoelectrical properties of N-doped TiO_2 showed that the overall conversion efficiency of solar cell was greatly improved with different concentration. The results indicate that it is helpful for broadening the visible light response range and making it continuous after N dopant. The combination speed between injected carriers and holes becomes slow and the lifetime of charge gets long, so that the photoelectric performance in DSSCs was affected.
     When we adopt the gas–solid preparation method for the TiO_xN_y semiconductor material, one-dimensional highly oriented TiO_xN_y nanowire arrays were obtained from TiO_2 film. The preferable orientation of nanowires was crystal facet [103]. The groped work provides a facile and promising process for the synthesis of fine and dense NWs with a preferable growth conditions. It was discussed about the oriented growth direction, structure, shape and distribution of microscopic structure of information in samples by transmission electron microscope. The results show that the pressure of NH_3 had a big impact on the length and density of NWs via enhancing the longitudinal growth rate. Therefore, the length of the nanowires can be well controlled by varying the NH_3 pressure in the working environments. The results indicated that nanowire arrays could be fabricated with controllable lengths by adjusting the content of NH_3 under medium pressures, and TiO_xN_y nanowires led to remarkable V_(oc) values in comparison with TiO_2 nanoparticles.
     A co-sensitization method was discovered for increasing solar energy conversion efficiency in order to make full use of the sun light with full spectrum while DSSCs only show response to ultraviolet absorption of light and medium wave. The d~(10) family of transition metal complexes with N719 dyes was sensitized for co-sensitization TiO_2 anode in solar cells. According to the great surface characteristics of nano-TiO_2 in porous electrode, three transition metal complexes M1(Zn1, Cd1, Hg1) are assembled onto a nanocrystalline TiO_2 film to prepare transition metal complex/N719 co-sensitized photoelectrodes for dye-sensitized solar cell application. Therefore, co-sensitized solar cells based on TiO_2/M1/N719 electrode yield a remarkably high photocurrent density (J_(sc)), open circuit voltage (V_(oc)) and energy conversion efficiency under the standard conditions of global AM1.5 solar irradiation due to the different absorption spectral range of dyes, which are relatively higher than that for DSSCs using single organic sensitizers. The redox property was studied by the cyclic voltammetry method. The electrochemical processes of dyes and internal resistance in double composite electrode are simulated by AC impedance equivalent circuit and the proper mathematical physical model. The results show as follows: (1) The compounds performed a reversible process of electrochemical reaction in platinum electrode. All isopolyanions underwent one-step two-electron electrochemical reaction assigned to the transition metal reduction process. It is found that the optimal test condition of the cyclic voltammogram is 1.0 mM M1 in CH_2Cl_2 containing 0.1 M TBAPF_6 solutions with the scan rate of 200mV/s at room temperature. (2) Electrochemical impedance spectroscopy indicates that the arc in the low frequency range of the Nyquist plot with the increase of protons. A physical model was proposed to understand the complex charge-transfer mechanism in DSSCs. Parameters obtained by fitting the impedance spectra of composite solar cells prove that the equivalent circuit is R_s(Q_1R_1)(Q_2(R_2Z_w)). Combining with the electrochemical properties, we discussed the relationships between molecular structures and electrochemical properties. It can be concluded that the electron-donating ability supports the stable single molecule structure and spacious space among molecules. Therefore, the decrease of the bond lengths and deviation distance are advantageous to its electrochemical property, while the decrease of the dihedral angles and hydrogen bonding effect are helpful for obtaining superior cell performance.
引文
1 H. T. Nguyen, J. M. Pearce. Estimating potential photovoltaic yield with sun and the open source Geographical Resources Analysis Support System. Solar Energy. 2010, 84(5): 831~843
    2 R. Santbergen, C. C. M. Rindt, H. A. Zondag, van R. J. C. Zolingen. Detailed analysis of the energy yield of systems with covered sheet-and-tube PVT collectors. Solar Energy. 2010, 84(5): 867~878
    3 O. Ashenfelter, K. Storchmann. Using hedonic models of solar radiation and weather to assess the economic effect of climate change: the case of mosel valley vineyards. Review of economics and statistics. 2010, 92(2): 333~349
    4 E. Becquerel. M?moire sur les effetsélectriques produits sous l'influence des rayons solaires. C. R. Acad. Sci. Paris, 1839, 9: 561~567
    5 R. L. Kitchens, G. Wolfbauer, J. J. Albers. Plasma lipoproteins promote the release of bacterial lipopolysaccharide from the monocyte cell surface. Journal of biological chemistry. 1999, 274(48): 34116~34122
    6 T. M. Bruton. General Trends about Photovoltaics Based on Crystalline Silicon. Solar Energy and Solar Cells. 2002, 72(1~4): 3~10
    7 D. M. Chapin, C. S. Fuller, G. L. Pearson. New Silicon p-n Junction Photocell for Solar Radiation into Electrical Power. J. Appl. Phys. 1954, 51: 676~677
    8 B. O’Regan, M. Gr?tzel. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature. 1991, 353: 737~740
    9 T. L. Li , H. S. Teng. Solution synthesis of high-quality CuInS_2 quantum dots as sensitizers for TiO_2 photoelectrodes. Journal of materials chemistry. 2010, 20(18): 3656~3664
    10 L. L. Lu, R. J. Li, K. Fan, T. Y. Peng. Effects of annealing conditions on the photoelectrochemical properties of dye-sensitized solar cells made with ZnO nanoparticles. Solar Energy. 2010, 84(5): 844~853
    11 L. D. Sun, S. Zhang, X. W. Sun, X. D. He. Effect of the Geometry of the Anodized Titania Nanotube Array on the Performance of Dye-Sensitized Solar Cells. Journal of nanoscience and nanotechnology. 2010, 10(7): 4551~4561
    12 P. Cheng, T. Lan, W. J. Wang, H. X. Wu, H. J. Yang, C. S. Deng, X. M. Dai, S. W. Guo. Improved dye-sensitized solar cells by composite ionic liquid electrolyte incorporating layered titanium phosphate. Solar Energy. 2010, 84(5): 854~859
    13 N. A. Lewcenko, M. J. Byrnes, T. Daeneke, M. K. Wang, S. M. Zakeeruddin, M. Gr?tzel, L. Spiccia. A new family of substituted triethoxysilyl iodides as organic iodide sources for dye-sensitized solar cells. Journal of materials chemistry. 2010,20(18): 3694~3702
    14 S. M. Paek, H. Jung, Y. J. Lee, N. G. Park, S. J. Hwang, J. H. Choy. Nanostructured TiO_2 Films for Dye-sensitized Solar Cells. Journal of Physics and Chemistry of Solids. 2006, 5(1~2): 1~4
    15 Q. H. Liu, Q. X. Miao, J. J. Liu, W. L. Yang. Solar and wind energy resources and prediction. Journal of renewable and sustainable Energy. 2009, 1(4): 043105
    16 Y. G. Deng, J. Liu. Recent advances in direct solar thermal power generation. Journal of renewable and sustainable Energy. 2009, 1(5): 052701
    17 C. Burda, Y. Lou, X. Chen, A. C. S. Samia, J. Stout, J. L. Gole. Enhanced nitrogen doping in TiO_2 nanoparticles. Nano Letters. 2003, 3: 1049~1051
    18 A. Mills, S. L. Hunte. An overview of semiconductor photocatalysis. Journal of Photochemistry and Photobiology A: Chemistry. 1997, 108: 1~35
    19吴凤清,阮圣平,李晓平.纳米TiO_2的制备表征及光催化性能的研究.功能材料. 2001, 32(1): 69~71
    20张青红,高廉,郭景坤.四氯化钛水解法制备TiO_2纳米晶的影响因素.无机材料学报. 2000, 15(6): 992~998
    21高荣杰,王之昌. TiO_2超微粒子的制备及相转位动力学.无机材料学报. 1997, 12(4): 599~603
    22祝迎春,周静芳. TiCl_4水解法制备量子尺寸TiO_2超微粒子.河南大学学报(自然科学版). 1997, 27(3): 29~32
    23李燕.醇–水溶液加热法制备纳米级TiO_2超细粉.陶瓷学报. 2000, 21(1): 51~53
    24陈洪龄,王延儒,时钧.单分散超细TiO_2颗粒的制备及粒径控制.物理化学学报. 2001, 17(8): 713~717
    25陈代荣.由工业硫酸钛制备TiO_2纳米粉末.无机化学学报. 1995, 11(3): 228~231
    26顾达,何碧.相转移法制备高纯超细TiO_2技术研究.压电与声光. 1995, 17(5): 45~48
    27张彭义,余刚,蒋展鹏.半导体催化剂及其改性技术进展.环境科学进展. 1997, 5(3): 1~10
    28 D. Duonghong, E. Borgarello, M. Gr?tzel. Dynamics of light-induced water cleavage in colloidal system. J. Am. Chem. Soc. 1991, 103(16): 4685~4690
    29 W. Choi, A. Termin, M. R. Hoffmann. The role of metal ion dopants in quantum-sized TiO_2: correlation between photoreactivity and charge carrier recombination dynamics. J. Phys. Chem. 1994, 98(51): 13669~13679
    30 Y. Suwen, F. Xianzhi. Effect of sulfation on structure and photocatalyticperformance of TiO_2. Acta. Physchim. Sin. 2001, 17(1): 28~31
    31 K. Vogcl. Quantum-sized PdS, CdS, Ag_2S and Bi_2S_3 particles as sensitizers for various nanoporous wide-band gap semiconductors. J. Phys. Chem. 1994, 98(12): 3183~3188
    32 A. Kongkanand, K. Tvrdy, K. Takechi, M. Kuno, P. V. Kamat. Quantum Dot Solar Cells Tuning Photoresponse through Size and Shape Control of CdSe-TiO_2 Architecture. J. Am. Chem. Soc. 2008, 130: 4007~4015
    33 C. X. Dong, A. P. Xian, E. H. Han, J. K. Shang. Acid-mediated sol-gel synthesis of visible-light active photocatalysts. Journal of materials science. 2006, 41 (18): 6168~6170
    34 J. Bandara, S. S. Kuruppu, U. W. Pradeep. The Promoting Effect of MgO Layer in Sensitized Photodegradation of Colorants on TiO_2/MgO Composite Oxide. Colloids and Surfaces A: Physicochem. Eng. Aspects. 2006, 276: 197~202
    35 T. Taguchi, X. T. Zhang, I. Sutanto. Improving the Performance of Solid-State Dye-Sensitized Solar Cell Using MgO-coated TiO_2 Nanoporous Film. Chem Comm. 2003: 2480~2481
    36 S. Ngamsinlapasathian, S. Pavasupree, Y. Suzuki. Dye Sensitized Solar Cell Made of Mesoporous Titania by Surfactant-Assisted Tem-plating Method. Solar Energy Materials and Solar Cells. 2006, 90: 3187~3192
    37 P. Wang, L. D. Wang, B. B. Ma, B. Li, Y. Qiu. TiO_2 Surface Modification and Characteri-zation with Nanosized PbS in Dye-Sensitized Solar Cells. J. Phys. Chem. B. 2006, 110: 14406~14409
    38 Z. S. Wang, C. H. Huang. A Highly Efficient Solar Cell Made from a Dye Modi-fied ZnO-Covered TiO_2 Nanoporous Electrode. Chem. Mater. 2001, 13: 678~682
    39 R. Asahi, T. Morikawa.Tohwaki, K. Aoki, Y. Taga. Visible-light photocatalysis in nitrogen-doped titaniumoxides. Science. 2001, 293: 269~271
    40彭峰,黄垒,陈水辉.非金属掺杂的第二代二氧化钛光活性剂研究进展现代化工. 2006, 26(2): 18~22
    41 S. Yin, Q. Zhang, F. Saito. Preparation of visible-activated titania photocatalyst by mechanochemical method. Chem. Lett. 2003, 32: 358~359
    42 H. Abe, T. Kimitani, M. Naito. Influence of NH_3/Ar plasma irradiation on physical and photocatalytic properties of TiO_2 nanopowder. Journal of Photochemistry and Photobiology A: Chemistry. 2006, 183: 171~175
    43 H. Li, J. Li, Y. Huo. Highly active TiO_2 N photocatalysts prepared by treating TiO_2 precursors in NH_3/ethanol fluid under supercritical conditions. J. Phys. Chem. B. 2006, 110: 1559~1565
    44 M. Okada, Y. Yamada, P. Jin, M. Tazawa, K. Yoshimura. Fabrication of multifunctional coating which combines low property and visible-light responsive photocatalytic activity. Thin Solid Films. 2003, 442: 217~221
    45 S. Takeda, S. Suzuki, H. Odaka, H. Hosono. Photocatalytic TiO_2 thin films deposited onto glass by DC magnetron sputtering. Thin Solid Film. 2001, 392 (2): 338~344
    46 P. Xu, L. Mi, P. N. Wang. Improved optical response for N-doped anatase TiO_2 films prepared by pulsed laser deposition in N_2/NH_3/O_2 mixture. Journal of crystal growth. 2006, 289 (2): 433~439
    47 T. S. Yang, M. C. Yang, C. B. Shiu. Effect of N2 ion flux on the photocatalysis of nitrogen-doped titanium oxide films by electron-beam evaporation. Applied surface science. 2006, 252 (10): 3729~3736
    48 P. G. Wu, C. H. Ma, J. K. Shang. Effects of nitrogen doping on optical properties of TiO_2 thin films. Applied physics a-materials science and processing. 2005, 81(7): 1411~1417
    49 A. Ghicov, J. M. Macak, H. Tsuchiya, J. Kunze, V. Haeublein, S. Kleber, P. Schmuki. TiO_2 nanotube layers: Dose effects during nitrogen doping by ion implantation. Chemical physics letters. 2006, 419 (4~6): 426~429
    50 T. L. Thompson, J. T. Yates. Surface science studies of the photoactivation of TiO_2 new photochemical processes. Chemical reviews. 2006, 106: 4428~4453
    51 Y. Wang, C. X. Feng, Z. S. Jin, J. Zhang, J. Yang, S. Zhang. A novel N-doped TiO_2 with high visible light photocatalytic activity. Journal of molecular catalysis a- chemical. 2006, 260 (1~2): 1~3
    52 J. Yuan, M. X. Chen, J. W. Shi. Preparations and photocatalytic hydrogen evolution of N-doped TiO_2 from urea and titanium tetrachloride. International journal of hydrogen energy. 2006, 31(10): 1326~1331
    53 W. J. An, E. Thimsen, P. Biswas. Aerosol-Chemical Vapor Deposition Method for Synthesis of Nanostructured Metal Oxide Thin Films with Controlled Morphology. Journal of physical chemistry letters. 2010, 1(1): 249~253
    54 T. Matsumoto, N. Iyi, Y. Kaneko, K. Kitamura, S. Ishihara, Y. Takasu, Y. Murakami. High visible-light photocatalytic activity of nitrogen-doped titania prepared from layered titania/isostearate nanocomposite. Catalysis today. 2007, 120(2): 226~232
    55 T. Sano, N. Negishi , K. Koike. Preparation of a visible light responsive photocatalyst from a complex of Ti4+ with a nitrogen containing ligand. J. Mater. Chem. 2004, 14: 380~384
    56 S. Yin, H. Yamaki, M. Komatsu. Synthesis of visible-light reactive TiO_(2-x)N_xphotocatalyst by mechanochemical doping. Solid state and sciences. 2005, 7 (12): 1479~1485
    57 B. Kosowska, S. Mozia, A. W. Morawski. The preparation of TiO_2-nitrogen doped by calcination of TiO_2 center dot xH(2)O under ammonia atmosphere for visible light photocatalysis. Solar Energy Materials and Solar Cells. 2005, 88 (3): 269~280
    58 S. Sakthivel, M. Janczarek, H. Kisch. Visible light activity and photoelectrochemical properties of nitrogen-doped TiO_2. J. Phys. Chem. B. 2004, 108: 19384~19387
    59 Y. Suda, H. Kawasaki, T. Ueda. Preparation of high quality nitrogen doped TiO_2 thin film as a photocatalyst using a pulsed laser deposition method. Thin Solid Films. 2004, 453~454: 162~166
    60 Y. Zhao, C. Z. Li, X. H. Liu. Synthesis and optical properties of TiO_2 nanoparticles. Materials letters. 2007, 61(1): 79~83
    61 S. Livraghi, A. Votta, M. C. Paganini. Preparation and spectroscopic characterisation of nitrogen doped titanium dioxide. Studies in surface science and catalysis. 2005, 155: 375~380
    62 R. Nakamura, T. Tanaka, Y. Nakato. Mechanism for visible light responses in anodic photocurrents at N-doped TiO_2 film electrodes. J. Phys. Chem. B. 2004, 108: 10617~10620
    63 K. Y. Y. Dai, B. B. Huang. Study of the nitrogen concentration influence on n-doped TiO_2 anatase from first-principles calculations. J. Phys. Chem. C. 2007, 111(32): 12086~12090
    64 A. V. Emeline, N. V. Sheremetyeva, N. V. Khomchenko. Photoinduced formation of defects and nitrogen stabilization of color centers in n-doped titanium dioxide. J. Phys. Chem. C. 2007, 111(30): 11456~11462
    65 O. Diwald, T. L. Thompson, T. Zubkov. Photochemical activity of nitrogen-doped rutile TiO_2 (110) in visiblelight. J. Phys. Chem. B. 2004, 108: 6004~6008
    66 L. Q. Jing, X. J. Sun, J. Shang, W. M. Cai, Z. L. Xu, Y. G. Du, H. G. Fu. Review of surface photovoltage spectra of nano-sized semiconductor andits applications in heterogeneous photocatalysis. Solar Energy Materials and Solar Cells. 2003, 79(2): 133~151
    67 D. R. Jones, A. Troisi. A method to rapidly predict the charge injection rate in dye sensitized solar cells. Physical Chemistry Chemical Physics. 2010, 12(18): 4625~4634
    68 F. Caycedo-Soler, F. J. Rodriguez, L. Quiroga, N. F. Johnson. Light-HarvestingMechanism of Bacteria Exploits a Critical Interplay between the Dynamics of Transport and Trapping. Physical review letters. 2010, 104(15): 158302
    69 E. Finazzi, C. Di Valentin, A. Selloni. First principles study of nitrogen doping at the anatase TiO_2 (101) surface. J. Phys. Chem. C. 2007, 111 (26): 9275~9282
    70查全胜.电极过程动力学导论.科学出版社, 1976: 42~45
    71田昭武.电化学研究方法.科学出版社, 1984: 58~60
    72 J. G. Chen, C. Y. Chen, S. J. Wu, J. Y. Li, C. G. Wu, K. C. Ho. On the photophysical and electrochemical studies of dye-sensitized solar cells with the new dye CYC-B1. Solar Energy Materials and Solar Cells. 2008, 92(12): 1723~1727
    73 A. A. Arie, W. Chang, J. K. Lee. Electrochemical characteristics of semi conductive silicon anode for lithium polymer batteries. Journal of electroceramics. 2010, 24(4): 308~312
    74 F. Cao, G. Oskam, P. C. Searson. A Solid State, Dye Sensitized Photoelectrochemical Cell. J. Phys. Chem. 1995, 99(47): 17071~17073
    75 R. B. Moghaddam, P. G. Pickup. Electrochemical impedance study of the polymerization of pyrrole on high surface area carbon electrodes. Physical chemistry chemical physics. 2010, 12(18): 4733~4741
    76 F. Wang, L. Chen, X. Chen, S. Hu. Studies on electrochemical behaviors of acyclovir and its voltammetric determination with nano-structured film electrode. Analytica Chimica Acta. 2006, 576:17~22
    77 M. Liberatore, A. Petrocco, F. Caprioli. Mass transport and charge transfer rates for Co-(III)/Co-(II) redox couple in a thin-layer cell. Electrochimica Acta. 2010, 55(12): 4025~4029
    78 R. K. Shervedani, M. Bagherzadeh. Electrochemical characterization of in situ functionalized gold cysteamine self-assembled monolayer with 4-formylphenylboronic acid for detection of dopamine. Electroanalysis. 2008, 20(5): 550~557
    79 J. P. Zheng, P. C. Goonetilleke, C. M. Pettit. Probing the electrochemical double layer of an ionic liquid using voltammetry and impedance spectroscopy: A comparative study of carbon nanotube and glassy carbon electrodes in [EMIM](+)[EtSO4](-). Talanta. 2010, 81(3): 1045~1055
    80史美伦.交流阻抗谱原理及应用.北京,国防工业出版社, 2001
    81 H. J. Snaith, A. J. Moule, C. Klein. Efficiency enhancements in solid-state hybrid solar cells via reduced charge recombination and increased light capture. Nano Letters. 2007, 7(11): 3372~3376
    82 I. Mora-Ser′o, J. A. Anta, T. Dittrich, G. Garcia-Belmonte, J. Bisquert.Continuous time random walk simulation of short-range electron transport in TiO_2 layers compared with transient surface photovoltage measurements. Journal of Photochemistry and Photobiology A: Chemistry. 2006, 182: 280~287
    83 M. A. Reshchikov, S. Sabuktagin, D. K. Johnstone, H. Morko(?). Transient photovoltage in GaN as measured by atomic force microscope tip. J. Appl. Phys. 2004, 96 (5): 2556~2560
    84 T. Dittrich. Temperature dependent normal and anomalous electron diffusion in porous TiO_2 studied by transient surface photovoltage. Physical review B. 2006, 73: 045407
    85蒲敏,吴东,孙予罕. TiO_2光电池的制备与应用研究进展.材料科学与工程. 2001, 19(3): 113~116
    86 D. Gebeyehu, C. J. Brabec, N. S. Sariciftci. Solid-state organicyinorganic hybrid solar cells based on conjugated polymers and dye-sensitized TiO_2 electrodes. Thin Solid Films. 2002, 403~404: 271~274
    87 J. Desilvestro, M. Gr(?)tzel, L. Kavan, J. Moser, J. Angustynski. Very efficient visible light energy harvesting and conversion by spectral sensitization of high surface area polycrystalline titanium dioxide films. J. Am. Chem. Soc. 1985, 107: 2988~2990
    88 R. Amadelli, R. Argazzi, C. A. Bignozzi, F. Scandola. Design of antenna-sensitizer polynuclear complexes. Sensitization of titanium dioxide with [Ru(bpy)_2(CN)_2]_2Ru(bpy(COO)_2)_2. J. Am. Chem. Soc. 1990, 112: 7099~7103
    89 B. O’Regan, M. Gr(?)tzel. Light Induced Charge Separation in nanocrystalline Films. Nature. 1991, 353: 737~739
    90 M. K. Nazeoddin, A. Kay, I. Rodicio, R. HumPhry-Baker, E. Müller, P. Liska, N. Vlachopoulos, M. Gr((?))tzel. Conversion of light to electricity by cis-X_2bis(2,2'-bipyridyl-4,4'-dicarboxylate)ruthenium(Ⅱ) charge-transfer sensitizers (X = Cl~-, Br~-, I~-, CN~-, and SCN~-) on nanocrystalline titanium dioxide electrodes. J. Am. Chem. Soc. 1993, 115: 6382~6390
    91 M. K. Nazeeruddin, P. Péchy, T. Renouard, S. M. Zakeeruddin, R. Humphry-Baker, P. Comte, P. Liska, L. Cevey, E. Costa, V. Shklover, L. Spiccia, G. B. Deacon, C. A. Bignozzi, M. Gr(?)tzel. Engineering of Efficient Panchromatic Sensitizers for Nanocrystalline TiO_2-Based Solar Cells. J. Am. Chem. Soc. 2001, 123: 1613~1624
    92 M. Gr(?)tzel. Dye-sensitized solar cells. J. Photoehem. Photobiol. C. 2003, 4(2): 145~153
    93 P. Wang, S. M. Zakeeruddin, J. E. Moser, R. Humphry-Baker, P. Comte, V. Aranyos, A. Hagfeldt, M. K. Nazeeruddin, M. Gr(?)tzel. Stable new sensitizer withimproved light harvesting for nanocrystalline dye-sensitized solar cells. Adv. Mater. 2004, 16: 1806
    94 G. Sauvé, M. E. Cass, G. Coia, S. J. Doig, I. Lauermann, K. E. Pomykal, N. S. lewis. Dye Sensitization of Nanocrystalline Titanium Dioxide with Osmium and Ruthenium Polypyridyl Complexes. J. Phys. Chem. B. 2000, 104: 6821~6836
    95 S. M. Zakeeruddin, M. K. Nazeeruddin, R. Humphry-Baker. Stepwise assembly of tris-heteroleptic polypyridyl complexes of ruthenium(II). Inorganic Chemistry. 1998, 37(20): 5251~5259
    96 K. Sayama, K. Hara, Y. Ohga, A. Shinpou, S. Suga, H. Arakawa. Novel organic dyes for efficient dye-sensitized solar cells. New J. Chem. 2001, 25: 200~202
    97 F. G. Gao, A. J. Bard, L. D. KisPert. Photocurrent generated on a carotenoid-sensitized TiO_2 nanocrystalline mesoporous. J. Photochem. Photobiol. A: Chem. 2000, 130: 49~56
    98 K. Sayama, S. Tsukagoshi, T. Mori, K. Hara, Y. Ohga, A. Shinpou, Y. Abe, S. Suga, H. Arakawa. Efficient sensitization of nanocrystalline TiO_2 films with cyanine and merocyanine organic dyes. Solar Energy Materials and Solar Cells. 2003, 80: 47~71
    99 Z. S. Wang, F. Y. Li, C. H. Huang, L. Wang, L. P. Jin, N. Q. Li. Photoelectric Conversion Properties of Nanocrystalline TiO_2 Electrodes Sensitized with Hemicyanine Derivatives. J. Phys. Chem. B. 2000, 104: 9676~9682
    100 K. Hara, M. Kurashige, S. Ito, A. Shinpo, S. Suga, K. Sayama, H. Arakawa. Novel polyene dyes for highly efficient dye-sensitized solar cells. Chem. Commun. 2003, 252~253
    101 T. Horiuchi, H. Miura, K. Sumioka, S. Uchida. High Efficiency of Dye-Sensitized Solar Cells Based on Metal-Free Indoline Dyes. J. Am. Chem. Soc. 2004, 126: 12218~12219
    102 J. Bandara, H. C. Weerasinghe. Enhancement of photovoltage of dye-sensitized solid-state solar cells by introducing high-band-gap oxide layers. Solar Energy Materials and Solar Cells. 2005, 88(4): 341~350
    103 S. Jenks, R. Gilmore. Quantum dot solar cell: Materials that produce two intermediate bands. Journal of renewable and sustainable Energy. 2010, 2(1): 013111
    104 S. M. Yang, H. Z. Kou, H. J. Wang, K. Cheng, J. C. Wang. Efficient electrolyte of N,N -bis(salicylidene)ethylenediamine zinc(II) iodide in dye-sensitized solar cells. New J. Chem. 2010, 34: 313~317
    105 M. Pastore, E. Mosconi, F. De Angelis. A Computational Investigation of Organic Dyes for Dye-Sensitized Solar Cells: Benchmark, Strategies, and OpenIssues. Journal of Physical Chemistry C. 2010, 114(15): 7205~7212
    106 C. Strümpel, M. McCann, G. Beaucarne, V. Arkhipov, A. Slaoui, V. (?)vr(?)ek, C. del Caňizo, I. Tobias. Modifying the solar spectrum to enhance silicon solar cell efficiency—An overview of available materials. Solar Energy Materials and Solar Cells. 2007, 91(4), 238~249
    107 H, Choi, J. J. Kim, K. Song. Molecular engineering of panchromatic unsymmetrical squaraines for dye-sensitized solar cell applications. Journal of Materials Chemistry. 2010, 20(16): 3280~3286
    108 S. A. Sapp, C. M. Elliott, C. Coniado, S. Caramori, C. A. Bignozzi. Substituted Polypyridine Complexes of Cobalt(Ⅱ/Ⅲ) as Efficient Electron-Transfer Mediators in Dye-Sensitized Solar Cells. J. Am. Chem. Soc. 2002, 124: 11215~11222
    109 P. Wang, S. M. Zakeeruddin, J. E. Moser, R. Humphry-Baker, M. Gr(?)tzel. A Solvent-Free, SeCN-/(SeCN)_3~- Based Ionic Liquid Electrolyte for High-Efficiency Dye-Sensitized Nanocrystalline Solar Cells. J. Am. Chem. Soc. 2004, 126: 7164~7165
    110 P. K. Singh, B. Bhattacharya, R. K. Nagarale. Ionic liquid doped poly(N-methyl 4-vinylpyridine iodide) solid polymer electrolyte for dye-sensitized solar cell. Synthetic Metals. 2010, 160(9~10): 950~954
    111 G. R. A. Kumara, A. Konno, K. Shiratsuehi, J. Tsukahara, K. Tennakone. Dye-Sensitized Solid-State Solar Cells: Use of Crystal Growth Inhibitors for Deposition of the Hole Collector. Chem. Mater. 2002, 14: 954~955
    112 A. P. Dc Almeida, G. G. Silva, M-A. De Paoli. Electron injection versus change recombin-ation in photoelectrochemical solar cells. Polym. Eng. and Sci. 1999, 39: 430~436
    113乔大勇,孙磊,苑伟征.纯有机染料共敏化纳米晶太阳能电池的性能研究.感光科学与光化学. 2005, 23(5): 327~333
    114 A. F. Nogueira, M. A. Depaoli, I. Montanari, R. Monkhouse, J. Nelson, J. R. Durrant. Electron Transfer Dynamics in Dye Sensitized Nanocrystalline Solar Cells Using a Polymer Electrolyte. J. Phys. Chem. B. 2001, 105: 7517~7524
    115孙世国,徐勇前,时磊.纳米晶太阳能电池及染料敏化剂.染料与染色. 2003, 40(6): 311~313
    116 Y. Kim, S. A. Choulis, J. Nelson, Donal D. C. Bradley, S. Cook, J. R. Durrant. Device annealing effect in organic solar cells with blends of regioregular poly(3-hexylthiophene) and soluble fullerene. Appl. Phys. Lett. 2005, 86: 063502~063504
    117 F. Croce, G. B. Appetecchi, L. Persi. Nanocoposite polymer elecrelytes forlithium batterier. Nature. 1998, 394: 456~458
    118 A. Kay, M. Gr?tzel. Spectral response and IV-characterization of dye-sensitized nanocrystalline TiO_2 solar cells. J. Phys. Chem. 1993, 97: 6272~6277
    119 A. Ehret, L. Stuhl, M.T. Spitler. J. Phys. Chem. B. Spectral Sensitization of TiO_2 Nanocrystalline Electrodes with Aggregated Cyanine Dyes. 2001, 105(41): 9960~9965
    120 Y. S. Chen, Z. H. Zeng, C. Li, W. Wang, X. S. Wang, B. W. Zhang. Highly efficient co-sensitization of nanocrystalline TiO_2 electrodes with plural organic dyes. New J. Chem. 2005, 29: 773~776
    121 M. Guo, P. Diao, Y. J. Ren, F. S. Meng, H. Tian, S. M. Cai. Photoelectrochemical studies of nanocrystalline TiO_2 co-sensitized by novel cyanine dyes. Solar Energy Materials and Solar Cells. 2005, 88(1): 23~35
    122 J. H. Yum, S. R. Jang, P. Walter, T. Geiger, F. Nüesch, S. Kim, J. Ko, M. Gr?tzel, M. K. Nazeeruddin. Efficient co-sensitization of nanocrystalline TiO_2 films by organic sensitizers. Chem. Commun. 2007, (44): 4680~4682
    123 D. Kuang, P. Walter, F. Nuesch. Co-sensitization of organic dyes for efficient ionic liquid electrolyte-based dye-sensitized solar cells. Langmuir. 2007, 23(22): 10906~10909
    124 P. V. Kamat. Quantum Dot Solar Cells: Semiconductor Nanocrystals as Light Harvesters. J. Phys. Chem. C. 2008, 112: 18737~18753
    125 T. Funaki, M. Yanagida, N. Onozawa-Komatsuzaki, K. Kasuga, Y. Kawanishi, M. Kurashige, K. Sayama, H. Sugihara. Inorganic Chemistry Communications. 2009, 12(9): 842~845
    126 P. L. Holland, T. R. Cundari, L. L. Perez, N. A. Eckert, R. J. Lachicotte. Electronically Unsaturated Three-Coordinate Chloride and Methyl Complexes of Iron, Cobalt, and Nickel. J. Am. Chem. Soc. 2002, 124(48): 14416~14424
    127 T. Lopez-Luke, A. Wolcott, L. P. Xu, S. Chen, Z. Wen, J. H. Li, E. De La Rosa, J. Zhang. Nitrogen-Doped and CdSe Quantum-Dot-Sensitized Nanocrystalline TiO_2 Films for Solar Energy Conversion Applications. J. Phys. Chem. C, 2008, 112: 1282~1292
    128 C. R. Francis, M. Brookhart. Energetics of Migratory Insertion Reactions in Pd(Ⅱ) Acyl Ethylene, Alkyl Ethylene, and Alkyl Carbonyl Complexes. J. Am. Chem. Soc. 1995, 117: 1137~1138
    129 J. Feldman, S. J. McLain, A. Partthasarathy, W. J. Marshall, J. C. Calabrese, S. D. Arthur. Electrophilic Metal Precursor and aβ-Diimine Ligand for Ni(Ⅱ)- and Palladium(II)- Catalyzed Ethylene Polymerization. Organometallics. 1997, 16: 1514~1516
    130 N. A. Eckert, E. M. Bones, R. J. Lachicotte, P. L. Holland. Nickel Complexes of Bulkyβ-Diketiminate Ligand. Inorganic Chemistry. 2003, 42: 1720~1725
    131 H. L. Wiencko, E. Kogut, T. Imothy, H. Warren. Neutralβ-diketiminato nickel(II) monoalkyl complexes. Inorganica Chimica Acta. 2003, 345: 199~208
    132 J. E. Spencer, N. W. Aboelella, A. M. Reynolds, P. L. Holland, W. B. Tolman.β-Diketiminate Ligand Backbone Structural Effects on Cu(I)/O_2 Reactivity: Unique Copper?Superoxo and Bis(μ-oxo) Complexes Douglas. J. Am. Chem. Soc. 2002, 124 (10): 2108~2109
    133 B. L. Small, M. Brookhart, A. M. Bennett. Highly Active Iron and Cobalt Catalysts for the Polymerization of Ethylene. J. Am. Chem. Soc. 1998, 120(16): 4049~4050
    134 J. George, P. Britovsek, M. Bruce, V. C. Gibson. Novel Olefin polymerization catalysts based on iron and cobalt. J. Chem. Soc. 1998, 120(7): 849~850
    135 X. Rocquefelte, F. Goubin, Y. Montardi, N. Viadere, A. Demourgues, A. Tressaud, M. H. Whangbo, S. Jobic. Analysis of the Refractive Indices of TiO_2, TiOF2 and TiF_4: Concept of Optical Channel as a Guide to Understand and Design Optical Materials. Inorg. Chem. 2005, 44: 3589~3593
    136 Y. Cong, J. L. Zhang, F. Chen. Synthesis and characterization of nitrogen-doped TiO_2 nanophotocatalyst with high visible light activity. J. Phys. Chem. C. 2007, 111(19): 6976~6982
    137 V. Duzhko, V. Yu. Timoshenko, F. Koch, Th. Dittrich. Photovoltage in nanocrystalline porous TiO_2. Physical review B. 1997, 64: 075204
    138 X. Wei, T. Xie, D. Xu, Q. Zhao, S. Pang, D. Wang. A study of the dynamic properties of photo-induced charge carriers at nanoporous TiO_2/conductive substrate interfaces by the transient photovoltage technique. Nanotechnology. 2008, 19: 275707
    139 Y. Pan, L. Chen, Y. Wang, Y. Zhao, F. Li. Transient photovoltaic properties in Al/tin-phthalocyanine/indium–tin–oxide sandwich cell. Appl. Phys. Lett. 1996, 68 (10): 1314~1316
    140 K. Mishra. Identification of Cr in p-type silicon using the minority carrier lifetime measurement by the surface photovoltage method. Appl. Phys. Lett. 1996, 68 (23): 3281~3283
    141 T. Morikawa, R. Asahi, T. Ohwaki, et al. Band-gap narrowing of titanium dioxide by nitrogen doping. Japanese Journal of Applied Physics: Part 2 Letters. 2001, 40 (6A): L561~L563
    142 Z. D. Hu, Y. Yu, H. N. Hu. A combined template and closed space sublimation approach to the synthesis of single-crystalline CdS nanowires and their opticalproperties. Materials letters. 2010, 64(7): 863~865
    143 H. Y. Shi, B. Hu, X. C. Yu, et al. Ordering of Disordered Nanowires: Spontaneous Formation of Highly Aligned, Ultralong Ag Nanowire Films at Oil-Water-Air Interface. Advanced functional materials. 2010, 20(6): 958~964
    144 J. Xu, G. A. Cheng, R. T. Zheng. Controllable synthesis of highly ordered Ag nanorod arrays by chemical deposition method. Applied surface science. 2010, 256(16): 5006~5010
    145 C. J. Barrelet, J. M. Bao, M. Loncar. Hybrid single-nanowire photonic crystal and microresonator structures. Nano Letters. 2006, 6(1): 11~15
    146 E. J. Menke, Q. Li, R. M. Penner. Bismuth Telluride (Bi_2Te_3) Nanowires Synthesized by Cyclic Electrodeposition/Stripping Coupled with Step Edge Decoration. Nano Lett. 2004, 4: 2009~2014
    147 H. T. Ng, J. Han, T. Yamada, P. Nguyen, Y. P. Chen, M. Meyyappan. Single Crystal Nanowire Vertical Surround-Gate Field-Effect Transistor. Nano Lett. 2004, 4: 1247~1252
    148 R. S. Wagner, W. C. Ellis. Vapor-Liquid-Solid Mechanism of Single Crystal Growth. Appl. Phys. Lett. 1964, 4: 89~90
    149 A. M. Morales, C. M. Lieber. A laser ablation method for the synthesis of crystalline semiconductor nanowires. Science. 1998, 279(5348): 208~211
    150 J. T. Hu, T. W. Odom, C. M. Lieber. Chemistry and physics in one dimension: Synthesis and properties of nanowires and nanotubes. Accounts of Chemical Research. 1999, 32(5): 435~445
    151 B. Liu, S. A. Eray. Growth of Oriented Single-Crystalline Rutile TiO_2 Nanorods on Transparent Conducting Substrates for Dye-Sensitized Solar Cells. J. Am. Chem. Soc. 2009, 131: 3985~3990
    152 C. Thelander, P. Agarwal, S. Brongersma, J. Eymery, L. F. Feiner, A. Forchel, M. Scheffler, W. Riess, B. J. Ohlsson, U. G?sele, L. Samuelson. Nanowire-based one-dimensional electronics. Mater. Today. 2006, 9(10): 28~35
    153 M. Yoon, J. A. Chang, Y. H. Kim, J. R. Choi. Heteropoly Acid-Incorporated TiO_2 Colloids as Novel Photocatalytic Systems Resembling the Photosynthetic Reaction Center. J. Phys. Chem. B. 2001, 105: 2539~2545
    154 M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, P. Yang. Room-Temperature Ultraviolet Nanowire Nanolasers. Science. 2001, 292: 1897~1899
    155 M. S. Gudiksen, L. J. Lauhon, J. Wang, D. C. Smith, C. M. Lieber. Growth of nanowire superlattice structures for nanoscale photonics and electronics. Nature. 2002, 415(6872): 617~620
    156 H. B. Yao, M. R. Gao, S. H. Yu. Small organic molecule templating synthesis of organic-inorganic hybrid materials: their nanostructures and properties. Nanoscale. 2010, 2(3): 323~334
    157 A. R. Bignozzi. Study of photoelectricity films modified by dyes. J. Am. Chem. Soc. 1995, 117: 11815~11816
    158 T. Funaki, M. Yanagida, N. Onozawa-Komatsuzaki, K. Kasuga, Y. Kawanishi, M. Kurashige, K. Sayama, H. Sugihara. Synthesis of a new class of cyclometallated ruthenium(II) complexes and their application in dye-sensitized solar cells. Inorganic Chemistry Communications. 2009, 12: 842~845
    159 Y. L. Lee, Y. S. Lo. Highly Efficient Quantum-Dot-Sensitized Solar Cell Based on Co-Sensitization of CdS/CdSe. Adv. Funct. Mater. 2009, 19: 604~609
    160 W. Lee, S. H. Kang, S. K. Min, Y. E. Sung, S. H. Han. Co-sensitization of vertically aligned TiO_2 nanotubes with two different sizes of CdSe quantum dots for broad spectrum. Electrochemistry Communications. 2008, 10(10): 1579~1582
    161 R. Graves, A. E. Vaughn, E. J. Schelter, B. L. Scott, J. D. Thompson, D. E. Morris, J. L. Kiplinger. Probing the Chemistry, Electronic Structure and Redox Energetics in Organometallic Pentavalent Uranium Complexes Christopher. Inorg. Chem. 2008, 47: 11879~11891
    162 B. J. Rausch, R. Gleiter, F. Rominger. Synthesis and cyclic voltammetry of 1,2,3-trisubstituted bis(cyclopentadienyl)zirconium dichlorides. Journal of Organometallic Chemistry. 2002, 658: 242~250
    163 J. Yan, Z. J. Fan, T. Wei, et al. Effect of chemical modification of graphite nanoplatelets on electrochemical performance of MnO2 electrodes. Journal of materials science- materials in electronics. 2010, 21(6): 619~624
    164 C. P. Sousa, A. S. Polo, R. M. Torresi. Chemical modification of a nanocrystalline TiO_2 film for efficient electric connection of glucose oxidase. Journal of colloid and interface science. 2010, 346(2): 442~447
    165 A. Kumar, R. Chauhan, K. C. Molloy. Synthesis, Structure and Light-Harvesting Properties of Some New Transition-Metal Dithiocarbamates Involving Ferrocene. Chemistry-A European journal. 2010, 16(14): 4307~4314
    166 D. S. Kim, E. F. A. Zeid, Y. T. Kim. Additive treatment effect of TiO_2 as supports for Pt-based electrocatalysts on oxygen reduction reaction activity. Electrochimica Acta. 2010, 55(11): 3628~3633
    167 X. G. Sun, S. Dai. Electrochemical and impedance investigation of the effect of lithium malonate on the performance of natural graphite electrodes in lithium-ion batteries. Journal of power sources. 2010, 195(13): Sp. Iss. 4266~4271
    168肖奇,邱冠周,胡岳华.黄铁矿机械化学的计算模拟(I)——晶格畸变与化学反应活性的关系.中国有色金属学报. 2001, 11(5): 900~905
    169 H. Y. Ding, Y. J. Feng, J. W. Lu. Study on the Service Life and Deactivation Mechanism of Ti/SnO2-Sb Electrode by Physical and Electrochemical Methods. Russian Journal of Electrochemistry. 2010, 46(1): 72~76
    170 L. M. Peter, N. W. Duffy, R. L. Wang, K. G. U. Wijayantha. Transport and interfacial transfer of electrons in dye-sensitized nanocrystalline solar cells. Journal of Electroanalytical Chemistry. 2002, 524, Sp. Iss. SI: 127~136
    171 C. Longo, J. Freitas, M. A. De Paoli. Performance and stability of TiO_2/dye solar cells assembled with flexible electrodes and a polymer electrolyte. Journal of Photochemistry and Photobiology A: Chemistry. 2003, 159(1): 33~39
    172 R. Konenkamp; R. Hennigner, P. Hoyer. Photocarrier transport in colloidal titanium dioxide films. J. Phys. Chem. 1993, 97: 7328~7330
    173 Y. Teng, J. J. Zhou, X. F. Liu, S. Ye, J. R. Qiu. Efficient broadband near-infrared quantum cutting for solar cells. Optics express. 2010, 18(9): 9671~9676

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700