用户名: 密码: 验证码:
肾脏肿瘤的3.0T MR扩散加权成像及多期动态增强研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分:
     肾脏肿瘤的3.OT MR扩散加权成像研究
     目的:探讨扩散加权成像对不同良恶性、不同病理类型肾脏肿瘤、不同级别的透明细胞性肾癌的鉴别诊断价值。
     材料与方法:对171名临床怀疑肾脏肿瘤的患者(175个病灶)术前行3.OT常规MR及扩散加权(DWI)MR扫描。其中男性110例,女性61例。所有病例均经手术病理证实。DWI序列扫描b值为800s/mm2。使用AW4.4工作站分别测量肿瘤及肾脏实质的表观扩散系数(ADC值)。对不同良恶性、不同病理类型肾脏肿瘤、不同级别的透明细胞性肾癌的ADC值进行比较及统计学分析。
     结果:在175个病灶中有良性病灶30个,恶性病灶145个。良性病灶包括血管平滑肌脂肪瘤21个,嗜酸细胞腺瘤5个,其它良性肿瘤4个。恶性病灶包括透明细胞性肾癌110个,乳头状肾细胞癌12个,嫌色细胞性肾癌16个,其他恶性肿瘤7个。透明细胞性肾癌Ⅰ级44例,Ⅱ级44例,Ⅲ级16例,Ⅳ级5例,未分级1例。良性肿瘤的平均ADC值(1.29×10-3mm2/s)低于恶性肿瘤的平均ADC值(1.56×10-3mm2/s)。以良恶性肿瘤ADC值绘制ROC曲线,曲线下面积为0.696。其中透明细胞性肾癌ADC值最高且明显高于其他各组,其次为嗜酸细胞腺瘤,乳头状肾细胞癌,嫌色细胞性肾癌、血管平滑肌脂肪瘤和其他恶性肿瘤组等ADC均值几乎相等。以不同病理类型肿瘤ADC值绘制ROC曲线,针对透明细胞性肾癌与其他病理类型的肿瘤作鉴别。通过计算曲线下面积为0.854,如果以1.355×10-3mm2/s为阈值,诊断透明细胞性肾癌的敏感性利特异性分别为80%和78.5%。不同级别的透明细胞性肾癌ADC值随细胞级别的升高有逐渐下降的趋势。
     结论:扩散加权成像对不同良恶性、不同病理类型肾脏肿瘤、不同级别的透明细胞性肾癌有一定的鉴别诊断价值,结合常规MR检查能提高诊断效能。
     正常肾脏的3.OT MR多期动态增强扫描时相研究
     目的:探讨适用于肾脏磁共振增强扫描正确的扫描时相。
     材料与方法:对30名肾脏功能正常的病例进行多期动态增强MR扫描。其中男20例,女10例,平均年龄52岁。采用3.OT MR脂肪抑制LAVA序列,对比剂注入前扫描蒙片,于对比剂注入后15s开始增强扫描,此后每隔30秒完成一次扫描,其中15s时为单次屏气连续完成两期扫描,余每次屏气完成一期扫描,单期扫描时间9-10s,单期扫描层数为20-24层,全部共10期。注入对比剂后4分钟完成延迟扫描。使用AW4.4工作站测量并记录主动脉、肾皮质、肾髓质增强扫描前及增强扫描后各期的信号强度,进行比较及统计学分析。
     结果:主动脉强化最早,在第2期(15秒)即可见较明显强化,于第3期(约25秒)达峰,并于第4期(约45秒)保持达峰状态,在之后逐渐下降。肾皮质在第2期仅可见轻度强化,在第3期明显上升,到第4期达峰,随后呈缓慢轻度下降,肾髓质则强化较晚,在第3期才出现轻度强化,之后缓慢上升,到第6期(约105秒)达峰,此后保持较稳定的强化水平。肾脏皮质和髓质信号差值在第3期和第4期较为明显,从第5期开始皮髓质信号差值减小,至第6期及以后各期皮髓质信号强度差值基本稳定。因此确定第2期为动脉期,第3期为皮髓质早期,第4期为皮髓质晚期,第6期为肾实质期。
     结论:综上所述,肾脏MR多期增强扫描正确时相包括蒙片、动脉期(第2期)、皮髓质早期(第3期)、皮髓质晚期(第4期)、肾实质期(第6期)和延迟期。
     目的:探讨多期动态增强扫描对不同良恶性、不同病理类型肾脏肿瘤、不同级别的透明细胞性肾癌的鉴别诊断价值。
     材料与方法:对157例临床怀疑肾脏肿瘤的患者(161个病灶)术前行3.OT常规MR平扫及多期动态增强MR扫描。其中男性100例,女性57例。所有病例均经手术病理证实。采用3.OT MR脂肪抑制LAVA序列,在对比剂注入前扫描蒙片,于对比剂注入后15s开始增强扫描,此后每隔30秒完成一次扫描,其中15s时为单次屏气连续完成两期扫描,余每次屏气完成一期扫描,单期扫描时间9-10s,单期扫描层数为20-24层,全部共6期。注入对比剂后4分钟完成延迟扫描。使用AW4.4工作站测量并记录肾皮质、肾肿瘤于增强扫描前及增强扫描后各期的信号强度,计算信号增强百分比、肿瘤—皮质增强指数、强化峰值、峰值出现的期别、流出率、强化曲线形态,并进行比较及统计学分析。
     结果:161个病灶中良性病灶28个,恶性病灶133个。良性病灶包括血管平滑肌脂肪瘤20个,嗜酸细胞腺瘤4个,其它良性肿瘤4个。恶性病灶包括透明细胞性肾癌105个,乳头状肾细胞癌10个,嫌色细胞性肾癌13个,其他恶性肿瘤5个。透明细胞性肾癌Ⅰ级44例,Ⅱ级42例,Ⅲ级14例,Ⅳ级5例。良性肾脏肿瘤的动态增强各期信号增强百分比及肿瘤—皮质增强指数的均值在增强扫描各期均低于恶性肿瘤。但统计学分析表明这些差别无明显统计学意义。不同病理类型肾脏肿瘤的动态增强各期信号增强百分比及肿瘤—皮质增强指数的均值有一定的区别,但也有部分交叉重叠。透明细胞性肾癌在增强扫描各期强化程度均明显高于其他类型肿瘤,嗜酸细胞腺瘤、血管平滑肌脂肪瘤、和嫌色细胞性肾癌的强化水平比较接近,均属于中等程度强化,而乳头状肾细胞癌、其他良性肿瘤以及其他恶性肿瘤的强化水平均属于较低程度的强化。在增强扫描第3期即皮髓质早期这种强化的分组趋势较明显。透明细胞性肾癌、嗜酸细胞腺瘤、血管平滑肌脂肪瘤、和嫌色细胞性肾癌均随扫描时相表现出较明显的“快进—流出”的强化趋势,而乳头状肾细胞癌、其他良性肿瘤以及其他恶性肿瘤则表现出“持续上升”的强化趋势。不同级别的透明细胞癌强化程度的差别无统计学意义。
     结论:多期动态增强扫描对不同良恶性的肾脏肿瘤和不同病理级别的透明细胞性肾癌不能提供鉴别。但不同病理类型的肾脏肿瘤展现出了不同的强化特征,多期动态增强扫描的特点可将不同病理类型的肾脏肿瘤进行分组,结合MR平扫,可提高诊断的准确性。
Part I:
     Renal tumors:diffusion weighted imaging research at 3. OT Objective:To assess the value of diffusion weighted imaging in di fferentiating between benign from mal ignant renal tumors, differentiating among various pathologic subgroups of renal tumors, and various grade of clear cell carcinoma.
     Materials and methods:171 (110 men,61 women.) patients with 175 clinical suspected renal masses underwent 3. OT routine MR scan and diffusion weighted MR scan before operation. All patients were histopathologically diagnosed. The b value of DWI sequence was 800s/mm". Apparent diffusion coefficient values of both tumor and renal parenchyma were measured with an AW4.4 workstation and were compared by means of different characters, pathologic subgroups and various grade of clear cell carcinoma.
     Results:there were 30 benign and 145 malignant renal tumors. Benign tumors included 21 angiomyolipoma,5 oncocytoma and 4 other types, while malignant tumors included 110 clear cell RCC,12 papillary RCC,16 chromophobic RCC, and 7 other types. In the 110 clear cell carcinoma, there were 44 for grade
     I,44 for grade II,16 for grade III, and 5 for grand IV,1 unclassified. The mean ADC value of benign tumors (1.29×10-3mm2/s)were lower than that of malignant tumors (1.56X 10-3mm2/s), with the area under the ROC curve 0.696. For the different pathologic subgroups of renal tumors, clear cell RCC showed the significant higher ADC value of 1.70×10-3mm2/s, oncocytoma showed the second higher ADC value of 1.16×10-3mm2/s, papillary RCC, chromophobic RCC, and angiomyolipoma got almost equaled ADC value. To differentiate clear cell RCC from other tumors, a cut value of 1.355×10-3mm2/s should be made (area under the curve were 0.854, and sensitivity were 80%, specificity were 78.5%). The analysis of mean ADC value showed an inverse linear correlation with different grade of clear cell RCC.
     Conclusion:diffusion weighted imaging is useful in differentiating between benign from malignant renal tumors, differentiating among various pathologic subgroups of renal tumors, and various grade of clear cell carcinoma. And the performance of diagnosis can be improved performed together with conventional MR.
     Part II:
     Timing of MR multi-phase contrast enhancement for normal kidney-Objective:To investigate the appropriate timing of MR multi-phase contrast enhancement for normal kidney.
     Materials and methods:30 patients with normal kidney function underwent MR multi-phase contrast enhancement. There are 20 men,10 women, the mean age was 52. MR imaging was performed with a 3.0T scanner by using fat suppressed breath-hold LAVA sequence. The mask images were obtained before contrast agent injection, and the post contrast acquisitions was first performed at 15s, then every 30s take once. Except for the first acquisitions got 2 phases of images during one breath hold, the rest acquisitions got only 1 phase for one breath hold. Each phase took 9-10s, and gained 20-24 slices, all 10 phases were performed including the mask images. A delayed phase was performed 4 min after injection. The signal intensity of aorta, cortex, and medulla of kidney of multi-phase was measured and recorded with an AW4.4 workstation, and then analyzed with SPSS 13.0 software.
     Results:the aorta got the earliest enhancement, and had obviously high signal intensity at the 2nd phase (15s), reached the peak at the 3rd phase (25s), and kept the peak value to the 4th phase (45s), then began to reduce.
     The cortex was slightly enhanced at the 2nd phase, and increased sharply during the 3rd phase, till the 4th phase reached the peak, and then began to reduce. The medulla got the latest enhancement and reached the peak at the 6th phase (105s), and kept the status till the 10th phase. The difference between the cortex and medulla were obvious at 2nd and 3rd phase, and began to reduce at 4th phase, then kept constant from 6th to the 10th phases. Then we established the 2nd phase to be the artery phase, the 3rd phase to be early corticomedullary phase, the 4th phase to be late corticomedullary phase, the 6the phase to be nephrographic phase.
     Conclusion:the appropriate timing of MR multi-phase contrast enhancement of kidney should the mask phase, artery phase (2nd phase), early corticomedullary phase (3rd phase), late corticomedullary phase (4th phase), nephrographic phase (6th phase), and a delayed phase.
     Partlll:
     Renal tumors:multi-phase contrast enhancement research at 3.0T Objective:To assess the value of multi-phase contrast enhancement in differentiating between benign from malignant renal tumors, differentiating among various pathologic subgroups of renal tumors, and various grade of clear cell carcinoma.
     Materials and methods:157(100 men,57 women) patients with 161 clinical suspected renal masses underwent 3.0T routine plain MR scan and multi-phase contrast enhancement MR scan before operation. All patients were histopathologically diagnosed. MR imaging was performed with a 3.0T scanner by using fat suppressed breath-hold LAVA sequence. The mask images were obtained before contrast agent injection, and the post contrast acquisitions was first performed at 15s, then every 30s take once. Except for the first acquisitions got 2 phases of images during one breath hold, the rest acquisitions got only 1 phase for one breath hold. Each phase took 9-10s, and gained 20-24 slices, all 6 phases were performed including the mask images, a delayed phase was performed 4 min after injection. The signal intensity of renal cortex and tumor of multi-phase was measured and recorded with an AW4.4 workstation, and then signal intensity enhancement percentage, cortex-tumor enhancement ratio, peak enhancement percentage, peak phase, flow-out rate, and shape of enhancement curve were calculated and analyzed with SPSS 13.0 software.
     Results:there were 28 benign and 133 malignant renal tumors. Benign tumors included 20 angiomyolipomas,4 oncocytomas and 4 other types of benign tumors, while malignant tumors included 100 clear cell RCC,10 papillary RCC,13 chromophobic RCC, and 5 other types of malignant tumors. In the 110 clear cell carcinoma, there were 44 for grade I,42 for grade II,14 for grade III, and 5 for grand IV. The signal intensity enhancement percentage and cortex-tumor enhancement ratio of benign tumors were lower than that of malignant tumors, but these difference did not show any statistical significance. For the different pathologic subgroups of renal tumors, clear cell RCC showed the significant higher signal intensity enhancement percentage and cortex-tumor enhancement ratio; oncocytoma, angiomyolipoma and chromophobic RCC showed a similary lower enhancement degree, and got in the moderate enhancement group; papillary RCC, other types of benign tumors, and other types of malignant tumors showed the lowest enhancement degree. This grouping trend was most obvious at the 3rd phase (early corticomedullary phase). Clear cell RCC, oncocytoma, angiomyolipoma and chromophobic RCC showed a wash-out feature of enhancement curve, and the other types of renal tumors showed a gradually filling feature. The enhancement degree and form of different cell grade of clear cell RCC showed no statistical significance.
     Conclusion:Multi-phase contrast enhancement is of no use in differentiating between benign from malignant renal tumors, differentiating among various grade of clear cell carcinoma. But different pathologic subgroups of renal tumors did show different enhancement features. By using multi-phase contrast enhancement renal tumors can be classified into groups, and together with other sequence, the performance of diagnosis can be when improved.
引文
1. Bellmun J,Fishman M, Eisen T en al. Exper opinion on the use of Tirst-line sorafenib in selected metastatic renal cell carcinoma patients. Anticancer Ter 2010;10(6):825-835
    2.Spiess P E, Fishman M N.Cytoreductive nephrectomy vs medical therapy as initial treatment:a rational approach to the sequence question in metastatic tenal cell carcinoma.Cancer Control 2010;17(4):269-78
    3. Wang H Y, Cheng L Q, Zhang X, et al. Renal cell carcinoma:diffusion-weighted MR imaging for subtype differentiation at 3.0T. Radiology 2010; 257(1):135-43
    4.朱捷.肾脏3.OT磁共振扩散成像的研究[D]成都:四川大学,2006
    5. DWI-7Yoshikawa T, Kawamitsu H, Mitchell DG, et al. ADC measurement of abdominal organs and lesions using parallel imaging technique. Am J Roentgenol.2006;187(6):1521-30.
    6. Zhang JL, Sigmund EE, Chandarana H, et al. Variability of renal aparent diffusion coeffi cients:limitations of the monoexponential model for diffusion quantification. Radiology.2010 Mar;254(3):783-92.
    7. Hecht E M, Israel G M, Krinsky G A et al. Renal mass:quantitative analysis of enhancement with signal intensity measurements versus qualitative analysis of enhancement with image subtraction for diagnosing malignancy at MR imaging. Radiology 2004; 232:373-8
    8. Sun M R, Ngo L, Genega E M et al. Renal cell carcinoma:dynamic contrast-enhanced MR imaging for differentiation of tumor subtypes-correlation with pathologic findings. Radiology 2009; 250:793-802
    1. Stejskal E 0, Tanner J E. Spin diffusion measurement:spin echoes in the Presence of time-dependent field gradient. J Chem Phys,1965,42(2);288-292
    2. Bammer R. Basic Principles of diffusion—weighted imaging. Eur J Radiol, 2003,45(3):169-184
    3.工海屹.肾细胞癌不同亚型3.OT磁共振影像鉴别诊断[D]北京:军医进修学院,2009
    4.朱捷.肾脏3.OT磁共振扩散成像的研究[D]成都:四川大学,2006
    5. Ercan Inci, ElifHocaoglu, SibelAydin, et al. Diffusion-weighted magnetic resonance imaging in evaluation of primary solid and cystic renal masses using the Bosniak classification. Eur J Radiol.2011, doi:10.1016/j. ejrad. 2011.02.024
    6. Manenti G, Di Roma M, Mancino S, et al. Malignant renal neoplasms: correlation between ADC values and cellularity in diffusion weighted magnetic resonance imaging at 3 T. Radiol Med.2008 Mar;113(2):199-213
    7.温兆霞.肾脏占位性病变DWI检查应用价值的初步研究[D]天津:天津医科大学,2007
    8. Cova M, Squillaci E, Stacul F, et al. Diffusion-weighted MRI in the evaluation of renal lesions preliminary results. The British Journal of Radiology2004; 77:851-857
    9. Yoshikawa T, Kawamitsu H, Mitchell DG, et al. ADC measurement of abdominal organs and lesions using parallel imaging technique. Am J Roentgenol. 2006;187(6):1521-30
    10. Muller M F, Prasad P V, Bimmler D et al. Functional imaging of the kidney by means of measurement of the apparent diffusion coefficient Radiology 1994; 193:711-715
    11. Fukuda Y, Ohashi I, Hanafusa K et al. Anisotropic diffusion in kidney: apparent diffusion coefficient measurements for clinical use. J Magn Reson Imaging 2000; 11:156-160
    12. Doganay S, Kocakoc E, Cicekci M, et al. Ability and utility of diffusion-weighted MRI with different b values in the evaluation of benign and malignant renal lesions. Clin Radiol.2011; 66 (5):420-5
    13.余小多,林蒙,欧阳汉等.3.OT MR扩散加权成像诊断肾脏恶性肿瘤.中国医学影像技术.2010:26(3):538-42
    14. Sandrasegaran U, Sundaram C P, Ramaswamy R etal. Usefulness of diffusion-weighted imaging in the evaluation of renal masses. AJR 2010; 194:438-45
    15. Taouli B, Thakur R, Mannelli L, et al. Renal lesions:characterization with diffusion-weighted imaging versus contrast-enhanced MR imaging. Radiology2009; 251(2):398-407
    16. Zhang J, Tehrani Y M, Wang L et al. Renal masses:characterization with diffusion-weighted MR Imaging—a preliminary experience. Radiology 2008; 247(2):458-64
    17. Wang H Y, Cheng L Q, Zhang X, et al. Renal cell carcinoma:diffusion-weighted MR imaging for subtype differentiation at 3.OT. Radiology 2010; 257(1):135-43
    18. Rosenkrantz A B, Niver B E, Fitzgerald E F. Utility of the apparent diffusion coefficient for distinguishing clear cell renal cell carcinoma of low and high nuclear grade. Am J Roentgenol 2010; 195(5):W344-51
    19. Padhani AR, Liu G, Koh DM, et al. Diffusion-Weighted Magnetic Resonance Imaging as a Cancer Biomarker:Consensus and Recommendations. Neoplasia. 2009 Feb; 11(2):102-25
    1. 赵炳辉,李明华,周康荣.肾透明细胞癌磁共振成像动态增强相对强化指数与微血管密度、增殖细胞核抗原相关性探讨.上海医学2007;30(5):343-6
    2. 潘平,刘爱连,宋清伟等.动态增强磁共振在评价肝细胞爱微血管密度中的意义.中国医学计算机成像杂志2001;7(5):326-30
    3.杨春山综述,肖湘生审校.MR动态增强对肿瘤血管生成的评价作用.放射学实践2005:20(7):644-6
    4. 李洁,张晓鹏,曹崑等.乳腺癌新辅助化疗后血流动力学变化的动态增强MRI研究.中国医学影像技术2007;23(3):397-400.
    5. 周妮娜,陈敏,王文超.动态增强磁共振成像对直肠癌术前新辅助治疗疗效的评价.磁共振成像2010:1(2):103-9
    6. 陈敏,钟晨阳,王文超.内分泌治疗前、后的前列腺癌MRI表现.中国医学影像技术2001:17(9):902-4
    7. Yuh B I, Cohan R H. Different phases of renal enhancement:role in detecting and characterizing renal masses during helical CT. AJR 1999; 173: 747-55
    8. Kopka L, Fischer U, Zoeller G etal. Dual-phase helical CT of the kidney: value of the corticomedullary and nephrographic phase for evaluation of renal lesions and preoperative staging of renal cell carcinoma. AJR 1997; 169:1573-78
    9. Kawashima A, Sandler C M, Ernst R D et al. CT evaluation of renovascular disease. Radiographics 2000; 20:1321-40
    10.王金红,闵鹏秋,刘荣波等.肾细胞癌1D表现特征及其与时间窗的相关性研究.中国医学影像技术2004;20(11):1721-4.
    11.周建军,曾蒙苏,严福华等.双皮质期扫描对肾细胞癌亚型诊断和鉴别诊断的影响.放射学实践2010;25(5):529-32
    12. Hecht E M, Israel G M, Krinsky G A et al. Renal mass:quantitative analysis of enhancement with signal intensity measurements versus qualitative analysis of enhancement with image subtraction for diagnosing malignancy at MR imaging. Radiology 2004; 232:373-8
    13. Sun M R, Ngo L, Genega E M et al. Renal cell carcinoma:dynamic contrast-enhanced MR imaging for differentiation of tumor subtypes—correlation with pathologic findings. Radiology 2009; 250: 793-802
    14. 赵炳辉,陈祖望,周康荣等.MRI动态增强在肾癌诊断中的价值及其检查技术探讨.中国医学影像技术2003:19(11):1544-7
    15. 金光暐,安宁豫,蔡幼铨.MRI常规平扫结合动态增强扫描诊断肾细胞癌.中国医学影像技术2005:21(12):1922-5
    16. Scialpi M, Maggio A D, Midiri M et al. Small renal masses:assessment of lesion characterization and vascularity on dynamic contrast-ehhanced MR imaging with fat suppression. AJR 2000; 175:751-7
    17. Ho V B, Allen S F, Hood M N et al. Renal masses:quantitative assessment of enhancement with dynamic MR imaging. Radiology 2002; 224:695-700
    18. 李传福,胡凌,马祥兴等.磁共振动态增强扫描对肾癌诊断价值的探讨.山东大学学报2003:441(5):549-552
    19. 曹慧芳,柯勇,刘日华等.肾脏肿瘤的MR动态增强扫描研究.医学影像学杂志2007:17(10):1078-80
    20.王喜军,史浩,赵华.MRI动态增强扫描在肾癌诊断中的价值.放射学实践2006;21(9):941-4
    1. Bellmunt J, Fishman M, Eisen T et al. Expert opinion on the use of first-line sorafenib in selected metastatic renal cell carcinoma patients. Anticancer Ther 2010; 10(6):825-835
    2. Spiess P E, Fishman M N. Cytoreductive nephrectomy vs medical therapy as initial trealmenu:a rational approach to the sequence question in metastatic renal cell carcinoma. Cancer Control 2010; 17(4):269-78
    3.王海屹.肾细胞癌不同亚型3.OT磁共振影像鉴别诊断[D]北京:军医进修学院,2009
    4. Sun M R, Ngo L, Genega E M et al. Renal cell carcinoma:dynamic contrast-enhanced MR imaging for differentiation of tumor subtypes—correlation with pathologic findings. Radiology 2009; 250: 793-802
    5. Ho V B, Allen S F, Hood M N et al. Renal masses:quantitative assessment of enhancement with dynamic MR imaging. Radiology 2002; 224:695-700
    6. Hecht E M, Israel G M, Krinsky G A et al. Renal mass:quantitative analysis of enhancement with signal intensity measurements versus qualitative analysis of enhancement with image subtraction for diagnosing malignancy at MR imaging. Radiology 2004; 232:373-8
    7.赵炳辉,陈祖望,周康荣等.MRI动态增强在肾癌诊断中的价值及其检查技术探讨.中国医学影像技术2003;19(11):1544-7
    8.金光暐,安宁豫,蔡幼铨.MRI常规平扫结合动态增强扫描诊断肾细胞癌.中国医学影像技术2005:21(12):1922-5
    9. Scialpi M, Maggio A D, Midiri M et al. Small renal masses:assessment of lesion characterization and vascularity on dynamic contrast-ehhanced MR imaging with fat suppression. AJR 2000; 175:751-7
    10.李传福,胡凌,马祥兴等.磁共振动态增强扫描对肾癌诊断价值的探讨.山东大学学报2003:441(5):549-552
    11.曹慧芳,柯勇,刘日华等.肾脏肿瘤的MR动态增强扫描研究.医学影像学杂志2007:17(10):1078-80
    12.王喜军,史浩,赵华.MRI动态增强扫描在肾癌诊断中的价值.放射学实践2006;21(9):941-4
    13. Pedrosa I, Sun M R, Spencer M et al. MR imaging of renal masses: correlation with findings at surgery and pathologic analysis. RadioGraphics 2008; 28:985-1003
    1. Martoranaa G et al. Nephron-sparing surgery for renal cell carcinoma: state of the art and 10 years of multicentric experience. Euro suppl Urlo 2006;5(8):600-609.
    2. Nieder A M et al. The role of partial nephrectomy for renal cell carcinoma in contemporary practice. Urlo Clin N Am 2003;30:529-542.
    3. Remer E M et al. Imaging for nephron-sparing surgery. Semin Urol Oncol 2002 Aug;20(3):180-91
    4. Deirdre M, Coll et al. Preoperative use of 3D volume rendering to demonstrate renal tumors and renal anatomy. Radiographics 2000; 20:431-438.
    5. Hallscheidt P et al. Multislice computed tomography in planning nephron-sparing surgery in a prospective study with 76 patients:comparison of radiological and histopathological findings in the infiltration of renal structures. J Comput Assist Tomogr 2006;30(6):869-74.
    6. Catalano C et al. High-resolution multidetector CT in the preoperative evaluation of patients with renal cell carcinoma. AJR 2003;180:1271-1277.
    7. Smith P A et al. Role of CT angiography in the preoperative evaluation for lapraoscopic nephrectomy. Radiographics 1998;18:589-601.
    8. Foley W D et al. Multidetector CT:Abdominal visceral imaging. Radiographics 2002;22:701-719.
    9. Matthew J, Bassignani et al. Understanding and interpreting MRI of the genitourinary tract. Urol Clin N Am 2006;33:301-317.
    10. Derweesh I H et al. The predictive value of helical computed tomography for collecting-system entry during nephron-sparing surgery. BJU Int 2006 Nov;98(5):963-8.
    11. Schlichter A et al. How accurate is diagnostic imaging in determination of size and multifocality of renal cell carcinoma as a prerequisite for nephron-sparing surgery? Urol Int 2000;64:192.
    12. Huanga G J et al. Preoperative renal tumor evaluation by three-dimensional magnetic resonance imaging:Staging and detection of multifocality. Urology 2004;64 (3):453-457.
    13. Yamashita Y et al. Detection of pseudocapsule of renal cell carcinoma with MR imaging and CT. AJR 1996;166,1151-1155.
    14. Roy C et al. Significance of the pseudocapsule on MRI of renal neoplasms and its potential application for local staging:A Retrospective Study AJR 2005; 184:113-120.
    15. Asecnti G et al. Contrast-enhanced second-harmonic sonography in the detection of pseudocapsule in renal cell carcinoma. AJR 2004; 182: 1525-1530.
    16. Bruce A. Urban et al. Three-dimensional volume-rendered CT angiography of the renal arteries and veins:Normal anatomy, variants, and clinical applications. Radiographics 2001; 21:373-386.
    17.Peter L Choyke et al. Renal cancer:Preoperative evaluation with dual-phase three dimensional MR angiography. Radiology 1997; 205:767-771.
    18. Anderson J K et al. Imaging associated with percutaneous and intraoierative management of renal tumors. Urol Clin N Am 2006,33:339-352.
    19. Israel G M et al. CT and MR imaging of complications of partial nephrectomy. RadioGraphics 2006;26:1419-1429.
    20. Heye S et al. Hemorrhagic complications after nephron-sparing surgery: angiographic diagnosis and management by transcatheter embolization. AJR 2005; 184:1661-1664.
    21. Cohenpour M et al. Pseudoaneurysm of the renal artery following partial nephrectomy:imaging findings and coil embolization. Clin Radiol 2007;62(11):1104-9.
    22. Frank H. Miller et al. CT diagnosis of chyluria after partial nephrectomy. AJR 2007; 188:25-W28.
    23.Fergany A F et al. Long-term re-cults of nephron sparing surgery for localized renal cell carcinoma:10-year follow-up. J Urol 2000; 163:442-445.
    24. Bradford T J et al. The role of imaging in the surveillance of urologic malignancies. Urol Clin N Am 2006;33:377-396.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700