用户名: 密码: 验证码:
同种异体骨髓单个核细胞肝内移植治疗急性肝损伤的磁共振扩散成像实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一章同种异体骨髓单个核细胞肝内移植治疗急性肝损伤的实验研究
     目的:探讨骨髓单个核细胞肝内移植治疗D-氨基半乳糖诱导的兔急性肝损伤模型的疗效。
     材料与方法:由雄性健康大白兔四肢长骨提取骨髓单个核细胞,用D-氨基半乳糖腹腔注射诱导建立兔急性肝损伤模型,模型兔(n=66)随机分为2组:移植组(n=32):直接肝内多点穿刺注射5 m1骨髓单个核细胞悬液(细胞约2×107个);对照组(n=34):直接肝内多点注射5 ml D-hanks液。定期观察各组实验兔的行为变化、生存率、肝功能(ALT、AST、ALB)的改变;移植术后,相当于制模后第7天、14天、28天分别处死两组实验兔,每次处死7只,观察肝脏组织病理学变化,计算病理评分。所有数据资料均借助SPSS 11.0统计软件分析。
     结果:移植组在骨髓单个核细胞移植后的第1周内生存率高于对照组(p<0.05),第2周内及第3—4周内移植组的生存率与对照组比较差异无显著性意义(p>0.05)。肝功能统计分析显示:移植前,两组肝功能无明显差别;移植后,随时间推移,肝功能逐渐好转,在细胞移植后各观察时点移植组转氨酶ALT和AST均较对照组降低明显(p<0.05);除制模后24h及制模后第28天外,在其余细胞移植后的各观察时点,移植组血清白蛋白均较对照组明显升高(p<0.05)。组织病理学评分的结果显示:随时间推移,病理评分逐渐好转,在各观察时点移植组的病理评分明显好于对照组(p<0.05)。
     结论:骨髓单个核细胞直接肝内多点注射移植可有效改善D-氨基半乳糖诱导的兔急性肝损伤模型的肝功能。直接肝内多点注射是一种简单有效的骨髓单个核细胞肝脏移植途径。
     第二章同种异体骨髓单个核细胞肝内移植治疗急性肝损伤肝组织的MVD改变及VEGF的表达研究
     目的:探讨骨髓单个核细胞移植后急性肝损伤模型肝组织的VEGF(血管内皮生长因子)表达及平均MVD(微血管密度)值的动态变化;探讨平均MVD值与肝功能的相关性。
     材料和方法:以论文第一章随机选择用以病理评分的42只急性肝损伤模型兔为研究对象,分为2组,移植组(n=21):直接肝内注射5 ml骨髓单个核细胞(约2×107个);对照组(n=21):直接肝内注射5 ml D-hanks液。在行移植手术后相当于制模后的第7天、第14天、第28天,移植组及对照组分别处死实验兔7只,行肝脏病理切片及免疫组化,进行VEGF表达阳性细胞数计数及平均MVD值测定,而后进行对比分析。并将各组平均MVD值与各时点样本兔处死前所测得的各组肝功能指标进行相关性分析。
     结果:各观察时点移植组的VEGF表达阳性细胞数及平均MVD值均高于对照组(p<0.05)。移植组内部各时点相互比较,VEGF表达阳性细胞数逐渐降低,第7天、第14天较第28天高,差异有显著意义(p<0.05),第7天较第14天高,差异无显著意义(p>0.05);平均MVD值逐渐增高,第14天及第28天平均MVD值较第7天高,差异有显著意义(p<0.05),第28天较第14天平均MVD值高,差异无显著意义(p>0.05)。对照组内部各时点相互比较,VEGF表达阳性细胞数逐渐降低,第7天较第14天及第28天高,差异有显著意义(p<0.05),第14天较第28天高,差异无显著意义(p>0.05);平均MVD值逐渐增高,各时点两两比较差异均有显著性意义(p<0.05)。各组平均MVD值与肝功能指标ALT(谷丙转氨酶)、AST(谷草转氨酶)呈负相关(移植组平均MVD值与ALT、AST相关系数为-0.913、-0.918,对照组为-0.776、-0.678)(p<0.05),与ALB(白蛋白)呈正相关(移植组平均MVD值与ALB的相关系数为0.924,对照组为0.729)(p<0.05)。
     结论:骨髓单个核细胞移植可以促进急性肝损伤模型的VEGF表达及MVD值增加,有利于改善急性损伤肝脏的血供,促进受损肝脏功能的恢复。
     第三章同种异体骨髓单个核细胞肝内移植治疗急性肝损伤的磁共振扩散成像研究
     目的:通过分析骨髓单个核细胞移植后急性肝损伤模型的肝脏平均ADC(表观扩散系数)值的动态变化以及其平均ADC值与病理评分、平均MVD值的相关性,探讨利用磁共振扩散成像评价急性肝损伤模型肝功能恢复的可行性;探讨随b值的改变,受损肝脏的平均ADC值受病理评分及血流灌注的影响程度。
     材料和方法:以10只健康同龄兔及论文第一章随机选择用以病理评分的42只急性肝损伤模型兔为研究对象。42只急性肝损伤模型兔分为细胞移植组及对照组,移植组(n=21):直接肝内注射5 ml骨髓单个核细胞(约2×107个);对照组(n=21):直接肝内注射5 ml D-hanks液。在行移植手术后,相当于制模后的第7天、第14天、第28天,移植组及对照组分别选择实验兔7只进行肝脏磁共振扩散成像及肝脏平均ADC值测定后处死,行肝脏病理切片及免疫组化,进行病理评分及平均MVD值测定,而后进行对比分析。10只健康同龄兔作为正常对照组,用于正常兔肝脏平均ADC值的测定。
     结果:移植术后,相当于制模后第7d,移植组与对照组的平均ADC值明显低于正常对照组(p<0.05),且随时间的推移,移植组与对照组的平均ADC值逐渐增高向正常肝组织的平均ADC值接近;同一观察时点、相同b值时,移植组肝脏的平均ADC值明显高于对照组(p<0.05);无论是b取100 s/mm2还是400 s/mm2,移植组与对照组的病理评分值均与平均ADC值呈负相关(移植组b为100 s/mm2及400s/mm2病理评分值与平均ADC值的相关系数分别为-0.805、-0.883,对照组分别为-0.628、-0.762)(p<0.05),其平均MVD值均与平均ADC值呈正相关(移植组b为100 s/mm2及400 s/mm2平均MVD值与平均ADC值的相关系数分别为0.946、0.840;对照组分别为0.884、0.654)(p<0.05);b取100 s/mm2时,移植组与对照组病理评分与平均ADC值的相关系数均小于平均MVD值与平均ADC值的相关系数,且其病理评分与平均ADC值的相关系数均小于b取400 s/mm2时病理评分与平均ADC值的相关系数,其平均MVD值与平均ADC值的相关系数均大于b取400 s/mm2时平均MVD值与平均ADC值的相关系数。b取400 s/mm2时,移植组及对照组的病理评分与平均ADC值的相关系数均大于平均MVD值与平均ADC值的相关系数。
     结论:利用损伤肝脏的平均ADC值动态变化可以了解其肝脏修复情况;b值及b值差越小,受损肝脏的平均ADC值与平均MVD值的相关性越强,平均ADC值受血流灌注影响就越大,平均ADC值的动态变化就越能反映受损肝组织血流灌注恢复情况;b值及b值差越大,受损肝脏的平均ADC值与病理评分的相关性越强,平均ADC值的变化越能真实地反映肝组织内水分子自身的扩散运动的变化。
PartⅠ:The experimental study on therapeutic effect of allogeneic mononuclear bone marrow cells transplantation to rabbit liver with acute hepatic injury
     Objective:To investigate the therapeutic effect of mononuclear bone marrow cells (MBMCs) transplantation to rabbit liver with acute hepatic injury (AHI) induced by D-galactosamine (D-GaIN)
     Materials and Methods:The prepared D-GaIN solution was injected sterilely into the hypogastrium of each rabbit at a dosage of 10g/kg to establish 66 AHI rabbit models. AHI rabbits (n=66)were randomly divided into 2 groups, a transplanted group (n=32) and a control group(n=34). MBMCs were derived from bone marrow obtained from all limb long bones of male albino rabbits.Each rabbit of the transplanted group was directly infused 5 ml MBMCs suspension (about containing 2×107 MBMCs) into its liver at multiple sites'. All manipulations to each rabbit in the control group were as same as those in the transplanted group except that 5 ml of D-Hanks solution was injected instead of MBMCs suspension. The survival rates were observed and liver functions (ALT, AST, ALB) were estimated for the two groups.7 model rabbits from each group were killed on day 7, day 14 and day 28 of AHI establishment after transplantation of MBMCs, respectively, to be carried out pathological examination of liver and pathological score. All data were analyzed by SPSS 11.0 software package.
     Results:Survival rate of the transplanted group during the first week after MBMCs transplantation was higher than that of the control group(p<0.05). However, there was not significant difference of the survival rate between the two groups during the second week and the fourth week after MBMCs transplantation (p> 0.05). With regard to liver function, the liver functions of the two groups both got improvement gradually, but the level of liver enzyme ALT and AST significantly decreased in the transplanted group compared to the control group at any same time point observed after MBMCs transplantation (p<0.05).There was also a significant improvement of serum albumin (ALB) in the transplanted group compared to the control group (p<0.05)except the observed time point of the 24th hour and 28th day after AHI establishment and MBMCs transplantation. Results of the histopathological scores showed that the histopathological scores of the two groups both gradually decreased over time, but the histopathological score of the transplanted group was better than that of the control group at any time point observed(p<0.05).
     Conclusions:Direct injection of MBMCs suspension into liver at multiple sites can effectively improved the liver function of the acute liver injury in D-GalN-induced rabbits. Direct injection of MBMCs suspension into liver at multiple sites is a simple and effective route of MBMCs transplantation in experimental model.
     PartⅡ:Evaluation of MVD and VEGF protein expression of liver tissue in the treatment of acute hepatic injury with allogeneic MBMCs transplantation into liver
     Objective:To investigate the dynamical changes of VEGF (Vascular endothelial cell growth factor) protein expression and the average value of average MVD(micro-vessel density) in acute hepatic injury model after transplantation of MBMCs (mononuclear bone marrow cells). To investigate the correlation between the average value of MVD and liver function.
     Materials and Methods:In this part,there were 42 model rabbits of acute liver injury,which were chosen to carry out pathological examination of liver and pathological score in the first part of the thesis. So, in this part there were two groups too,the transplanted group and the control group.There were 21 model rabbits in each group. Each rabbit of the transplanted group was directly infused 5 ml MBMCs suspension (about containing 2×107 MBMCs) into its liver at multiple sites. All manipulations to each rabbit in the control group were as same as those in the transplanted group except that 5 ml of D-Hanks solution was injected instead of MBMCs suspension.7 model rabbits from each group were killed on day 7, day 14 and day 28 of AHI establishment after transplantation of MBMCs, respectively. A series of comparative assays performed were including:functional assay of liver, immunohistochemical pathological examination of liver sections, VEGF-expressing cells count and quantification of the average MVD value. At the same time,we investigated the the correlation between the average MVD value and liver function.
     Results:Before MBMCs transplantation, the difference of liver function was not significant between the transplanted group and the control group. But after MBMCs transplantation,the liver functions of model rabbits in the transplanted group were significantly better than those of the control group at all time points observed (p<0.05). More VEGF-expressing cells and higher average MVD value were observed in the transplanted group than the control group (p<0.05). In the transplanted group, the count of VEGF-expressing cells gradually reduced, the count on day 7 was higher than that on day 14 (p>0.05), while both were significantly higher than the count on day 28 (p<0.05). In contrast, the average value of MVD increased gradually in the transplanted group, the value on day 28 was higher than the one on day 14 (p>0.05), while both were significantly higher than the one on day 7 (p<0.05). In the control group, the count of VEGF-expressing cells also gradually reduced, the VEGF-expressing cell number on day 7 was higher than the one on day 14 and day 28 (p<0.05), and the number on day 14 was higher than the one on day 28 (p>0.05). The average MVD value increased with significance between each time points observed over time (p<0.05). The correlation between the average MVD value and the ALT or AST was negative (the transplanted group:-0.913,-0.918, the control group:-0.776,-0.678) (p<0.05), at the same time, the correlation between the average MVD value and the ALB was positive (the transplanted group:0.924, the control group:0.729) (p<0.05).
     Conclusions:Transplantation of MBMCs promotes the expression of VEGF and also up-regulates the average MVD value in the acute injury livers. This facilitates the recovery of liver function.
     PartⅢ:The study of magnetic resonance diffusion-weighted imaging(MR-DWI) to the treatment of acute hepatic injury with allogeneic MBMCs transplantation into liver
     Objective:By analyzing the dynamic changes of the mean ADC values of the injury livers after MBMCs transplantation and the correlation between the mean ADC values and the injury liver histopathological score or MVD values,to investigate the feasibility that evaluated the functional recovery of acute hepatic injury model with MR-DWI and the degree of the influence of the histopathological score and blood perfusion to the mean ADC value of the injury liver.
     Materials and Methods:In this part,there were 10 healthy rabbits and 42 model rabbits with acute liver injury,which were chosen to carry out pathological examination of liver and pathological score in the first part of the thesis. So, in this part there were three groups:the normal control group(n=10), the transplanted group(n=21) and the control group(n=21). Each rabbit of the transplanted group was directly infused 5 ml MBMCs suspension (about containing 2×107 MBMCs) into its liver at multiple sites. All manipulations to each rabbit in the control group were as same as those in the transplanted group except that 5 ml of D-Hanks solution was injected instead of MBMCs suspension.7 model rabbits from the transplanted group and the control group were killed on day 7, day 14 and day 28 of AHI establishment after transplantation of MBMCs, respectively. A series of comparative assays performed were including:immunohistochemical pathological examination of liver sections, quantification of pathological score and the average MVD value. Before the rabbits killed,each model rabbit was carried out MR-DWI scan and calculated the mean ADC value of the injury liver. Each rabbit of the normal control group was only carried out MR-DWI scan and calculated the mean ADC value of the normal liver.
     Results:On day 7 of AHI establishment after MBMCs transplantation, the mean ADC values of the injury livers of the transplanted group and the control group were significant lower than those of the normal control group (p<0.05). The mean ADC values of the injury livers of the transplanted group and the control group increased to the mean ADC values of the normal control group over time. At the same time point observed, The mean ADC values of the injury livers of the transplanted group were significant higher than those of the control group when the b value was same.No matter the b value was 100 s/mm2 or 400 s/mm2, there was negative correlation between the histopathological scores and the mean ADC values in the transplanted group and the control group (the transplanted group:-0.805,-0.883; the control group:-0.628,-0.762) (p<0.05), but there was positive correlation between the average MVD values and the mean ADC values in the transplanted group and the control group (the transplanted group:0.946,0.840; the control group:0.884,0.654) (p<0.05). When the b value was 100 s/mm2, the correlation coefficient between the histopathological scores and the mean ADC values was lower than that between the average MVD values and the mean ADC values,at the same time, it also was lower than that between the histopathological scores and the mean ADC values when the b value was 400 s/mm2. When the b value was 100 s/mm2, the correlation coefficient between the average MVD values and the mean ADC values was higher than that when the b value was 400 s/mm2. When the b value was 400 s/mm2, the correlation coefficient between the histopathological scores and the mean ADC values was higher than that between the average MVD values and the mean ADC values
     Conclusions:The recovery of the inury liver can be detected with observing dynamic change of its mean ADC value. The lower the b value, the higher the correlation coefficient between the average MVD values and the mean ADC values, which meant the influence of blood perfusion became more obvious to the mean ADC values of the injury livers with the decrease of b value. The higher the b value, the higher the correlation coefficient between the histopathological scores and the mean ADC values, which meant the mean ADC values became more truly reflect the diffusion of water molecules themselves in the injury liver with the increase of the b value.
引文
1.李兰娟。人工肝。中华肝脏病杂志,2000;8(5):308.
    2. Rao MS, Khan AA, Parveen N, et al.Characterization of hepatic progenitors from human fetal liver during second trimester. World J Gastroenterol. 2008;14(37):5730-7.
    3.张伟杰,宫念樵,李锦文,等。微囊化异种肝细胞移植治疗大鼠急性肝功能衰竭。世界华人消化杂志,2002;10(12):1396-1398.
    4. Bilir BM,Guenette D,Ostrowska A,et al.Percutaneous hepatocyte transplantation in liver failure.Hepatology,1997;26:252A.
    5. Fiegel HC, Pryymachuk G, Rath S, et al.Fetal Hepatocyte Transplantation in a Vascularized AV-Loop Transplantation Model in the Rat. J Cell Mol Med. 2008;7(2):1081-1083
    6. Xu YQ, Liu ZC.Therapeutic potential of adult bone marrow stem cells in liver disease and delivery approaches. Stem Cell Rev.2008;4(2):101-12.
    7. Kuo TK, Hung SP, Chuang CH, et al. Stem cell therapy for liver disease: parameters governing the success of using bone marrow mesenchymal stem cells. Gastroenterology.2008; 134(7):2111-21.
    8. Pai M, Zacharoulis D, Milicevic MN,et al. Autologous infusion of expanded mobilized adult bone marrow-derived CD34+cells into patients with alcoholic liver cirrhosis. Am J Gastroenterol.2008 Aug; 103(8):1952-8.
    9. Belardinelli MC, Pereira F, Baldo G,et alAdult derived mononuclear bone marrow cells improve survival in a model of acetaminophen-induced acute liver failure in rats.Toxicology.2008;247(1):1-5.
    10. Avital I, Inderbitzin D, Aoki T, et al. Isolation characteration and transplantation of bone marrow-derived hepatocytes stem cell. Biochem Biophy Res Commu, 2001;288(1):156-164.
    11. Schwartz RE,Reyes M, Koodie L, et al. Multipotent Adult Progenitor Cells from Bone marrow differentiate into Functional hepatocyte-like cells. J Clin Invest, 2002;109 (10):1291-1302.
    12. Okumoto K, Saito T, Haga H et al. Characteristics of rat bone marrow cells differentiated into a liver cell lineage and dynamics of the transplanted cells in the injured liver. J Gastroenterol,2006;41(1):62-9.
    13. Petersen BE, Bowen WC, Patrene KD et al. Bone marrow as a potential source of hepatic oval cells. Science 1999;284:1168-1170.
    14. Theise ND, Badve S, Saxena R et al. Derivation of hepatocytes from bone marrow cells in mice after radiation induced myeloablation. Hepatology 2000;31:235-240.
    15. Oh SH, Witek RP, Bae SH et al.Bone marrow-derived hepatic oval cells differentiate into hepatocytes in 2-acetylaminofluorene/partial hepatectomy-induced liver regeneration. Gastroenterology,2007; 132(3):1077-87.
    16. Zhan Y, Wang Y, Wei L et al. Differentiation of hematopoietic stem cells into hepatocytes in liver fibrosis in rats. Transplant Proc,2006;38(9):3082-5.
    17. Romano A, Bozzao A, Bonamini M, et al.Diffusion-weighted MR Imaging: clinical applications in neuroradiology.Radiol Med (Torino).2003 Nov-Dec;106(5-6):521-48.
    18. Rohde GK, Barnett AS, Basser PJ, et al. Comprehensive approach for correction of motion and distortion in diffusion-weighted MRI.Magn Reson Med.2004 Jan;51(1):103-14.
    19. Gass A, Ay H, Szabo K, et al.Diffusion-weighted MRI for the "small stuff':the details of acute cerebral ischaemia.Lancet Neurol.2004 Jan;3(1):39-45.
    20. Soinne L, Helenius J, Saimanen E, et al.Brain diffusion changes in carotid occlusive disease treated with endarterectomy.Neurology.2003 Oct 28;61(8):1061-5.
    21. Dorenbeck U, Butz B, Schlaier J, et al.Diffusion-weighted echo-planar MRI of the brain with calculated ADCs:a useful tool in the differential diagnosis of tumor necrosis from abscess? J Neuroimaging.2003 Oct;13(4):330-8.
    22. Yoshikawa T, Ohno Y, Kawamitsu H, et al.Abdominal apparent diffusion coefficient measurements:effect of diffusion-weighted image quality and usefulness of anisotropic images. Magn Reson Imaging.2008 Dec;26(10):1415-20.
    23. Kilickesmez O, Yirik G, Bayramoglu S, et al.Non-breath-hold high b-value diffusion-weighted MRI with parallel imaging technique:apparent diffusion coefficient determination in normal abdominal organs. Diagn Interv Radiol.2008 Jun;14(2):83-7.
    24. Asbach P, Hein PA, Stemmer A, et al.Free-breathing echo-planar imaging based diffusion-weighted magnetic resonance imaging of the liver with prospective acquisition correction. J Comput Assist Tomogr.2008 May-Jun;32(3):372-8.
    25. Koh DM, Brown G, Riddell AM, et al.Detection of colorectal hepatic metastases using MnDPDP MR imaging and diffusion-weighted imaging (DWI) alone and in combination. Eur Radiol.2008 May;18(5):903-10.
    26. Gourtsoyianni S, Papanikolaou N, Yarmenitis S, et al.Respiratory gated diffusion-weighted imaging of the liver:value of apparent diffusion coefficient measurements in the differentiation between most commonly encountered benign and malignant focal liver lesions. Eur Radiol.2008 Mar;18(3):486-92.
    27. Bansal MB, Kovalovich K, Gupta R, et al. Interleukin-6 protects hepatocytes from CC14-mediated necrosis and apoptosis in mice by reducing MMP-2 expression. J Hepatol 2005; 42:548-56.
    28. Knodell RG, Ishak KG, Black WC, et al.Formulation and application of a numerical scoring system for assessing histological activity in asymptomatic chronic active hepatitis. Hepatology.1981 Sep-Oct;l(5):431-5.
    29. Fourneau I, Pirenne J, Roskams T, et al.An improved model of acute liver failure based on transient ischemia of the liver. Arch Surg.2000 Oct; 135(10):1183-9.
    30. Sass DA, Shakil AO. Fulminant hepatic failure. Gastroneterol Clin North Am,2003,32:1195-1211.
    31.刘俊,王英杰.肝衰竭动物模型的制备及其现状.消化外科,2004,3:222-225.
    32.李亚明,张晶,赵军等.急性肝功能哀竭动物模型的建立.肝脏,2006,11:175-177.
    33. Kalpana K, Ong HS, Soo KC, et al. An improved model of galactosamine-induced fulminant hepatic failure in the pig J Surg Res,1999,82 (2):121-130.
    34. Shi J, Aisaki K, Ikawa Y,et al.Evidence of hepatocyte apoptosis in rat liver after the administration of carbon tetrachloride. Am J Pathol.1998 Aug;153(2):515-25.
    35. Patzer JF 2nd, Mazariegos GV, Lopez R.Preclinical evaluation of the Excorp Medical, Inc, Bioartificial Liver Support System.J Am Coll Surg.2002 Sep;195(3):299-310.
    36.汤先觉,马育,杨晓兰等.D-氨基半乳糖盐酸盐溶液稳定性研究.重庆医科大学学报,2000,25:234-235.
    37.陈影波,何永源,杜原赞.急性肝功能衰竭的猪动物模型.暨南大学学报(医学版)2000,21:22-25.
    38. Kuwahata M, Tomoe Y, Harada N, et al. Characterization of the molecular mechanisms involved in the increased insulin secretion in rats with acute liver failure. Biochim Biophys Acta,2007,1772(1):60-65.
    39. Cuesta E, Boada J, Calafell R, et al. Fructose 1,6-bisphosphate prevented endotoxemia, macrophage activation, and liver injury induced by D-galactosamine in rats. Crit Care Med.2006;34(3):927-9.
    40. Namisaki T, Yoshiji H, Kojima H, et al. Salvage effect of the vascular endothelial growth factor on chemically induced acute severe liver injury in rats. J Hepatol. 2006;44(3):568-75.
    41. Kalpana K, Ong HS, Soo KC, et al. An improved model of galactosamine-induced fulminant hepatic failure in the pig [J]. J Surg Res,1999,82 (2):121-130.
    42. Bhakta S, Greco NJ, Finney MR, Scheid PE, Hoffman RD, Joseph ME, Banks JJ, Laughlin MJ, Pompili VJ. The safety of autologous intracoronary stem cell injections in a porcine model of chronic myocardial ischemia.J Invasive Cardiol. 2006 May; 18(5):212-8.
    43. Beeres SL, Bax JJ, Dibbets P, et al. Effect of intramyocardial injection of autologous bone marrow-derived mononuclear cells on perfusion, function, and viability in patients with drug-refractory chronic ischemia.J Nucl Med.2006 Apr;47(4):574-80.
    44. Bianco P, Riminucci M, Gronthos S, et al.. Bone marrow stromal stem cells: nature, biology, and potential applications.Stem Cells.2001;19(3):180-92.
    45. Brehm M, Zeus T, Strauer BE.Stem cells--clinical application and perspectives. Herz.2002 Nov;27(7):611-20.
    46. Strauer BE, Brehm M, Zeus T, Kostering M, et al. Repair of infarcted myocardium by autologous intracoronary mononuclear bone marrow cell transplantation in humans.Circulation.2002 Oct 8;106(15):1913-8.
    47. Stamm C, Westphal B, Kleine HD,et al. Autologous bone-marrow stem-cell transplantation for myocardial regeneration.Lancet.2003 Jan 4;361(9351):45-6.
    48. Tse HF, Kwong YL, Chan JK, et al. Angiogenesis in ischaemic myocardium by intramyocardial autologous bone marrow mononuclear cell implantation.Lancet. 2003 Jan 4;361 (9351):47-9.
    49. Szilvassy SJ, Bass MJ, Van Zant G, et al. Organ-selective homing defines engraftment kinetics of murine hematopoietic stem cells and is compromised by Ex vivo expansion.Blood.1999 Mar 1;93(5):1557-66.
    50. Peterson BE, Bowen WC, Patrene KD, et al. Bone marrow as a potential source of hepatic oval cells.Science.1999 May 14;284(5417):1168-70.
    51. Zhang Y, Fan Y, Zhao L, et al. Differentiation of mouse bone marrow mesenchymal stem cells into hepatocyte in vivo.Sheng Wu Yi Xue Gong Cheng Xue Za Zhi.2005 Jun;22(3):521-4.
    52. Zhan YT, Wang Y, Wei L, Liu B, Chen HS, Cong X, Fei R. Differentiation of rat bone marrow stem cells in liver after partial hepatectomy.World J Gastroenterol. 2006 Aug21;12(31):5051-4.
    53.施小雷,丁义涛,仇毓东,等。小鼠骨髓干细胞体外定向诱导为肝细胞样细胞的实验研究。肝胆外科杂志,2006,14(4):304-8。
    54. Yamamoto N,Terai S,Ohata S,et al.A subpopulation of bone marrow cells depleted by a novel antibody,anti-liv8,is useful for cell therapy to repair damaged liver.Biochem Biophys Res commun 2004;313(4):1110-1118.
    55.张刚庆,方驰华,颜政。同种异体MSC移植在大鼠肝内定居的病理检测。世界华人消化杂志,2005,13(10):1198-1201。
    56. Wagers AJ, Sherwood RI, Christensen JL et al. Little evidence for developmental plasticity of adult hematopoietic stem cells. Science 2002;297:2256-2259.
    57. Jang YY, Collector MI, Baylin SB, et al. Hematopoietic stem cells convert into liver cells within days without fusion.Nat Cell Biol.2004 Jun;6(6):532-9.
    58. Yamazaki S, Miki K, Hasegawa K, et al. Sera from liver failure patients and a demethylating agent stimulate transdifferentiation of murine bone marrow cells into hepatocytes in coculture with nonparenchymal liver cells.J Hepatol.2003 Jul;39(1):17-23.
    59. Kollet O, Shivtiel S, Chen YQ, et al.HGF, SDF-1, and MMP-9 are involved in stress-induced human CD34+ stem cell recruitment to the liver. J Clin Invest. 2003 Jul;112(2):160-9.
    60. Oyagi S, Hirose M, Kojima M, et al. Therapeutic effect of transplanting HGF-treated bone marrow mesenchymal cells into CC14-injured rats.J Hepatol. 2006 Apr;44(4):742-8.
    61. Yannaki E, Athanasiou E, Xagorari A, et al. G-CSF-primed hematopoietic stem cells or G-CSF per se accelerate recovery and improve survival after liver injury, predominantly by promoting endogenous repair programs.Exp Hematol.2005 Jan;33(1):108-19.
    62. Yang L, Li S, Hatch H, Ahrens K, et al. In vitro trans-differentiation of adult hepatic stem cells into pancreatic endocrine hormone-producing cells.Proc Natl Acad Sci U S A.2002 Jun 11;99(12):8078-83
    63. Luk JM, Wang PP, Lee CK,et al.Hepatic potential of bone marrow stromal cells: development of in vitro co-culture and intra-portal transplantation models. J Immunol Methods.2005 Oct 20;305(1):39-47.
    64. Takeda M, Yamamoto M, Isoda K,et al. Availability of bone marrow stromal cells in three-dimensional coculture with hepatocytes and transplantation into liver-damaged mice.J Biosci Bioeng.2005 Jul;100(1):77-81.
    65. Kinnaird T, Stabile E, Burnett MS, et al. Local delivery of marrow-derived stromal cells augments collateral perfusion through paracrine mechanisms.Circulation.2004 Mar 30;109(12):1543-9.
    66. Sato Y, Matsui K, Ajiki T, et al.Can a bone marrow cell contribute to organ regeneration? In vivo analysis using transgenic rats with reporter genes. Transplant Proc.2005 Jan-Feb;37(1):273-5
    67. Padilla L, Krotzsch E, De La, et al。Bone marrow mononuclear cells stimulate angiogenesis when transplanted into surgically induced fibrocollagenous tunnels: results from a canine ischemic hindlimb model.Microsurgery.2007;27(2):91-7.
    68. Kamihata H, Matsubara H, Nishiue T, et al. Implantation of bone marrow mononuclear cells into ischemic myocardium enhances collateral perfusion and regional function via side supply of angioblasts, angiogenic ligands, and cytokines.Circulation.2001 Aug 28;104(9):1046-52.
    69. Hamano K, Li TS, Kobayashi T, Hirata K,et al. Therapeutic angiogenesis induced by local autologous bone marrow cell implantation.Ann Thorac Surg.2002 Apr;73(4):1210-5.
    70. Li TS, Hamano K, Suzuki K,et al. Improved angiogenic potency by implantation of ex vivo hypoxia prestimulated bone marrow cells in rats.Am J Physiol Heart Circ Physiol.2002 Aug;283(2):H468-73.
    71. Terai S, Ishikawa T, Omori K, et al.Improved liver function in patients with liver cirrhosis after autologous bone marrow cell infusion therapy.I.Stem Cells.2006 Oct;24(10):2292-8.
    72. Furst G, Schulte am Esch J, Poll LW,et al. Portal vein embolization and autologous CD 133+ bone marrow stem cells for liver regeneration:initial experience.Radiology.2007 Apr;243(1):171-9.
    73. Dunn TB, KuminsNH, Raofi V, et al. Multiple intrasp lenic hepatocyte transplantations in the dalmatian dog [J]. Surgery,2000,127(2):193-199.
    74. Dahlke MH, Popp FC, Bahlmann FH et al. Liver regeneration in a retrorsine/CC14-induced acute liver failure model:do bone marrow-derived cells contribute? J Hepatol 2003,39:365-373.
    75. Kisseleva T, Uchinami H, Feirt N et al. Bone marrow-derived fibrocytes participate in pathogenesis of liver fibrosis. J Hepatol,2006,45(3):429-38.
    76. Nikolaos A,Helene L, Kyung S, et al. Intrasplenic transplantation of allogenic hepatocytes prolongs survival in an hepatic rats. Hepatology,1998,28(5):1365-1370.
    77.蔡云峰,陈积圣,闵军,等.骨髓源性肝干细胞定向分化及脾内移植研究.中华实验外科杂志,2004,21(5):551-554.
    78. Muraca M, Ferraresso C, Vilei MT, et al.Liver repopulation with bone marrow derived cells improves the metabolic disorder in the Gunn rat.Gut.2007 Dec;56(12):1725-35.
    79. Arkadopoulos N, Chen SC, Khalili TM, et al.Transplantation of hepatocytes for prevention of intracranial hypertension in pigs with ischemic liver failure.Cell Transplant.1998 Jul-Aug;7(4):357-63.
    80. Weimar B, Rauber K, Brendel MD,et al. Percutaneous transhepatic catheterization of the portal vein:A combined CT-and fluoroscopy-guided technique. Cardiovasc Intervent Radiol.1999,22(4):342-4.
    81. Gordon MY, Levicar N, Pai M,et al. Characterization and Clinical Application of Human CD34+ Stem/Progenitor Cell Populations Mobilized into the Blood by Granulocyte Colony-Stimulating Factor[J]. Stem Cells,2006.24(7):1822-1830.
    82. Movahedi B, Keymeulen B, Lauwers MH, et al. Laparoscopic approach for human islet transplantation into a defined liver segment in type-1 diabetic patients. Transpl Int.2003,16(3):186-90.
    83. Goss JA, Soltes G, Goodpastor SE,et al. Pancreatic islet transplantation:the radiographic approach. Transplantation.2003,76(1):199-203.
    84. Muraca M, Neri D, Parenti A, Feltracco P,et al. Intraportal hepatocyte transplantation in the pig:hemodynamic and histopathological study.Transplantation.2002,73(6):890-6.
    85.吴理茂,李连达,刘红.自体骨髓干细胞移植与归元方联用治疗急慢性肝损伤实验研究.中国工程科学,2004;6:34-44.
    86. Okumoto K, Saito T, Haga H et al. Characteristics of rat bone marrow cells differentiated into a liver cell lineage and dynamics of the transplanted cells in the injured liver. J Gastroenterol,2006;41(1):62-9.
    87. Sussman N L, Kelly J H. Artificial liver:a forthcoming attraction[J] Hepatology,1993,17:1163.
    88.黄榕頨,姚康,邹云增,等。急诊经冠脉自体骨髓单个核细胞移植治疗急性下壁心肌梗死长期随访观察。中华医学杂志,2006,86:1107-10。
    89. Smolej L, Kasparova P. Choice of endothelial marker is crucial for assessment of bone marrow microvessel density in chronic lymphocytic leukemia[J].APMIS. 2008 Dec;116(12):1058-62.
    90. Dalgorf DM, Rowsell C, Bilbao JM, Et al.Immunohistochemical investigation of hormone receptors and vascular endothelial growth factor concentration in vestibular schwannoma[J].Skull Base.2008 Nov;18(6):377-84.
    91. Skvortsova VI, Gubskiy LV, Tairova RT,et al. Use of bone marrow mesenchymal (stromal) stem cells in experimental ischemic stroke in rats[J].Bull Exp Biol Med. 2008 Jan;145(1):122-8.
    92. J Clin Neurosci. Bone marrow-derived mesenchymal stem cells for the treatment of ischemic stroke[J].2009 Jan; 16(1):12-20. Epub 2008 Nov 18.
    93. Szilvassy SJ. The biology of hematopoietic stem cells[J].Arch Med Res.2003 Nov-Dec;34(6):446-60.
    94. Kamihata H, Matsubara H, Nishiue T, et al. Implantation of bone marrow mononuclear cells into ischemic myocardium enhances collateral perfusion and regional function via side supply of angioblasts, angiogenic ligands, and cytokines[J].Circulation.2001 Aug 28; 104(9):1046-52.
    95. Tateishi Y,Matsubara H,Murohara T,et al.Therapeutic angiogenesis for patients with limb ischaemia by autologous transplantation of bone marrow cells:a pilot study and a randomised controlled trial[J].Lancet,2002,2003,23 (11):670.
    96. Miyamoto M, Yasutake M, Takano H, et al. Therapeutic angiogenesis by autologous bone marrow cell implantation for refractory chronic peripheral arterial disease using assessment of neovascularization by 99mTc-tetrofosmin (TF) perfusion scintigraphy.Cell Transplant.2004;13(4):429-37.
    97. Hasebe H, Osada M, Kodama Y,et al. Therapeutic angiogenesis by autologous transplantation of bone-marrow cells in a patient with progressive limb.ischemia due to arteriosclerosis obliterans:a case report. J Cardiol.2004 Apr;43(4):179-83.
    98. Saigawa T, Kato K, Ozawa T,et al. Clinical application of bone marrow implantation in patients with arteriosclerosis obliterans, and the association between efficacy and the number of implanted bone marrow cells.Circ J.2004 Dec;68(12):1189-93.
    99.张建,谷涌泉.自体骨髓干细胞移植治疗糖尿病下肢缺血.中华医学杂志,2007(26):1810-1.
    100. Oswald J, Boxberger S, Jφrgensen B, et al. Mesenchymal stem cells can be differentiated into endothelial cells in vitro.Stem Cells.2004;22(3):377-84.
    101. Kocher AA, Schuster MD, Szabolcs MJ, et al. Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function.Nat Med.2001 Apr;7(4):430-6.
    102. Kinnaird T, Stabile E, Burnett MS, et al. Bone-marrow-derived cells for enhancing collateral development:mechanisms, animal data, and initial clinical experiences.Circ Res.2004 Aug 20;95(4):354-63.
    103. Fukuda K.Progress in myocardial regeneration and cell transplantation.Circ J,2005,69(12):1431-46.
    104. Szivassy SJ, BassMJ, Van Z,et al.Organ selective homing defines engraftment kinetics of murine hematopoietic stem cell and is compromised by ex vivo expansion.Blood,1999,93; 1557-66.
    105. Durdu S,Akar AR,Arat M,et al. Autologous bone-marrow mononuclear cell implantation for patients with Rutherford grade Ⅱ-Ⅲ thromboangiitis obliterans. J Vasc Surg.2006 Oct;44(4):732-9.
    106. Young-sup Y,Andrea W,Lindsay H,et al.Clonalty expanded novel multipotent cells from human bone marrow regenerate myocardium after myocardial infarction.J Clin Invest,2005;115(2):326-38.
    107. Romano A, Bozzao A, Bonamini M, et al.Diffusion-weighted MR Imaging: clinical applications in neuroradiology.Radiol Med (Torino).2003 Nov-Dec;106(5-6):521-48.
    108. Rohde GK, Barnett AS, Basser PJ, et al. Comprehensive approach for correction of motion and distortion in diffusion-weighted MRI.Magn Reson Med.2004 Jan;51(1):103-14.
    109. Gass A, Ay H, Szabo K, et al.Diffusion-weighted MRI for the "small stuff":the details of acute cerebral ischaemia.Lancet Neurol.2004 Jan;3(1):39-45.
    110. Soinne L, Helenius J, Saimanen E, et al.Brain diffusion changes in carotid occlusive disease treated with endarterectomy.Neurology.2003 Oct 28;61(8):1061-5.
    111. Dorenbeck U, Butz B, Schlaier J, et al.Diffusion-weighted echo-planar MRI of the brain with calculated ADCs:a useful tool in the differential diagnosis of tumor necrosis from abscess? J Neuroimaging.2003 Oct;13(4):330-8.
    112. Huisman TA. Diffusion-weighted imaging:basic concepts and application in cerebral stroke and head trauma.Eur Radiol.2003 Oct;13(10):2283-97.
    113. Yoshiura T, Mihara F, Tanaka A, et al.High b value diffusion-weighted imaging is more sensitive to white matter degeneration in Alzheimer's disease.Neuroimage. 2003 Sep;20(1):413-9.
    114. Nakamizo A, Inamura T, Yamaguchi S, et al.Diffusion-weighted imaging predicts postoperative persistence in meningioma patients with peritumoural abnormalities on magnetic resonance imaging.J Clin Neurosci.2003 Sep;10(5):589-93.
    115. Nadal Desbarats L, Herlidou S, de Marco G, et al. Differential MRI diagnosis between brain abscesses and necrotic or cystic braintumors using the apparent diffusion coefficient and normalized diffusion-weighted images.Magn Reson Imaging.2003 Jul;21(6):645-50.
    116. Laghi A, Catalano C, Assael FG, et al.Diffusion-weightedecho-planarsequences for the evaluation of the upper abdomen:technique optimizationRadiol Med.2001 Apr;101(4):213-8.
    117. Kilickesmez O, Yirik G, Bayramoglu S, et al.Non-breath-hold high b-value diffusion-weighted MRI with parallel imaging technique:apparent diffusion coefficient determination in normal abdominal organs. Diagn Interv Radiol.2008 Jun;14(2):83-7.
    118. Asbach P, Hein PA, Stemmer A, Wagner M,et al.Free-breathing echo-planar imaging based diffusion-weighted magnetic resonance imaging of the liver with prospective acquisition correction. J Comput Assist Tomogr.2008 May-Jun;32(3):372-8.
    119. Gourtsoyianni S, Papanikolaou N, Yarmenitis S,et al.Respiratory gated diffusion-weighted imaging of the liver:value of apparent diffusion coefficient measurements in the differentiation between most commonly encountered benign and malignant focal liver lesions. Eur Radiol.2008 Mar;18(3):486-92.
    120. Coenegrachts K, Delanote J, Ter Beek L, et al.Improved focal liver lesion detection:comparison of single-shot diffusion-weighted echoplanar and single-shot T2 weighted turbo spin echo techniques. Br J Radiol.2007 Jul;80(955):524-31.
    121. Oner AY, Celik H, Oktar SO, Tali T.Single breath-hold diffusion-weighted MRI of the liver with parallel imaging:initial experience. Clin Radiol.2006 Nov;61(11):959-65.
    122. Deng J, Miller FH, Salem R, et al.Multishot diffusion-weighted PROPELLER magnetic resonance imaging of the abdomen. Invest Radiol.2006 Oct;41(10):769-75.
    123. Nasu K, Kuroki Y, Sekiguchi R, et al.Measurement of the apparent diffusion coefficient in the liver:is it a reliable index for hepatic disease diagnosis? Radiat Med.2006 Jul;24(6):438-44.
    124. Yuan YH, Xiao EH, He Z, et al.MR diffusion-weighed imaging of rabbit liver.World J Gastroenterol.2005 Sep 21;11(35):5506-11.
    125. Moteki T, Horikoshi H, Oya N, et al. Evaluation of hepatic lesions and hepatic parenchyma using diffusion-weighted reordered turboFLASH magnetic resonance images.Magn Reson Imaging.2002 May;15(5):564-72.
    126. Taouli B, Vilgrain V, Dumont E, et al. Evaluation of liver diffusion isotropy and characterization of focal hepaticlesions with two single-shot echo-planar MR imaging sequences:prospective study in 66 patients.Radiology.2003 Jan;226(1):71-8.
    127. Laghi A, Catalano C, Assael FG, et al.Diffusion-weighted echo-planar sequences for the evaluation of the upper abdomen:technique optimization.Radiol Med. 2001 Apr;101(4):213-8.
    128.杨正汉,谢敬霞,胡碧芳,等。肝硬化组织表观扩散系数改变及其可能机制的实验研究。中国医学影像技术,2002,18(9):849-851.
    129.杨正汉,谢敬霞,章跃武,等。肝硬化的磁共振扩散加权成像实验研究。中国医学影像技术,2002,18(9):907-909.
    130. Annet L, Peeters F, Abarca-Quinones J, Leclercq I, Moulin P, Van Beers BE.J Magn Reson Imaging.2007 Jan;25(1):122-8.
    131. Amano Y, Kumazaki T, Ishihara M. Single-shot diffusion-weighted echo-planar imaging of normal and cirrhotic livers using a phased-array multicoil. Acta Radiol.1998 Jul;39(4):440-2.
    132.杨洋,宋彬,吴苾.慢性病毒性肝炎组织病理学分级和磁共振弥散成像的对照研究。中国普外基础与临床杂志,2006;13(4):469-71。
    133.尚全良,肖恩华.肝癌经导管动脉灌注化疗栓塞术疗效的MR扩散加权成像动态研究.中华放射学杂志2006:40(3):235-40。
    134. Yamada I,Aung W,Himeno Y,et al.Diffusion coefficients in abdominal organs and hepatic lesions:evaluation with intravoxel incoherent motion echo-plannar MR imaging.Radiology,1999;210:617-623.
    135. Kim HC, Kim AY, Han JK, et al.Hepatic arterial and portal venous phase helical CT in patients treated with transcatheter arterial chemoembolization for hepatocellular carcinoma:added value of unenhanced images.Radiology.2002 Dec;225(3):773-80.
    136.陈再智,杨正汉,吴玉林,等。肝脏局灶性病变血供对表观扩散系数的影响。中华放射学杂志2002:36(10):892-95。
    137. Ichikawa T,Araki T.Fast magnetic resonance imaging of liver.Eur J Radiol,1999;29:186-210.
    138. Ichiro Y,Winn A,Yoshiro H,et al.Diffusion coefficients in abdominal organs and hepatic lesions:evaluation with intravoxel incoherent motion echo-planar MR imaging.Radiology,1999,210:617-19.
    139. Jiang ZX, Peng WJ,et al. Effect of b value on monitoring therapeutic response by. diffusion-weighted imaging..World J Gastroenterol.2008 Oct 14;14(38):5893-9.
    140. Koinuma M,Ohashi I,Hanafusa K,et al. Apparent diffusion coefficient measurements with diffusion-weighted magnetic resonance imaging for evaluation of hepatic fibrosis. J Magn Reson Imaging.2005 Jul;22(1):80-5.
    141. Boulanger Y, Amara M, Lepanto L, et al.Diffusion-weighted MR imaging of the liver of hepatitis C patients.NMR Biomed.2003 May; 16(3):132-6.
    1. Bhakta S, Greco NJ, Finney MR, Scheid PE, Hoffman RD, Joseph ME, Banks JJ, Laughlin MJ, Pompili VJ. The safety of autologous intracoronary stem cell injections in a porcine model of chronic myocardial ischemia.J Invasive Cardiol.2006 May;18(5):212-8.
    2. Beeres SL, Bax JJ, Dibbets P, et al. Effect of intramyocardial injection of autologous bone marrow-derived mononuclear cells on perfusion, function, and viability in patients with drug-refractory chronic ischemia.J Nucl Med.2006 Apr;47(4):574-80.
    3. Bianco P, Riminucci M, Gronthos S, et al.. Bone marrow stromal stem cells:nature, biology, and potential applications.Stem Cells.2001;19(3):180-92.
    4. Brehm M, Zeus T, Strauer BE.Stem cells--clinical application and perspectives. Herz. 2002 Nov;27(7):611-20.
    5. Strauer BE, Brehm M, Zeus T, Kostering M, et al. Repair of infarcted myocardium by autologous intracoronary mononuclear bone marrow cell transplantation in humans.Circulation.2002 Oct 8;106(15):1913-8.
    6. Stamm C, Westphal B, Kleine HD,et al. Autologous bone-marrow stem-cell transplantation for myocardial regeneration.Lancet.2003 Jan 4;361(9351):45-6.
    7. Peterson BE, Bowen WC, Patrene KD, et al. Bone marrow as a potential source of hepatic oval cells.Science.1999 May 14;284(5417):1168-70.
    8. Krause DS, Theise ND, Collector MI, et a. Multi-organ, multi-lineage engraftment by a single bone marrow-derived stem cell.Cell.2001 May 4;105(3):369-77.
    9. Avital I, Inderbitzin D, Aoki T, et al. Isolation, characterization, and transplantation of bone marrow-derived hepatocyte stem cells.Biochem Biophys Res Commun.2001 Oct19;288(1):156-64.
    10. Fausto N. Liver regeneration:from laboratory to clinic.Liver Transpl.2001 Oct;7(10):835-44.
    11. Petersen BE, Grossbard B, Hatch H,et al. Mouse A6-positive hepatic oval cells also express several hematopoietic stem cell markers.Hepatology.2003 Mar;37(3):632-40.
    12. Theise ND, Nimmakayalu M, Gardner R,et al. Liver from bone marrow in humans.Hepatology.2000 Jul;32(1):11-6.
    13. Theise ND. Liver stem cells.Cytotechnology.2003 Mar;41(2-3):139-44
    14. Zhang Y, Fan Y, Zhao L, et al. Differentiation of mouse bone marrow mesenchymal stem cells into hepatocyte in vivo.Sheng Wu Yi Xue Gong Cheng Xue Za Zhi.2005 Jun;22(3):521-4.
    15.施小雷,丁义涛,仇毓东,等。小鼠骨髓干细胞体外定向诱导为肝细胞样细胞的实验研究。肝胆外科杂志,2006,14(4):304-8。
    16. Chen Y, Dong XJ, Zhang GR, et al. In vitro differentiation of mouse bone marrow stromal stem cells into hepatocytes induced by conditioned culture medium of hepatocytes.J Cell Biochem.2007 Sep 1;102(1):52-63.
    17. Oh'SH, Witek RP, Bae SH, et al. Bone marrow-derived hepatic oval cells differentiate into hepatocytes in 2-acetylaminofluorene/partial hepatectomy-induced liver regeneration.Gastroenterology.2007 Mar; 132(3):1077-87.
    18. Kohneh-Shahri N, Regimbeau JM, Terris B, et al. Liver repopulation trial using bone marrow cells in a retrorsine-induced chronic hepatocellular injury model. Gastroenterol Clin Biol.2006 Mar;30(3):453-9.
    19. Menthena A, Deb N, Oertel M, et al.Bone marrow progenitors are not the source of expanding oval cells in injured liver. Stem Cells.2004;22(6):1049-61.
    20. Avital I, Feraresso C, Aoki T, et al. Bone marrow-derived liver stem cell and mature hepatocyte engraftment in livers undergoing rejection. Surgery.2002 Aug;132(2):384-90.
    21. Sato Y, Araki H, Kato J, et al. Human mesenchymal stem cells xenografted directly to rat liver are differentiated into human hepatocytes without fusion.Blood.2005 Jul 15;106(2):756-63.
    22. Lange C, Bruns H, Kluth D, et al.Hepatocytic differentiation of mesenchymal stem cells in cocultures with fetal liver cells. World J Gastroenterol.2006 Apr 21;12(15):2394-7.
    23. Jiang Y, Jahagirdar BN, Reinhardt RL,et al. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature.2002 Jul 4;418(6893):41-9.
    24. Schwartz RE, Reyes M, Koodie L,et al. Multipotent adult progenitor cells from bone marrow differentiate into functional hepatocyte-like cells.J Clin Invest.2002 May;109(10):1291-302.
    25. Wagers AJ, Sherwood RI, Christensen JL et al. Little evidence for developmental plasticity of adult hematopoietic stem cells. Science 2002;297:2256-2259.
    26. Jang YY, Collector MI, Baylin SB, et al. Hematopoietic stem cells convert into liver cells within days without fusion.Nat Cell Biol.2004 Jun;6(6):532-9.
    27. Sell S. Heterogeneity and plasticity of hepatocyte lineage cells.Hepatology.2001 Mar; 33(3):738-50.
    28.张刚庆,方驰华,颜政。同种异体MSC移植在大鼠肝内定居的病理检测。世界华人消化杂志,2005,13(10):1198-1201。
    29. Terai S, Ishikawa T, Omori K, et al.Improved liver function in patients with liver cirrhosis after autologous bone marrow cell infusion therapy.I.Stem Cells.2006 Oct;24(10):2292-8.
    30. Sigot V, Mediavilla MG, Furno,et al. GA simple and effective method to improve intrasplenic rat hepatocyte transplantation. Cell Transplant.2004;13(7-8):775-81.
    31. Kanazawa Y, Verma IM. Little evidence of bone marrow-derived hepatocytes in the replacement of injured liver.Proc Natl Acad Sci U S A.2003 Sep 30; 100 Suppl 1:11850-3.
    32. Dalakas E, Newsome PN, Harrison DJ,et al.Hematopoietic stem cell trafficking in liver injury. FASEB J.2005 Aug; 19(10):1225-31.
    33. Yamazaki S, Miki K, Hasegawa K, et al. Sera from liver failure patients and a demethylating agent stimulate transdifferentiation of murine bone marrow cells into hepatocytes in coculture with nonparenchymal liver cells.J Hepatol.2003 Jul;39(1):17-23.
    34. Gaia S, Smedile A, Omede P, et al. Feasibility and safety of G-CSF administration to induce bone marrow-derived cells mobilization in patients with end stage liver disease.J Hepatol.2006 Jul;45(1):13-9.
    35. Kollet O, Shivtiel S, Chen YQ, et al.HGF, SDF-1, and MMP-9 are involved in stress-induced human CD34+ stem cell recruitment to the liver. J Clin Invest.2003 Jul; 112(2):160-9.
    36. Hatch HM, Zheng D, Jorgensen ML,et al.SDF-1alpha/CXCR4:a mechanism for hepatic oval cell activation and bone marrow stem cell recruitment to the injured liver of rats. Cloning Stem Cells.2002;4(4):339-51.
    37. Schwartz RE, Reyes M, Koodie L,et al. Multipotent adult progenitor cells from bone marrow differentiate into functional hepatocyte-like cells.J Clin Invest.2002 May; 109(10):1291-302.
    38. Saji Y, Tamura S, Yoshida Y, et al. Basic fibroblast growth factor promotes the trans-differentiation of mouse bone marrow cells into hepatic lineage cells via multiple liver-enriched transcription factors.J Hepatol.2004 Oct;41(4):545-50.
    39. Heissig B, Hattori K, Dias S, et al.Recruitment of stem and progenitor cells from the bone marrow niche requires MMP-9 mediated release of kit-ligand. Cell.2002 May 31;109(5):625-37.
    40. Ishikawa T, Terai S, Urata Y, et al. Fibroblast growth factor 2 facilitates the differentiation of transplanted bone marrow cells into hepatocytes.Cell Tissue Res. 2006 Feb;323(2):221-31
    41. Oyagi S, Hirose M, Kojima M, et al. Therapeutic effect of transplanting HGF-treated bone marrow mesenchymal cells into CC14-injured rats.J Hepatol.2006 Apr;44(4):742-8.
    42. Yannaki E, Athanasiou E, Xagorari A, et al. G-CSF-primed hematopoietic stem cells or G-CSF per se accelerate recovery and improve survival after liver injury, predominantly by promoting endogenous repair programs.Exp Hematol.2005 Jan;33(1):108-19.
    43. Woodbury D, Reynolds K, Black IB. Adult bone marrow stromal stem cells express germline, ectodermal, endodermal, and mesodermal genes prior to neurogenesis.J Neurosci Res.2002 Sep 15;69(6):908-17.
    44. Wada MR, Inagawa-Ogashiwa M, Shimizu S,et al.Generation of different fates from multipotent muscle stem cells. Development.2002 Jun;129(12):2987-95.
    45. Terai S, Sakaida I, Yamamoto N, et al. An in vivo model for monitoring trans-differentiation of bone marrow cells into functional hepatocytes.J Biochem. 2003 Oct;134(4):551-8.
    46. Okumoto K, Saito T, Haga H et al. Characteristics of rat bone marrow cells differentiated into a liver cell lineage and dynamics of the transplanted cells in the injured liver. J Gastroenterol,2006;41(1):62-9.
    47. Terada N, Hamazaki T, Oka M et al. Bone marrow cells adopt the phenotype of other cells by spontaneous cell fusion. Nature 2002;416:542-545.
    48. Wang X,Willenbring H, Akkari Y et al. Cell fusion is the principal source of bone-marrow-derived hepatocytes. Nature 2003;422:897-901.
    49. Dahlke MH, Loi R, Warren A et al. Immune-mediated hepatitis drives low-level fusion between hepatocytes and adult bone marrow cells. J Hepatol 2006;44(2):334-41.
    50.王平,王建华,颜志平.大鼠骨髓基质细胞分离培养和经门静脉途径移植的初步研究.中华放射学杂志,2004,38:129-132.
    51. Jan SE, Wolfram TK, Michael K, et al. Portal Application of Autologous CD133+ Bone Marrow Cells to the Liver:A Novel Concept to Support Hepatic Regeneration. Stem Cells 2005;23:463-470.
    52. Myrtle YG, Natasa L, Madhava P, et al. Characterization and Clinical Application of Human CD34+Stem/Progenitor Cell Populations Mobilized into the Blood by Granulocyte Colony-Stimulating Factor Stem Cells,2006; 24:1822-1830.
    53. Rozga J, Holzman M, Moscioni AD,et al. Repeated intraportal hepatocyte transplantation in analbumine mic rats. Cell Transplant.1995:237-43.
    54. Rohde GK, Barnett AS, Basser PJ, et al. Comprehensive approach for correction of motion and distortion in diffusion-weighted MRI.Magn Reson Med.2004 Jan;51(1):103-14.
    55. Gass A, Ay H, Szabo K, et al.Diffusion-weighted MRI for the "small stuff":the details of acute cerebral ischaemia.Lancet Neurol.2004 Jan;3(1):39-45.
    56. Gordon MY, Levicar N, Pai M,et al. Characterization and Clinical Application of Human CD34+Stem/Progenitor Cell Populations Mobilized into the Blood by Granulocyte Colony-Stimulating Factor[J]. Stem Cells,2006.24(7):1822-1830.
    57. Movahedi B, Keymeulen B, Lauwers MH, et al. Laparoscopic approach for human islet transplantation into a defined liver segment in type-1 diabetic patients. Transpl Int.2003,16(3):186-90.
    58. Goss JA, Soltes G, Goodpastor SE,et al. Pancreatic islet transplantation:the radiographic approach. Transplantation.2003,76(1):199-203.
    59. Muraca M, Neri D, Parenti A, Feltracco P,et al. Intraportal hepatocyte transplantation in the pig:hemodynamic and histopathological study. Transplantation. 2002,73(6):890-6.
    60.吴理茂,李连达,刘红.自体骨髓干细胞移植与归元方联用治疗急慢性肝损伤实验研究.中国工程科学,2004;6:34-44.
    61. Tanaka K, Soto-Gutierrez A, Navarro-Alvarez N,et al. Functional hepatocyte culture and its application to cell therapies. Cell Transplant.2006;15(10):855-64.
    62. Aurich I, Mueller LP, Aurich H,et al. Functional integration of hepatocytes derived from human mesenchymal stem cells into mouse livers. Gut.2007;56(3):405-15.
    63. Terai S, Ishikawa T, Omori K, et al.Improved liver function in patients with liver cirrhosis after autologous bone marrow cell infusion therapy. Stem Cells.2006 Oct;24(10):2292-8.
    64. Tse HF, Kwong YL, Chan JK, et al. Angiogenesis in ischaemic myocardium by intramyocardial autologous bone marrow mononuclear cell implantation.Lancet.2003 Jan 4;361(9351):47-9.
    65. Szilvassy SJ, Bass MJ, Van Zant G, et al. Organ-selective homing defines engraftment kinetics of murine hematopoietic stem cells and is compromised by Ex vivo expansion.Blood.1999 Mar 1;93(5):1557-66.
    66.姚鹏;胡大荣;王帅;等。自体骨髓干细胞移植治疗慢性重症肝病临床研究。透析与人工器官。2006,17(1):18-21。
    67. Terai S, Ishikawa T, Omori K, et al. Improved liver function in patients with liver cirrhosis after autologous bone marrow cell infusion therapy[J]. Stem Cells,2006, 24(10):2292-2298.
    68. Furst G, Schulte am Esch J, Poll LW, et al. Portal vein embolization and autologous CD 133+ bone marrow stem cells for liver regeneration:initial experience [J]. Radiology,2007,243(1):171-179.
    69. Zhao DC, Lei JX, Chen R, Bone marrow-derived mesenchymal stem cells protect against experimental liver fibrosis in rats.World J Gastroenterol.2005 Jun 14;11(22):3431-40.
    70. Sakaida I, Terai S, Yamamoto N, et al. Transplantation of bone marrow cells reduces CC14-induced liver fibrosis in mice.Hepatology.2004 Dec;40(6):1304-11.
    71. Fang B, Shi M, Liao L, et al. Systemic infusion of FLK1(+) mesenchymal stem cells ameliorate carbon tetrachloride-induced liver fibrosis in mice.Transplantation.2004 Jul 15;78(1):83-8.
    72. Ohuchi E, Imai K, Fujii Y, et al. Membrane type 1 matrix metalloproteinase digests interstitial collagens and other extracellular matrix macromolecules.J Biol Chem. 1997 Jan 24;272(4):2446-51
    73. Russo FP, Alison MR, Bigger BW,et al. The bone marrow functionally contributes to liver fibrosis.Gastroenterology.2006 May;130(6):1807-21.
    74. Forbes SJ, Russo FP, Rey V, et al. A significant proportion of myofibroblasts are of bone marrow origin in human liver fibrosis.Gastroenterology.2004 Apr;126(4):955-63.
    75. Kisseleva T, Uchinami H, Feirt N et al. Bone marrow-derived fibrocytes participate in pathogenesis of liver fibrosis. J Hepatol,2006;45(3):429-38.
    76. Lagasse E, Connors H, Al-Dhalimy M,et al. Purified hematopoietic stem cells can differentiate into hepatocytes in vivo.Nat Med.2000 Nov;6(11):1229-34.
    77. Kumar KS, Lefkowitch J, Russo MW,et al. Successful sequential liver and stem cell transplantation for hepatic failure due to primary AL amyloidosis.Gastroenterology. 2002 Jun;122(7):2026-31.
    78. Allen KJ, Cheah DM, Lee XL et al. The potential of bone marrow stem cells to correct liver dysfunction in a mouse model of Wilson's disease. Cell Transplant, 2004;13(7-8):765-73.
    79. Wu XZ, Yu XH. Bone marrow cells:the source of hepatocellular carcinoma? Med Hypotheses,2007;69(1):36-42.
    80. Yamamoto N, Terai S, Ohata S, et al. A subpopulation of bone marrow cells depleted by a novel antibody, anti-Liv8, is useful for cell therapy to repair damaged liver.Biochem Biophys Res Commun.2004 Jan 23;313(4):1110-8.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700