用户名: 密码: 验证码:
基于电磁阀式减振器的汽车SASS与ESP集成控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着现代汽车制造和汽车技术水平的快速发展,各种电子控制技术在汽车上的应用越来越广泛,半主动悬架系统(Semi-active Suspension system, SASS)和电子稳定程序(Electronic Stability Program, ESP)的应用大大改善了汽车的行驶平顺性、操纵稳定性和安全性。为弥补底盘各可控子系统功能范围有限的缺点,对汽车底盘多个子系统进行集成控制以发掘各子系统的功能潜力成为汽车动力学的研究热点。本文首先对SASS和ESP进行深入研究,在此基础上对两系统的集成控制进行了理论分析和试验研究。
     首先在轮胎非线性特性分析的基础上,建立能反映汽车纵向、侧向和垂向动力学相互作用关系的整车动力学模型,较好地反映底盘悬架、制动和转向等子系统间相互影响关系和轮胎的非线性特性。
     深入研究一种新型电磁阀式阻尼连续可调减振器的结构与阻尼产生机理,建立较为准确的连续可调减振器复原行程、压缩行程液压与数学模型,分析减振器主要结构参数对阻尼特性的影响,并在单通道电液伺服悬架动态性能试验台进行台架试验,为电磁阀式减振器的设计和工程化提供理论参考。采用H∞控制算法设计侧重于不同控制目标的半主动悬架控制器,提升整车多工况下的综合性能。
     考虑路面附着系数对轮胎力的限制,提出一种基于纵向合力和横摆力矩计算与分配的汽车稳定性控制方法。采用离线数值优化法实时确定纵向合力和横摆力矩可行域,并将纵向合力和横摆力矩调整到可行域内。采用三层BP网络构造轮胎力逆模型,将纵向合力和横摆力矩动态分配至车轮,在保证精度的前提下避免了对后轮侧向力的估计,可较好地跟踪横摆角,提高轨迹保持能力,改善低附着路面对汽车稳定性的影响,并进行基于LabVIEW PXI和veDYNA的汽车ESP驾驶员在环试验验证。
     针对汽车SASS与ESP子系统间的集成控制问题,提出一种功能分配协调控制方法。上层功能分配控制器根据汽车工况及当前工况下的主要控制目标的变化,利用模糊推理方法确定汽车工况与底层子系统功能分配系数间的关系,得到各子控制器的输出权重;对底层ESP和SASS子控制器的初始功能分配系数进行调节,对子系统中某些功能进行加强或削弱,达到提升当前工况下整车性能最优的目标,同时也提高子系统工作效率,降低底层控制器设计难度。
     基于ARM7开发平台进行SASS控制系统软硬件设计,并进行基于CAN总线进行信号共享、传输和控制指令传送的上层功能分配协调控制器开发。最后装车进行SASS系统道路试验和SASS与ESP两系统集成控制实车试验研究,验证控制效果。
With the rapid development of modern automobile manufacturing and technical level, a variety of electronic control technology is widely applied in the automobiles, the applications of the semi-active suspension system (SASS) and the Electronic Stability Program (ESP) has greatly improved the ride comfort, handling stability and security. To make up for the disadvantages, the limited range of functions for the controllable subsystems of chassis, the integrated control on tht multiple subsystems of the chassis in order to explore the potential functions has become a research hotspot of the vehicle dynamics. The dissertation author investigates the depth study of the semi-active suspension system with solenoid valve damper(SASS) and the Electronic Stability Program (ESP) then the the theoretical analysis and experimental research.for the integrated control of the two subsystems are achieved.
     On the basis of the analysis of the nonlinear characteristics of the tire,the vehicle dynamics model that reflects the interaction between the vehicle longitudinal, lateral and vertical dynamics, has been established. which can better reflect the influenced relationship and non-linear characteristics of the tire.of the chassis, suspension, braking and steering subsystems.
     The structure and principle of a new type of continuously adjustable damper with solenoid valve is studied.thoroughly, the hydraulic model the mathmatic model of rebounce stroke and compress stroke are established.The main structure parameters to the damping characteristic are analysed, the damper is tested on the lch dynamic servo suspension tester, and the theoretical reference is provided for the design and engineering of the continuously adjustable damper with solenoid valve.The control algorithm of H∞is applied to design the Semi-active suspension controller for enhancing whole vehicle synthesis performance in a multi-conditions.
     Considering the restriction of the road adhesion coefficient to tire force, the method of vehicle stability control is proposed, which is based on the calculation and allocation to the longitudinal composition of forces and yaw torque. The feasible region of the longitudinal composition of forces and yaw torque is determined in real time by offline numerical optimization metod, and the longitudinal composition of forces and yaw torque is adjusted to the feasible region, the longitudinal composition of forces and yaw torque is dynamically allocated to the wheels adopted the tire force inverse model structure by the three layer BP network, avoiding the lateral forces estimated of the rear wheels under the accuracy ensured, it can track the yaw angle better, improve track holding capacity and the influence of the low adhesion road to the vehicle stability, and a driver-in-the-loop test of Lab VIEW PXI and veDYNA have been carried up to verify the effectiveness of the control strategy.
     A coordinated control method based on the function allocation is proposed with regard to integration control problems of SASS and ESP subsystem.The upper function allocation controller can get the output weights of each controller, adjust the initial allocation coefficient of the sub ESP and SASS controller, strength or weak some function of subsystem, and the relationship between vehicle conditions and the function allocation coefficient of the bottom subsystems is determined by the method of fuzzy reasoning which is based on vehicle conditions and the changes of main control objectives under the current conditions.It can enhance optimal vehicle performance goals under the current conditions, but also improve the efficiency of the subsystem, reduce the design difficulty.of sub-controller
     The hardware and software system design of the SASS control system is carried out based on ARM7development platform, the SASS and ESP coordinated controller based on the function allocation which the signals shared, transmission and control command sent is based on the CAN bus. Finally, the controllers have been equipped on the vehicle and the experimental study of the SASS and integrated control of two systems are carried up to verify the effectiveness of the control strategy.
引文
[1]庄继德.汽车电子控制系统工程[M].北京:北京理工大学出版社,1998.
    [2]Tokuda T. Cars in the 90s as a humanware [C]. SAE Paper 885049,1987.
    [3]Kizu R, Harada H, Minabe H. Electronic control of car chassis present status and future perspective[C]. International Congress on Transportation Electronics, Convergence 88,1988.
    [4]Sato S, Inoue H, Tabata M,et al. Integrated chassis control system for improved vehicle dynamics[C]. Proc. AVEC92,Yokohama, Japan,1992.
    [5]Tanaka H,Inoue H,Iwata H. Development of a vehicle integrated control system[C]. SAE Paper 925049,1992.
    [6]Sato S, Inoue H, Tabata M, et al. Integrated chassis control system for improved vehicle dynamics [C]. Proc, AVEC92, Yokohama, Japan,1992.
    [7]Wallentowiz H. Integration of chassis and traction control systems. What is possible-what makes sense-what is under development[C]. Proc, AVEC92, Yokohama, Janpan,1992.
    [8]陈祯福.汽车底盘控制技术的现状和发展趋势[J].汽车工程,2006,28(2):105-113.
    [9]Rieth P E, Schwarz R. ESC Ⅱ-ESC with active steering intervention[C]. SAE Paper 2004-01-0260,2004.
    [10]喻凡,李道飞.车辆动力学集成控制综述[J].农业机械学报,2008,39(6):1-7.
    [11]李君,喻凡等.车辆转向制动防抱死系统仿真研究[J].系统仿真学报.2001,13(6):789-793.
    [12]程军,崔继波,徐光辉等.车辆控制系统集成开发系统[J].汽车工程,2000,22(2):109-114.
    [13]高晓杰,余卓平,张立军.基于车辆状态识别的AFS与ESP协调控制研究[J].汽车工程,2007,29(4):283-291.
    [14]冯金芝,喻凡,李君等.车辆防抱制动系统与主动悬架联合控制[J].农业机械学报,2002,33(2):15-19.
    [15]孙斌,方敏.汽车主动悬架与防抱制动系统分层集成控制研究[J].合肥工业大学学报,2008,31(10):1594-1601.
    [16]初长宝.汽车底盘分层式协调控制[D].合肥:合肥工业大学,2008.
    [17]祝辉.基于磁流变半主动悬架的汽车底盘集成控制[D].合肥:合肥工业大学,2009.
    [18]王启瑞,刘立强,陈无畏.基于随机次优控制的汽车电动助力转向与主动悬架集成控制.中国机械工程,2005.
    [19]陈无畏,王妍旻,王其东等.电动助力转向与主动悬架系统多变量自适应集成控制.振动工程学报,2005.
    [20]赵君卿,王其东.电动助力转向与主动悬架集成控制及其仿真.合肥工业大学学报(自然科学版),2005.
    [21]孙启启.基于干扰抑制的汽车电动助力转向与主动悬架系统的集成控制研究:[硕士学位论文].合肥:合肥工业大学,2006.
    [22]喻凡,林逸.汽车系统动力学[M].北京:机械工业出版社,2005.
    [23]Junjie He, David A. Crolla, Martin C, et al. Integrated active steering and variable torque distribution control for improving vehicle handling and stability[J]. SAE 2004-01-1071,2004.
    [24]David A Wilson, David A Crolla. Integrated vehicle ride and steady-state handling control via active suspension [J]. International Journal of Vehicle Design,2006,42(3/4):306-327.
    [25]Caglar Baslamisli S, Emre Kose I, Anlas G. Gain-scheduled integrated active steering and differential control for vehicle handling improvement [J]. Vehicle System Dynamics.2009,47(1): 99-119.
    [26]来飞,邓兆祥.含非线性轮胎模型的汽车四轮转向与主动悬架集成控制[J].中国公路学报,2009,22(3):113-120.
    [27]Sascha J. Semmler, Peter E. Rieth, Steffen J. Linkenbach. Global chassis control-the networked chassis [J]. SAE 2006-01-1954,2006.
    [28]Mitamura R, Tani M, Tanaka T. System integration for new mobility [J]. SAE 881773,1988.
    [29]Shinsuke Sato, Hideo Inoue. Integrated chassis control system for improved vehicle dynamics[C]. Proc.AVEC'92.Yokohama, Japan,1992:413-418.
    [30]Ghoneim Y, Lin W, et al. Integrated chassis control system to enhance vehicle stability [J]. International Journal of Vehicle Design,2000,23(1/2):124-144.
    [31]Yoshimura T, Emoto Y. Steering and suspension system of a full car model using fuzzing reasoning based on single input rule modules [J]. Int J of Vehicle Autonomous Systems,2003, 1(2):237-254.
    [32]Ono E, Takanami K, et al. Vehicle integrated control for steering and traction systems by u-synthesis [J]. Automatic,1994,30(11):1639-1647.
    [33]Rainer Busch, Klaus Webers, Achim Seibertz. Ford integrated vehicle dynamics control: concept [R]. Ford Motor Company, Research and Advanced Engineering,2001.
    [34]Rieth E, Schwarz R.ESP II-ESP with active steering intervention[C]. SAE 2004-01-0260,2004.
    [35]应艳杰,方敏,张增年等.汽车EPS与ASS的Hoo/PID集成控制[J].农业机械学报,2007,38(1):6-11.
    [36]Vassal C P, Sename O, Dugard L. Robust vehicle dynamic stability controller involving steering and braking systems[C]. Proceeding of the ECC'09, Budapest, Hungary,2009:23-26.
    [37]Nouillant C, Assadian F, Moreau X, et al. A cooperative control for car suspension and brake systems [J]. International Journal of Automotive Technology,2002,3(4):147-155.
    [38]姜炜,余卓平,张立军.汽车底盘集成控制综述[J].汽车工程,2007,29(5):420-425.
    [39]Karbalaei R, Ghaffari A, Kazemi R, et al. A new intelligent strategy to integrated control of AFS/DYC based on fuzzy logic [J]. International Journal of Mathematica, Physical and Engineering Sciences,2007,1(1):47-52.
    [40]赵树恩.基于多模型智能递阶控制的车辆底盘集成控制研究[D].重庆:重庆大学,2010.
    [41]林榆馨.电子控制悬架的应用[J].上海汽车,1996(4):18-29.
    [42]D.Karnopp, M.J.Crosby, R.A.Harwood. Vibration Control Using Semi-active Froce Generator[J].ASME Journal of Engineering of Industry.1974:619-62.
    [43]R.S.Sharp, D.A.Crolla. Road Vehicle Suspension System Designed Review[J]. Vehicle System Dynamics.1987(16):167-192.
    [44]梁杰.丰田Lexus LS400型轿车的电子控制悬架[J].汽车技术.1997,9:43-48.
    [45]A.M.Abdei-tawwab, D.A.Crolla. An Experimental and Theoretical Study of a Switchable Damper[J].SAE.1996(9):1177-1190.
    [46]王世明,王孙安.半主动悬架及其控制[J].汽车技术,1999,12:1-2.
    [47]K.J.Kitching, D.J.Cole D.Cebon. Performance of a Semi-Active Damper for Heavy Vehicles.ASME,2000,9.
    [48]余淼.汽车磁流变半主动悬架控制系统研究[D].重庆:重庆大学,2003.
    [49]Michele Ieluzzi,Patrizio Turco,Mauro Montiglio. Development of a heavy truck semi-active suspension control[J].SAE.2006(14):305-312.
    [50]A.M.A.Soliman. Improvement of Vehicle Ride Performance Using a Switchable Damper Suspension System[J].SAE.2007-01-0580.
    [51]www.mercedes-benz.com.cn
    [52]www.bmw.com.cn
    [53]郭洪文.NJ2045越野车可调减振器的研制和半主动悬架设计[D].长春:吉林大学,2004.
    [54]孙胜利.位移相关减振器动力学建模及对车辆性能影响的研究[D].长春:吉林大学,2008.
    [55]韩传强.可变阻尼减振器动力学仿真研究[D].长春:吉林大学,2008.
    [56]王祺明.磁流变减振器半主动悬架控制仿真及试验研究[D].合肥:合肥工业大学,2009.
    [57]夏光.基于μC/OS-Ⅱ的汽车磁流变半主动悬架控制系统设计[D].合肥:合肥工业大学,2009.
    [58]祝辉.基于磁流变半主动悬架的汽车底盘集成控制[D].合肥:合肥工业大学,2009.
    [59]朱茂飞.基于磁流变减振器的半主动悬架时滞变结构控制[J].机械工程学报.2010,6:113-120.
    [60]李彦.基于磁流变阻尼器的半主动振动控制[D].北京:清华大学,2008.
    [61]姚家凌.车辆磁流变半主动悬架系统理论和试验研究[D].南京:南京林业大学,2009.
    [62]方子帆.基于MR阻尼器的半主动悬架控制方法研究[D].重庆:重庆大学,2006.
    [63]Anton T.Van Zanten, Rainer Erhardt, Georg Pfaff. VDC the Vehicle Dynamics Control System of Bosch[C].SAE Technical Paper,950759.
    [64]Anton T. Van Zanten, Rainer Erhardt, Georg Pfaff, Friedrich Kost, Uwe Hartmann. Control Aspects of the Bosch-VDC[C].Proceeding of the Advanced Vehicle Control(AVEC)1996.
    [65]Glaser H. Electronic Stability Program ESP[M]. Sweden:Audi Press Presentation,1996.
    [66]Sugiyam M, Inoue H. Development of Vehicle Stability Control System[J].TOYOTA Technical Review,1997,46(2):61-68.
    [67]黄炳华,陈祯福.ESC的最新动向和发展趋势[J].汽车工程,2008,30(1):1-9.
    [68]Uwe Kiencke, Lars Nielsen. Automotive Control system[M]. Gemany, Springer,2ed,2004.
    [69]Michael A. Kremer, Ford-Werke AG. The Electronic Stability Program(ESP) On The Ford Focus.Vehicle Electronic Systems 2000 European Conference and Exhibition, StratFord Manor, StratFord-upon-Avon, UK,2000.
    [70]Motoki Shino, Masao Nagai. Yaw-moment Control of Electric Vehicle for Improving Handling and Stability[C]. JSAE Review,2001,22(4):473-480.
    [71]Hiroshi Fujimoto, Akio Tsumasaka, Toshihiko Noguchi. Direct Yaw-moment Control of Electric Vehicle Based on Cornering Stiffness Estimation[C].31 st Annual Conference of IEEE, 2005.
    [72]Bo Chen, Hui Peng. Differential-braking-based rollover prevention for sport utility vehicles with human-in-the-loop evaluations[J] Vehicle System Dynamics,2001,36(4-5):259-389.
    [73]Ossama Mokhiamar, Masato Abe. Simultaneous Optimal Distribution of Lateral and Longitudinal Tire Forces for the Model Following Control[J]. Dynamic Systems, Measurement and Control,2004,126(4):753-763.
    [74]Luca Piancastelli, Stefano Castelli. An VSC Fuzzy Control Algorithm optimized for tyre burst control[R]. University of Bologna,2004.
    [75]Cong Geng, Lotfi Mostefai, et al. Design on Adaptive Fuzzy Observer of Vehicle Side Slip Angle[C]. Technical Meeting on Vehicle Technology, IEE Japan,2007.
    [76]J. Dakhlallah, S. Glaser, S. Mammar, et al. Tire-Road Forces Estimation Using Extended Kalman Filter and Sideslip Angle Evaluation[C].2008 American Control Conference, USA, 2008.
    [77]Carlos Canudas-de-Wit, Roberto Horowitz. Observers for Tire/road Contact Friction using only wheel angular velocity information[C].38th IEEE Conference on Decision and Control,1999.
    [78]Trachtler A. Integrated vehicle dynamics control using active brake, steering and suspension system [J]. International Journal of Vehicle Design,2004,36(1):1-12.
    [79]Karbalaei R, Ghaffari A, Kazemi R, et al. A new intelligent strategy to integrated control of AFS/ DYC based on fuzzy logic [J]. International Journal of Mathematical, Physical and Engineering Sciences,2007,1(1):47-52.
    [80]KEN Koibuchi, MASAKI Yamamoto, YOSHIKI Fukada, etal. Vehicle stability control in limit cornering by active brake[R]. SAE Paper960487,1996.
    [81]YOUSSEF A. Ghoneim, WILLIAM C Lin, DAVID M etal.Integrated chassis control system to enhance vehicle stability[J] Int. J. of Vehicle Design,2000,23(1/2):124-144.
    [82]Youseok Kou, Wanil Kim, SangHo Yoon,etc.Integration Chassis Control (ICC)Systems of Mando[J].SAE.2004-01-2044.
    [83]陈无畏,周惠会,刘翔宇.汽车ESP与ASS分层协调控制研究[J].机械工程学报,2009,45(8):190-196.
    [84]Trachtler A. Integrated Vehicle Dynamics Control Using Active Brake, Steering and Suspension Systems[J]. International Journal of Vehicle Design,2004,36(1):1-12.
    [85]冯金芝,喻凡,李君,等.车辆防抱制动系统与主动悬架联合控制[J].农业机械学报,2002,33(2):15-19.
    [86]P. Van Der Jagt, and A. W. Parsons. Road surface correction of tire test data [J]. Vehicle System Dynamics,1996,25(2):147-165
    [87]陈军MSC.ADAMS技术与工程分析实例[M].北京:中国水利水电出版社,2008.
    [88]卢少波.汽车底盘关键子系统及其综合控制研究[D].重庆:重庆大学,2009.
    [89]K.J.Kitching, D.J.Cole,D.Cebon. Performance of a Semi-Active Damper for Heavy Vehicles[J]. Transaction of the ASME,2000,122(9):498-506.
    [90]Se Kyung Oh,Young Hwan Yoon, and Ary Bachtiar Krishna. A Study on the Performance Characteristics of Variable Valve for Reverse Continuous Damper[C]. International Journal of Mechanical System Science and Engineering,2007,1(3):129-134.
    [91]陈家瑞.汽车构造(第四版)[M].北京:机械工业出版社,2004.
    [92]赵峰.基于matlab环境的汽车减振器阻尼特性仿真分析[D].武汉:华中科技大学,2007.
    [93]黄恒.汽车减振器的数学建模及其外特性与温度变化关系的理论与试验研究[D].武汉:武汉理工大学,2005.
    [94]张德庆.汽车减振器的建模及仿真设计[D].镇江:江苏大学,2003.
    [95]任卫群.汽车减振器阻尼特性的仿真分析[J].系统仿真学报.2006,8:957-960.
    [96]李仕生.汽车可变阻尼减振器研究[D].重庆:重庆大学,2006.
    [97]沈永亮.NJ2045越野车可调减振器的研制[D].长春:吉林大学,2005.
    [98]Lang H H.A Study of the Characteristics of Automotive Hydraulic Dampers at High Stroking Frequencies[D]. USA:Univ Michigan,1977.
    [99]Stefaan Duym and Koenraad Reybrouck. Physical Characterization of Nonlinear Shock Absorber Dynamics. European Journal Mech, Vol 43:181-188.
    [100]Karadayi R and M Asada. A nonlinear Shock Absorber Model[J].ASME,1989,AMP80,DSC 12:149-165.
    [101]周长城,顾亮.节流阀片弯曲变形与变形系数[J].北京理工大学报.2006,7581-584.
    [102]周长城,顾亮.减振器叠加节流阀片与节流阀开度研究[J].流体械.2006,7:19-23.
    [103]郑志蕴.减振器节流阀片应力解析计算与计算机仿真[J].计算机仿真.2007,8:250-253.
    [104]《QC/T545-1999汽车筒式减振器台架试验方法》
    [105]《汽车减振器技术条件与台架试验方法(征求意见稿)》
    [106]www.saginomiya.com.cn
    [107]Rajesh Rajamani,王国业,江发潮等.车辆动力学及控制[M].北京:机械工业出版社,2011.
    [108]Javad Ahmadi,Ali Khaki Sedigh, Mansour Kabganian. Adaptive vehicle lateral-plane motion control using optimal tire friction forces with saturation limits consideration[J]. IEEE Transactions on Vehicular Technology,2009,58(8):4098-4107.
    [109]刘金琨.滑模变结构控制MATLAB仿真[M].北京:清华大学出版社,2005.
    [110]刘翔宇.基于直接横摆力矩控制的车辆稳定性控制系统研究[D].合肥:合肥工业大学,2010.
    [111]田泽.嵌入式系统开发与应用教程[M].北京:北京航空航天大学出版社,2005:186-204.
    [112]周立功等.ARM嵌入式系统基础教程[M].北京:北京航空航天大学出版社.2005:201-267.
    [113]赵星寒,周春来,刘涛.ARM开发工具ADS原理与应用[M].第一版.北京:北京航空航天大学出版社,2006.
    [114]周立功.ARM嵌入式系统基础教程[M].北京:北京航空航天大学出版社,2008.
    [115]GB/T4970-1996,车辆平顺性随机输入行驶试验方法[S].
    [116]GB/T5902-86,汽车平顺性脉冲输入行驶试验方法[S].

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700