用户名: 密码: 验证码:
高糖所致大鼠血管平滑肌细胞和人脐静脉内皮细胞损伤以及蛋白质硝化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
糖尿病对身体的危害主要来自高糖导致的多种并发症,在糖尿病并发症的发生发展中,氧化应激发挥着重要的作用。伴随着高糖所导致的氧化应激的发生,过量产生的O2.-降低NO的生物活性,同时生成更强的氧化剂,如过氧亚硝基阴离子(ONOO-),进而损伤蛋白质生成3-硝基酪氨酸(3-NT)。目前已在许多糖尿病并发症中发现3-NT的存在,但并没有对其机理进行系统的研究。本论文主要对高糖和外源性硝化试剂(hemin-nitrite-H2O2和SIN-1)作用人脐静脉内皮细胞(ECV304)以及大鼠血管平滑肌细胞(VSMC)后所致细胞氧化损伤进行了研究,观察蛋白质硝化反应是否进一步加重了细胞损伤的程度。同时我们还观察了高糖和外源性硝化导致的细胞硝化蛋白之间的异同。所取得的主要结果如下:
     1、高糖导致人脐静脉内皮细胞(ECV304)氧化损伤以及引起蛋白质硝化
     内皮功能丧失以及进一步的损害在糖尿病并发症的发生发展过程中发挥着重要的作用。在高糖导致的内皮细胞损伤过程中,蛋白质酪氨酸硝化参与其中。有关高糖导致人脐静脉内皮细胞(ECV304)发生蛋白质硝化反应的研究还很少。用终浓度分别为30 mM和40 mM的D-葡萄糖作用ECV304细胞72小时,通过检测细胞存活率、测定脂质过氧化水平、荧光检测胞内谷胱甘肽、荧光观察胞内活性氧、毛细管电泳检测胞内和胞外活性氮含量、凝胶电泳以及蛋白印迹分析细胞蛋白质硝化等观察高糖所导致的氧化损伤情况。经过高糖作用72小时后,发现高糖可以导致ECV304发生严重的氧化损伤,且有剂量依赖性。高糖所导致的氧化损伤表现在细胞存活率降低、丙二醛(MDA)的含量增加、谷胱甘肽(GSH)的含量降低、细胞内活性氧(ROS)的含量增加以及一氧化氮(NO)及其代谢产物的含量(包括增加细胞内亚硝酸钠和培养基中硝酸钠含量)增加。实验结果还表明高糖可以导致ECV304细胞产生硝化蛋白,主要发生在分子量为66 kDa、50 kDa、43 kDa、34 kDa、30 kDa和23 kDa的蛋白上。通过对高糖作用ECV304进行研究后发现,体内高糖可以导致内皮细胞发生严重的氧化损伤,并且推断蛋白质硝化反应参与了氧化损伤的过程。
     2、高糖导致大鼠血管平滑肌细胞(VSMC)氧化损伤以及引起蛋白质硝化
     高糖可以导致血管平滑肌细胞产生大量活性氧,进而在氧化应激状态下可能会引起细胞内发生蛋白质酪氨酸硝化。目前尚无高糖与平滑肌细胞蛋白质硝化的相关性研究。用终浓度分别为30 mM和40 mM的D-葡萄糖作用大鼠血管平滑肌细胞(VSMC)3d和7d,通过检测细胞存活率、荧光检测胞内谷胱甘肽、荧光观察胞内活性氧、毛细管电泳检测胞内活性氮含量、凝胶电泳以及蛋白印迹分析细胞蛋白质硝化等观察高糖所导致的氧化损伤情况。结果表明,高糖以终浓度为30 mM和40 mM分别作用VSMC细胞3d和7d后,可以显著增加细胞的增殖、诱发细胞产生氧化损伤(包括降低GSH含量以及增加细胞内活性氧ROS的含量)、导致VSMC中活性氮生成量增加,并证实高糖可以导致细胞内产生蛋白质的酪氨酸硝化,硝化主要发生在分子量为55 kDa、30 kDa、26 kDa和20 kDa的蛋白上。在高糖导致的细胞氧化损伤过程中,氧化损伤的程度随着高糖浓度和作用时间的增加而加重。
     3、高糖和外源性硝化试剂(hemin-nitrite-H2O2和SIN-1)所致细胞蛋白质硝化有一定差别
     糖尿病并发症的病理过程是复杂的,而导致蛋白质发生硝化反应的途径又是多样的。铁卟啉或者某些含铁卟啉过氧化酶催化NO2-—H2O2蛋白质硝化反应在病理条件下是比ONOO-更容易发生的。有关高糖所导致的细胞蛋白质硝化和外源性硝化试剂所导致的细胞蛋白质硝化之间的差别研究的很少。分别用高糖和外源性硝化试剂(hemin-nitrite-H2O2和SIN-1)作用ECV304和VSMC细胞72小时,通过检测细胞存活率、凝胶电泳以及蛋白印迹分析细胞蛋白质硝化等观察高糖和外源性硝化试剂所导致的细胞氧化损伤。研究结果表明:(1)蛋白质硝化可以加重细胞损伤的程度;
     (2)对某些蛋白质来说,高糖所导致的蛋白质硝化现象同其它外源性硝化试剂(如hemin-nitrite-H2O2体系和SIN-1)所导致的蛋白质硝化相类似;(3)外源性硝化试剂(如hemin-nitrite-H2O2体系和SIN-1)所导致的蛋白质硝化主要发生在小分子量蛋白上(~11、17和20 kDa),高糖引起的蛋白质硝化对不同的蛋白质有一定的选择性。
The hazards of diabetes to body mostly come from complications induced by hyperglycemia. Oxidative stress plays an important role in the development and progression of diabetic complications. When oxidative stress induced by high glucose happens, overproduction of superoxide anion (O2.-) would decrease the bioactivity of nitric oxide (NO), thus leading to the generation of more potent oxidant, such as peroxynitrite (ONOO-), which will damage protein and produce 3-NO2Tyr (3-NT). Though 3-NT has been found in many diabetic complications, the mechanism has been not studied systematically. In this study, human umbilical vein endothelial cells (ECV304) and rat vascular smooth muscle cell (VSMC) were cultured in high glucose medium or incubated with exogenous nitrating agents (hemin-nitrite-H2O2 and SIN-1), then the cell oxidative and nitrative injury was studied and the role of protein tyrosine nitration in cell injury, as well as the difference between protein tyrosine nitration induced by high glucose and exogenous nitrating agents were discussed. The main results in this work are as follows:
     1. Protein tyrosine nitration presents in high glucose induced human umbilical vein endothelial cell injury
     The dysfunction and further damage of endothelium play an important role in the development and progression of diabetic vascular complications. Protein tyrosine nitration is involved in endothelial cell injury induced by high glucose. Little is known about protein nitration in human umbilical vein endothelial cells (ECV304) induced by high glucose. In the present article, ECV304 was cultured in 30 mM glucose and 40 mM glucose for 72h, then the cell viability, lipid peroxidation, intracellular glutathione, intracellular reactive oxygen species, nitrite and nitrate contents and protein tyrosine nitration were assayed. After 72h treatment, it was found that high glucose stimulated ECV304 injury in a dose-dependent manner, including reducing cell viability, increasing malondialdehyde (MDA) content, decreasing glutathione (GSH) content, increasing intracellular reactive oxygen species (ROS), increasing the production of nitric oxygen (NO) (increased nitrite content in cell and nitrate content in medium) and generating protein tyrosine nitration ( protein nitration with molecular masses ~ 66, 50, 43, 34, 30 and 23 kDa), which demonstrated that high glucose could induce cell oxidative injury to ECV304.
     2. Protein tyrosine nitration presents in high glucose induced rat vascular smooth muscle cell injury
     The dysfunction of vascular smooth muscle cell involves in the development and progression of diabetic vascular complications. When oxidative stress induced by high glucose happens, reactive oxygen species involve in vascular smooth muscle cell, then generates protein tyrosine nitration. No investigation on protein tyrosine nitration in vascular smooth muscle cell has been found. In the present study, exposure of rat vascular smooth muscle cell (VSMC) to 30 mM glucose and 40 mM glucose for 3d and 7d, then the cell viability, intracellular glutathione, intracellular reactive oxygen species, nitrite content, protein tyrosine nitration were assayed. After 3d and 7d treatment, it was found that high glucose stimulated VSMC injury in a dose-dependent and time-dependent manner, including increasing cell viability, inducing cell oxidative injury (decreased GSH content and increased intracellular ROS content), increasing the production of NO (increased nitrite content in cell). It was demonstrated that protein tyrosine nitration with molecular masses ~ 55, 30, 26 and 20 kDa was generated in cell. The cell oxidative injury induced by high glucose would aggravate with the dose and time.
     3. Protein tyrosine nitration induced by high glucose and exogenous nitrating agents (hemin-nitrite-H2O2 and SIN-1) are different
     The development and progression of diabetic vascular complications is complicated and there are multiple pathways leading to protein tyrosine nitration. It is well accepted that heme or heme containing proteins could catalyze NO2--H2O2 to nitrate tyrosine residue of protein. This is a more possible mechanism under physiological and pathological conditions to produce tyrosine nitration than peroxynitrite. There is no comparison between protein tyrosine nitration induced by high glucose and exogenous nitrating agents. In the present study, exposure of ECV304 and VSMC to high glucose and exogenous nitrating agents (hemin-nitrite-H2O2 and SIN-1) for 72h, the cell oxidative injury in ECV304 and VSMC induced by high glucose and exogenous nitrating agents was studied by cell viability and protein tyrosine nitration. After 72h treatment, it was found that with the addition of nitrite, the cytotoxicities of hemin-H2O2 on ECV304 and VSMC were significantly augmented, at the same time, protein nitration in cellular protein of both cell lines was also significantly increased. Secondly, with regard to some proteins, protein nitration induced by high glucose was similar to those induced by extrinsic factors (hemin-nitrite-H2O2 system and SIN-1). Furthermore, the difference between protein tyrosine nitration induced by high glucose condition and extrinsic factors (hemin-nitrite-H2O2 system and SIN-1) was that the later could also generate protein nitration with low molecular masses (~11, 17, and 20 kDa). By comparison protein tyrosine nitration induced by high glucose condition with those induced by extrinsic factors (hemin-nitrite-H2O2 system and SIN-1), it may be speculated that protein tyrosine nitration is selective in diabetic vascular complications.
引文
[1] Zimmet P, Alberti KG, Shaw J. Global and societal implications of the diabetic epidemic. Nature, 2001, 414: 782-787
    [2] Grundy SM, Benjamin IJ, Burke GL et al. Diabetes and cardiovascular disease. A statement for healthcare professionals from the American Heart Association, Circulation, 1999, 100: 1134-1146
    [3] Baynes JW and Thorpe SR. Role of oxidative stress in diabetic complications: a new perspective on an old paradigm. Diabetes, 1999, 48: 1-9
    [4] Li PF, Dietz R, Von Harsdorf R. Reactive oxygen species induce apoptosis of vascular smooth muscle cells. FEBS Lett, 1997, 404(2-3): 249-252
    [5] Murad F. The 1996 Albert Lasker Medical Research Awards. Signal transduction using nitric oxide and cyclic guanosine monophosphate. JAMA, 1996, 276: 1189-1192
    [6] El-Remessy AB, Al-Shabrawey M, Khalifa Y et al. Neuroprotective and blood-retinal barrier-preserving effects of cannabidiol in experimental diabetes. Am J Pathol, 2006, 168(1): 235-244
    [7] Xu S, Jiang B, Maitland KA et al. The thromboxane receptor antagonist S18886 attenuates renal oxidant stress and proteinuria in diabetic apolipoprotein E-dificient mice. Diabetes, 2006, 55(1): 110-119
    [8] Poladia DP, Bauer JA. Early cell-specific changes in nitric oxide synthases, reactive nitrogen species formation, and ubiquitinylation during diabetes-ralated bladder remodeling. Diabetes Metab Res Rev, 2003, 19(4): 313-319
    [9] Cosentino F, Eto M, Paolis PD et al. High glucose causes upregulation of cyclooxygenase-2 and altes prostanoid profile in human endothelial cells: role of protein kinase C and reactive oxygen species. Circulation, 2003, 107: 1017-1023
    [10] Reddy S, Bradley J. Immunohistochemical demonstration of nitrotyrosine, a biomarker of oxidative stress, in islet cells of the NOD mouse. Ann N Y Acad Sci, 2004, 1037:199-202
    [11] Fries DM, Paxinou E, Themistocleous M et al. Expression of inducible nitric-oxide synthase and intracellular protein nitration in vascular smooth muscle cells. J Biol Chem, 2003, 278: 22901-22907
    [12] Cosentino F, Hishikawa K, Katusic ZS et al. High glucose increases nitric oxide synthase expression and superoxide anion generation in human aortic endothelial cells. Circulation, 1997, 96: 25-28
    [13] El-Remessy AB, Abou-Mohamed G, Caldwell RW et al. High glucose-induced tyrosine nitration in endothelial cells: role of eNOS uncoupling and aldose reductase activation. Invest Ophthalmol Vis Sci, 2003, 44: 3135-3143
    [14] Quagliaro L, Piconi L, Assaloni R et al. Intermittent high glucose enhances apoptosis related to oxidative stress in human urnbilical vein endothelial cells: the role of protein kinase C and NAD(P)H-oxidase activation. Diabetes, 2003, 52: 2795-2804
    [15] Kajstura J, Fiordaliso F, Andreoli AM et al. IGF-1 overexpression inhibits the development of diabetic cardiomyopathy and angiotensin II-mediated oxidative stress. Diabetes, 2001, 50: 1414-1424
    [16] Ceriello A. Oxidative stress and diabetes-associated complications. Endocr Pract, 2006, 12 (Suppl 1): 60-62
    [17]卫生部疾病控制司中华医学会糖尿病学分会。中国糖尿病防治指南(一)。2005,3
    [18] Narayan KM, Boyle JP, Thompson TJ et al. Lifetime risk for diabetes mellitus in the United States. JAMA, 2003, 290: 1884-1890
    [19] Kannel, WB, and McGee DL. Diabetes and cardiovascular disease. The Framingham study. JAMA, 1978, 241: 2035-2038
    [20] Gabbay KH, Merola LO, Field RA. Sorbitol pathway: presence in nerve and cord with substrate accumulation in diabetes. Science, 1966, 151: 209-210
    [21] Holman RRH for the UKPDS Group. UK prospective diabetes study: 3-year update. In: Schwartz CJ and Born GVR. Eds. New horizons in diabetes mellitus and cardiovascular disease. London: Current Science, 1995: 193
    [22] The Diabetes Control and Complications Trial Research Group: The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med, 1993, 329: 977
    [23] Keaney JF Jr, Larson MG, Vasan RS et al. Obesity and systemic oxidative stress: clinical correlates of oxidative stress in the Framingham Study. Arterioscler Thromb Vasc Biol, 2003, 23: 434–439
    [24] Ruderman NB, Haudenschild C. Diabetes as an atherogenic factor. Prog Cardiovasc Dis, 1984, 6:373–412
    [25] Nathan DM, Lachin J, Cleary P et al. Intensive diabetes therapy and carotid intima-media thickness in type 1 diabetes mellitus. N Engl J Med, 2003, 348: 2294–2230
    [26] ReavenGM, Lithell H, LandsbergL. Hypertension and associated metabolic abnormalities: the role of insulin resistance and the sympathoafrenal system. N Engl J Med, 1996, 334:374–381
    [27] Kelly DE, Mokan M, Simoneau JA et al. Interaction between glucose and free fatty acid metabolism in human skeletal muscle. J Clin Invest, 1993, 92: 91–98
    [28] Steinberg HO, Paradisi G, Hook G et al. free fatty acid elevation impairs insulin-mediated vasodilation and nitric oxide production. Diabetes, 2000, 49: 1231–1238
    [29] Boden G, Lebed B, Schatz M et al. Effects of acute changes of plasma free fatty acids on intramyocellular fat content and insulin resistance in healthy subjects. Diabetes, 2001, 50: 1612–1617
    [30] Nishikawa T, Araki E. Impact of Mitochondrial ROS Production in the Pathogenesis of Diabetes Mellitus and Its Complications. Antioxid Redox Signal, 2007, 9(3): 343-353
    [31] UK Prospective Diabetes Study (UKPDS) Group: Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet, 1998, 352: 837-853
    [32] Du XL, Edelstein D, Rossetti L et al. Hyperglycemia-induced mitochondrial superoxide overproduction activates the hexosamine pathway and induces plasminogen activator inhibitor-1 expression by increasing Sp1 glycosylation. Proc Natl Acad Sci U S A, 2000, 97: 12222–12226
    [33] Nishikawa T, Edelstein D, Du XL et al. Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature, 2000, 404: 787–790
    [34] Giugliano D, Ceriello A, Paolisso G. Oxidative stress and diabetic vascular complications. Diabetes Care, 1996, 19: 257–267
    [35] Michael Brownlee. The pathobiology of diabetic complications: A unifying mechanism. Diabetes, 2005, 54: 1615-1625
    [36] Korshunov SS, Skulachev VP, Starkov AA. High protonic potential actuates a mechanism of production of reactive oxygen species in mitochondria. FEBS Lett, 1997, 416: 15–18
    [37] Du XL, Edelstein D, Dimmeler S et al. Hyperglycemia inhibits endothelial nitric oxide synthase activity by posttranslational modification at the Akt site. J Clin Invest, 2001, 108: 1341–1348
    [38] Inoguchi T, Li P, Umeda F et al. High glucose levels and free fatty acid stimulate reactive oxygen species production through protein kinase C-dependent activation of NADPH oxidase in cultured vascular cells. Diabetes, 2000, 49: 1939–1945
    [39] Retnakaran R, Hanley AJ, Raif N et al. C-reactive protein and gestational diabetes: the central role of maternal obesity. J Clin Endocrinol Metab, 2003, 88: 3507–3512
    [40] Polderman KH, Stehouwer CD, Van Kamp GJ et al. Effects of insulin infusion on endothelium-derived vasoactive substances. Diabetologia, 1996, 39(11): 1284-1292
    [41] Schneider DJ, Absher PM, Neimane D et al. Fibrinolysis and atherogenesis in the JCR:LA-cp rat in relation to insuli and triglyceride concentration in blood. Diabetologia, 1998, 41(2): 141-147
    [42] Nagi DK, Tracy R, Pratley R. Relationship of hepatic and peripheral insulin resistance with plasminogen activator inhibbitor-1 in Pima Indians. Metabolism, 1996, 45(10): 1243-1247
    [43] Natali A, Quinones G A, Pecori N et al. Vasodilation with sodium nitroprusside does not improve insulin action in essential hypertension. Hypertension, 1998, 31(2): 632-636
    [44] Kihara S, Quchi N, Funahashi T et al. Troglitazone enhances glucose uptake and inhibits mitogen-activated protein kinase in human aortic smooth muscle cells. Atherosclerosis, 1998, 136(1):163-168
    [45] Jeppensen J, Hein H, Suadicani P et al. Triglyceride cocentration and ischemic heart disease:an eight-year follow-up in the copenhagen male study. Circulation, 1998, 97(11): 1029-1036
    [46] Houstis N, Rosen ED, Lander ES. Reactive oxygen species have a causal role in multiple forms of insulin resistance. Nature, 2006, 440(7086): 944-948
    [47] Subauste AR, Burant CF. Role of FoxO1 in FFA induced Oxidative Stress in Adipocytes. Am J Physiol Endocrinol Metab, 2007, 293(1): E159-164
    [48] Rosen P, Osmers A. Oxidative Stress in Young Zucker Rats with Impaired Glucose Tolerance is Diminished by Acarbose. Horm Metab Res, 2006, 8(9): 575-586
    [49] Hofmann S, Brownlee M. Biochemistry and molecular cell biology of diabetic complications: a unifying mechanism. In Diabetes Mellitus: A Fundamental andClinical Text. 3rd ed. LeRoith D, Taylor SI, Olefsky JM, Eds. Philadelphia, Lippincott Williams & Wilkins, 2004, 1441–1457
    [50] Cosentino F, Luscher TF. Endothelial Dysfunction in Diabetes Mellitus. J Cardiovasc Pharmacol, 1998, 32: 54–61
    [51] Ruderman NB, Williamson JR, Brownlee M. Glucose and diabetic vascular disease. FASEB J, 1992, 6: 2905-2914
    [52] Szabo C, Zanchi A, Komjati K et al. Poly(ADP-Ribose) polymerase is activated in subjects at risk of developing type 2 diabetes and is associated with impaired vascular reactivity. Circulation, 2002, 106: 2680-2686
    [53] Caballero AE, Arora S, Saouaf R et al. Microvascular and macrovascular reactivity is reduced in subjects at risk for type 2 diabetes. Diabetes, 1999, 48: 1856-1862
    [54] Calles-Escandon J, Cipolla M. Diabetes and endothelialdysfunction: a clinical perspective. Endocr Rev, 2001, 22: 36-52
    [55] Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature, 2001, 414: 813-820
    [56] Ceriello A. New insights on oxidative stress and diabetic complications may lead to a‘causal’antioxidant therapy. Diabetes Care, 2003, 26: 1589-1596
    [57] Guzik TJ,Mussa S, Gastaldi D et al. Mechanisms of increased vascular superoxide production in human diabetes mellitus: role of NAD(P)H oxidase and endothelial nitric oxide synthase. Circulation, 2002, 105: 1656-1662
    [58] Spitaler MM, Graier WF. Vascular targets of redox signalling in diabetes mellitus. Diabetologia, 2002, 45: 476-494
    [59] Crow JP, Beckman JS. Reactions between nitric oxide, superoxide, and peroxynitrite: footprints of peroxynitrite in vivo. Adv Pharmacol, 1995, 34: 17–43
    [60] Pryor WA, Squadrito GL. The chemistry of peroxynitrite: a product of the reaction of nitric oxide with superoxide. Am J Physiol, 1995, 268: L699–722
    [61] Crow JP, Ischiropoulos H. Detection and quantitation of nitrotyrosine residues inpatients: in vivo marker of peroxynitrite. Methods Enzymol, 1996, 233: 185–195
    [62] Beckman JS, Chen J, Ischiropoulos H et al. Oxidative chemistry of peroxynitrite. Methods Enzymol, 1994, 233: 229–240
    [63] Beckman JS, Koppenol WH. Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and the ugly. Am J Physiol, 1996, 271: C1424–1437
    [64] Ischiropoulos H, Zhu L, Chen J et al. Peroxynitrite-mediated tyrosine nitration catalyzed by superoxide dismutase. Arch Biochem Biophys, 1992, 298: 431–437
    [65] Graier WF, Simecek S, Kukovetz WR et al. High D-glucose-induced changes in endothelial Ca2+/EDRF signaling are due to generation of superoxide anions. Diabetes, 1996, 45: 1386-1395
    [66] Graier WF, Posch K, Fleischhacker E et al. Increased superoxide anion formation in endothelial cells during hyperglycemia: an adaptive response or initial step of vascular dysfunction? Diabetes Res Clin Pract, 1999, 2-3: 153-160
    [67] Pieper GM, Langenstroer P, Siebeneich W. Diabetic-induced endothelial dysfunction in rat aorta: role of hydroxyl radicals. Cardiovasc Res, 1997, 34: 145-156
    [68] Pacher P, Szabo C. Role of peroxynitrite in the pathogenesis of cardiovascular complications of diabetes. Curr Opin Pharmacol, 2006, 6(2): 136-141
    [69] Salgo G, Bermudez E, Squadrito L et al. Peroxynitrite causes DNA damage and oxidation of thiols in rat thymocytes. Arch Biochem Biophys, 1995, 322: 500-505
    [70] Salvemini D, Wang Z, Stern M et al. Peroxynitrite decomposition catalysts: therapeutics for peroxynitrite-mediated pathology. Proc Natl Acad Sci USA, 1998, 95: 2695-2663
    [71] Milstien S, Katusic Z. Oxidation of tetrahydrobiopterin by peroxynitrite: implications for vascular endothelial function. Biochem Biophys Res Commun, 1999, 263: 681-684
    [72] Patel JM, Abeles AJ, Block ER. Nitric oxide exposure and sulfhydryl modulationalter L-arginine transport in cultured pulmonary artery endothelial cells. Free Radic Biol Med, 1996, 20: 629-637
    [73] Zou MH, Shi C, Cohen RA. Oxidation of the zinc-thiolate complex and uncoupling of endothelial nitric oxide synthase by peroxynitrite. J Clin Invest, 2002, 109: 817-826
    [74] Pacher P, Schulz R, Liaudet L et al. Nitrosative stress and pharmacological modulation of heart failure. Trends Pharmacol Sci, 2005, 26: 302-310
    [75] Ceriello A, Mercuri F, Quagliaro L et al. Detection of nitrotyrosine in the diabetic plasma: evidence of oxidative stress. Diabetologia, 2001, 44: 834-838
    [76] Pennathur S, Wagner JD, Leeuwenburgh C et al. A hydroxyl radical-like species oxidizes cynomolgus monkey artery wall proteins in early diabetic vascular disease. J Clin Invest, 2001, 107: 853-860
    [77] Ceriello A, Quagliaro L, Catone B et al. Role of hyperglycemia in nitrotyrosine postprandial generation. Diabetes Care, 2002, 25: 1439-1443
    [78] Ceriello A, Taboga C, Tonutti L et al. Evidence for an independent and cumulative effect of postprandial hypertriglyceridemia and hyperglycemia on endothelial dysfunction and oxidative stress generation: effects of short- and long-term simvastatin treatment. Circulation, 2002, 106: 1211-1218
    [79] Li Y, Zhu H, Stransbury KH et al. Oxygen Radicals and Disease Process. Amsterdam: Harwood Academic, 1997, 327–377
    [80] Yasuda M, Ohzeki Y, Shimizu S et al. Stimulation of in vivo angiogenesis by hydrogen peroxide and the relation with ETS-1 in endothelial cells. Life Sci, 1999, 64: 249–258
    [81] Abid MR, Kachra Z, Spokes KC et al. NADPH oxidase activity is required for endothelial cell proliferation and migration. FEBS Lett, 2000, 486: 252–256
    [82] Stone JR, Collins T. The role of hydrogen peroxide in endothelial proliferative responses. Endothelium, 2002, 9: 231–238
    [83] Maulik N, Das DK. Redox signaling in vascular angiogenesis. Free Radic Biol Med, 2002, 33: 1047–1060
    [84] Luczak K, Balcerczyk A, Soszynski M et al. Low concentrations of oxidant and nitric oxide donors stimulate proliferation of human endothelial cells in vitro. Cell Biol Int, 2004, 28: 483–436
    [85] Pricci F, Leto G, Amadio L et al. Oxidative stress in diabetes-induced endothelial dysfunction involvement of nitric oxide and protein kinase C. Free Radic Biol Med, 2003, 35: 683-694
    [86] Frustaci A, Kajstura J, Chimenti C et al. Myocardial cell death in human diabetes. Circ Res, 2000, 87: 1123-1132
    [87] Mihm MJ, Jing L, Bauer JA. Nitrotyrosine causes selective vascular endothelial dysfunction and DNA damage. J Cardiovasc Pharmacol, 2000, 36: 182-187
    [88] Zou MH, Shi C, Cohen RA. High glucose via peroxynitrite causes tyrosine nitration and inactivation of prostacyclin synthase that is associated with thromboxane/prostaglandin H(2) receptor-mediated apoptosis and adhesion molecule expression in cultured human aortic endothelial cells. Diabetes, 2002, 51: 198-203
    [89] Pacher P, Obrosova IG, Mabley JG et al. Role of nitrosative stress and peroxynitrite in the pathogenesis of diabetic complications. Emerging new therapeutical strategies. Curr Med Chem, 2005, 12: 267-275
    [90] Stevez A G, Spear N, Manuel S M et al. Nitric oxide and superoxide contribute to motor neuron apoptosis induced by trophic factor deprivation. J Neurosci, 1998, 18(3): 923-31
    [91] Squadrito G L, Pryor W A. Oxidative chemistry of nitric oxide: the roles of superoxide, peroxynitrite, and carbon dioxide. Free Radic Biol Med, 1998, 25(4-5): 392-403
    [92] Zou MH. Peroxynitrite and protein tyrosine nitration of prostacyclin synthase.Prostag Oth Lipid M, 2007, 82: 119–127
    [93] Wang XL, Rainwater DL, Leone A et al. Effects of diabetes on plasma nitrotyrosine levels. Diabet Med, 2004, 21(6): 577-580
    [94] El-Remessy AB, Behzadian MA, Abou-Mohamed G et al. Experimental diabetes causes breakdown of the blood-retina barrier by a mechanism involving tyrosine nitration and increases in expression of vascular endothelial growth factor and urokinase plasminogen activator receptor. Am J Pathol, 2003, 162(6): 1995-2004
    [95] Andrew G., Daniel D, Stephen R Thom et al. Carbon dioxide enhancement of peroxynitrite-mediated protein tyrosine nitration. Arch Biochem Biophys, 1996, 333: 42-48
    [96] Eiserich J P, Cross C E, Jones A D et al. Formation of nitrating and chlorinating species by reaction of nitrite with hypochlorous acid. A novel mechanism for nitric oxide-mediated protein modification. J Biol Chem, 1996, 271(32): 19199-19208
    [97] Sampson JB, Rosen H, Beckman JS. Peroxynitrite-dependent tyrosine nitration catalyzed by superoxide dismutase, myeloperoxidase, and horseradish peroxidase. Methods Enzymol, 1996, 269: 210-218
    [98] Sampson JB, Ye Y, Rosen H et al. Myeloperoxidase and horseradish peroxidase catalyze tyrosine nitration in proteins from nitrite and hydrogen peroxide. Arch Biochem Biophys, 1998, 356(2): 207-213
    [99] Eiserich JP, Hristova M, Cross CE et al. Formation of nitric oxide-derived inflammatory oxidants by myeloperoxidase in neutrophils. Nature, 1998, 391(6665): 393-397
    [100] Brennan ML, Wu W, Fu X et al. A tale of two controversies: defining both the role of peroxidases in nitrotyrosine formation in vivo using eosinophil peroxidase and myeloperoxidase-deficient mice, and the nature of peroxidase-generated reactive nitrogen species. J Biol Chem, 2002, 277(20): 17415-17427
    [101] Duguet A, Iijima H, Eum SY et al. Eosinophil peroxidase mediates proteinnitration in allergic airway inflammation in mice. Am J Respir Crit Care Med, 2001, 164(7): 1119-1126
    [102] van der Vliet A, Eiserich JP, Halliwell B et al. Formation of reactive nitrogen species during peroxidase-catalyzed oxidation of nitrite. A potential additional mechanism of nitric oxide-dependent toxicity. J Biol Chem, 1997, 272(12): 7617-7625
    [103] Wu W, Chen Y, Hazen S L. Eosinophil peroxidase nitrates protein tyrosyl residues. Implications for oxidative damage by nitrating intermediates in eosinophilic inflammatory disorders. J Biol Chem, 1999, 274(36): 25933-25944
    [104] Ricoux R, Boucher J L, Mansuy D. Microperoxidase 8 catalyzed nitration of phenol by nitrogen dioxide radicals. Eur J Biochem, 2001, 268(13): 3783-3788
    [105] Grzelak A, Balcerczyk A, Mateja A et al. Hemoglobin can nitrate itself and other proteins. Biochim Biophys Acta, 2001, 1528(2-3): 97-100
    [106] Kilinc K, Kilinc A, Wolf RE. Myoglobin-catalyzed tyrosine nitration: no need for peroxynitrite. Biochem Biophys Res Comm, 2001, 285(2): 273-276
    [107] Castro L, Eiserich JP, Sweeney S et al. Cytochrome c: a catalyst and target of nitrite-hydrogen peroxide-dependent protein nitration. Arch Biochem Biophys, 2004, 421(1): 99-107
    [108] Bian K, Gao Z, Weisbrodt N et al. The nature of heme/iron-induced protein tyrosine nitration. Proc Natl Acad Sci USA, 2003, 100: 5712-5717
    [109] Thomas D D, Espey M G, Vitek M P et al. Protein nitration is mediated by heme and free metals through Fenton-type chemistry: An alternative to the NO/O2.- reaction. Proc Natl Acad Sci USA, 2002 , 99(20): 12691-12696
    [110] Ogino K, Kodama N, Nakajima M, et al. Catalase catalyzes nitrotyrosine formation from sodium azide and hydrogen peroxide. Free Radic Res, 2001, 35(6): 735-747
    [111] Greenacre SA, Ischiropoulos H. Tyrosine nitration: localisation, quantification,consequences for protein function and signal transduction. Free Radic Res, 2001, 34(6): 541-581
    [112] Turko I V, Murad F. Protein nitration in cardiovascular disease. Pharmacol Rev, 2002, 54(4): 619-634
    [113] Llorens S, Jordan J, Nava E. The nitric oxide pathway in the cardiovascular system. J Physiol Biochem, 2002, 58 (3): 179-188
    [114] Gonzalo Peluffo, Rafael Radi. Biochemistry of protein tyrosine nitration in cardiovascular pathology. Cardiovasc Res, 2007, 75: 291–302
    [115] Radi R. Nitric oxide, oxidants, and protein tyrosine nitration. Proc Natl Acad Sci U S A, 2004, 101: 4003–4008
    [116] Turko IV, Marcondes S, Murad F. Diabetes-associated nitration of tyrosine and inactivation of succinyl-CoA:3-oxoacid CoA-transferase. Am J Physiol Heart Circ Physiol, 2001, 281(6): H2289-2294
    [117] Turko IV, Li L, Aulak KS et al. Protein tyrosine nitration in the mitochondria from diabetic mouse heart. Implications to dysfunctional mitochondria in diabetes. J Biol Chem, 2003, 278(36): 33972-33977
    [118] Hermo R, Mier C, Mazzotta M et al. Circulating levels of nitrated apolipoprotein A-I are increased in type 2 diabetic patients. Clin Chem Lab Med, 2005, 43(6): 601-606
    [119] Davis B, Zou MH. D40 ligand-dependent tyrosine nitration of prostacyclin synthase in vivo. Circulation, 2005, 112(14): 2184-2192
    [120] Shao B, Bergt C, Fu X et al. Tyrosine 192 in apolipoprotein A-I is the major site of nitration and chlorination by myeloperoxidase, but only chlorination markedly impairs ABCA1-dependent cholesterol transport. Biol Chem, 2005, 280(7): 5983-5993
    [121] Zheng L, Settle M, Brubaker G et al.Localization of nitration and chlorination sites on apolipoprotein A-I catalyzed by myeloperoxidase in human atheroma and associated oxidative impairment in ABCA1-dependent cholesterol efflux frommacrophages. J Biol Chem, 2005, 280(1): 38-47
    [122] Zheng L, Nukuna B, Brennan ML et al. Apolipoprotein A-I is a selective target for myeloperoxidase-catalyzed oxidation and functional impairment in subjects with cardiovascular disease. J Clin Invest, 2004, 114(4): 529-541
    [123] Feng Q, Lu X, Jones DL et al. Increased inducible nitric oxide synthase expression contributes to myocardial dysfunction and higher mortality after myocardial infarction in mice. Circulation, 2001, 104(6): 700-704
    [124] Mihm MJ, Yu F, CarnesCA et al. Impairedmyofibrillar energetics and oxidative injury during human atrial fibrillation. Circulation, 2001, 104: 174–180
    [125] Lokuta AJ, Maertz NA, Meethal SV et al. Increased nitration of sarcoplasmic reticulum Ca2+-ATPase in human heart failure. Circulation, 2005, 111(8): 988-995
    [126] BouloumiéA, Bauersachs J, Linz W et al. Endothelial dysfunction coincides with an enhanced nitric oxide synthase expression and superoxide anion production. Hypertension, 1997, 30(4): 934-941
    [127] Barton CH, Ni Z, Vaziri ND. Enhanced nitric oxide inactivation in aortic coarctation-induced hypertension. Kidney Int, 2001, 60(3): 1083-1087
    [128] Wattanapitayakul SK, Weinstein DM, Holycross BJ et al. Endothelial dysfunction and peroxynitrite formation are early events in angiotensin-induced cardiovascular disorders. FASEB J, 2000, 14(2): 271-278
    [129] van der Loo B, Labugger R, Skepper JN et al. Enhanced peroxynitrite formation is associated with vascular aging. J Exp Med, 2000, 192(12):1731-1744
    [130] Knyushko TV, Sharov VS, Williams TD et al. 3-Nitrotyrosine modification of SERCA2a in the aging heart: a distinct signature of the cellular redox environment. Biochemistry, 2005, 44: 13071–13081
    [131] Kooy NW, Lewis SJ, Royall JA et al. Extensive tyrosine nitration in human myocardial inflammation: evidence for the presence of peroxynitrite. Crit Care Med, 1997, 25(5): 812-819
    [132] Mebazaa A, De Keulenaer GW, Paqueron X et al. Activation of cardiac endothelium as a compensatory component in endotoxin-induced cardiomyopathy: role of endothelin, prostaglandins, and nitric oxide. Circulation, 2001, 104(25): 3137-3144
    [133] Pignatelli B, Li CQ, Boffetta P et al. Nitrated and oxidized plasma proteins in smokers and lung cancer patients. Cancer Res, 2001, 61(2): 778-784
    [134] Knight-Lozano CA, Young CG, Burow DL et al. Cigarette smoke exposure and hypercholesterolemia increase mitochondrial damage in cardiovascular tissues. Circulation, 2002, 105(7): 849-854
    [135] Vadseth C, Souza JM, Thomson L et al. Pro-thrombotic state induced by post-translational modification of fibrinogen by reactive nitrogen species. J Biol Chem, 2004, 279:8820–8826
    [136] Nowak P, Kolodziejczyk J, Wachowicz B. Peroxynitrite and fibrinolytic system: the effect of peroxynitrite on plasmin activity. Mol Cell Biochem, 2004, 267: 141–146
    [137] Pennathur S, Bergt C, Shao B et al. Human atherosclerotic intima and blood of patients with established coronary artery disease contain high density lipoprotein damaged by reactive nitrogen species. J Biol Chem, 2004, 279: 42977–42983
    [138] Leeuwenburgh C, Hardy MM, Hazen SL et al. Reactive nitrogen intermediates promote low density lipoprotein oxidation in human atherosclerotic intima. J Biol Chem, 1997, 272: 1433–1436
    [139] Goodwin DC, Gunther MR, Hsi LC et al. Nitric oxide trapping of tyrosyl radicals generated during prostaglandin endoperoxide synthase turnover. Detection of the radical derivative of tyrosine 385. J Biol Chem, 1998, 273: 8903–8909
    [140] Deeb RS, ResnickMJ, Mittar D et al. Tyrosine nitration in prostaglandin H(2) synthase. J Lipid Res, 2002, 43: 1718–1726
    [141] Deeb RS, Shen H, Gamss C et al. Inducible nitric oxide synthase mediates prostaglandin h2 synthase nitration and suppresses eicosanoid production. Am J Pathol, 2006, 168: 349–362
    [142] Zou M, Jendral M, Ullrich V. Prostaglandin endoperoxide-dependent vasospasm in bovine coronary arteries after nitration of prostacyclin synthase. Br J Pharmacol, 1999, 126: 1283–1292
    [143] Schmidt P, Youhnovski N, Daiber A et al. Specific nitration at tyrosine 430 revealed by high resolution mass spectrometry as basis for redox regulation of bovine prostacyclin synthase. J Biol Chem, 2003, 278: 12813–12819
    [144] Yamakura F, Taka H, Fujimura T et al. Inactivation of human manganese-superoxide dismutase by peroxynitrite is caused by exclusive nitration of tyrosine 34 to 3-nitrotyrosine. J Biol Chem, 1998, 273: 14085–14089
    [145] Mihm MJ, Coyle CM, Schanbacher BL et al. Peroxynitrite induced nitration and inactivation of myofibrillar creatine kinase in experimental heart failure. Cardiovasc Res, 2001, 49(4): 798-807
    [146] BorbelyA, TothA, Edes I et al. Peroxynitriteinduced alpha-actinin nitration and contractile alterations in isolated human myocardial cells. Cardiovasc Res, 2005, 67: 225–233
    [147] Viner RI, Ferrington DA, Williams TD et al. Protein modification during biological aging: selective tyrosine nitration of the SERCA2a isoform of the sarcoplasmic reticulum Ca2+-ATPase in skeletal muscle. Biochem J, 1999, 340(Pt 3): 657–669
    [148] Wenzel P, Daiber A, Oelze M et al. Mechanisms underlying recoupling of eNOS by HMG-CoA reductase inhibition in a rat model of streptozotocin-induced diabetes mellitus. Atherosclerosis, 2008, 198(1): 65-76
    [149] Nie H, Wu JL, Zhang M et al. Endothelial nitric oxide synthase-dependent tyrosine nitration of prostacyclin synthase in diabetes in vivo. Diabetes, 2006, 55(11): 3133-3141
    [150] Randriamboavonjy V, Pistrosch F, B?lck B et al. Platelet sarcoplasmic endoplasmic reticulum Ca2+-ATPase and mu-calpain activity are altered in type 2 diabetes mellitus and restored by rosiglitazone. Circulation, 2008,117(1): 52-60
    [151] Taguchi K, Kobayashi T, Hayashi Y et al. Enalapril improves impairment of SERCA-derived relaxation and enhancement of tyrosine nitration in diabetic rat aorta. Eur J Pharmacol, 2007, 556(1-3): 121-128
    [152] Bubolz AH, Wu Q, Larsen BT et al. Ebselen reduces nitration and restores voltage-gated potassium channel function in small coronary arteries of diabetic rats. Am J Physiol Heart Circ Physiol, 2007, 293(4): H2231-2237
    [153] Zhan X, Du Y, Crabb JS et al. Targets of tyrosine nitration in diabetic rat retina. Mol Cell Proteomics, 2007, Dec 28, [Epub ahead of print]
    [154] Laursen JB, Somers M, Kurz S et al. Endothelial regulation of vasomotion in apoE-deficient mice: implications for interactions between peroxynitrite and tetrahydrobiopterin. Circulation, 2001, 103: 1282-1288
    [155] Szabo C, Mabley JG, Moeller SM et al. Part I: pathogenetic role of peroxynitrite in the development of diabetes and diabetic vascular complications: studies with FP15, a novel potent peroxynitrite decomposition catalyst. Mol Med (Cambridge, Mass.), 2002, 8(10): 571-580
    [156] Armstrong D, Al-Awadi F. Lipid peroxidation and retinopathy in streptozotocin-induced diabetes. Free Radic Biol Med, 1991, 11: 433-436
    [157] Fathallah L, Obrosova IG. Increased retinal lipid peroxidation in early diabetes is not associated with ascorbate depletion or changes in ascorbate redox state. Exp Eye Res, 2001, 72: 719-723
    [158] R?sen P, Nawroth PP, King G et al. The role of oxidative stress in the onset and progression of diabetes and its complications: a summary of a Congress Series sponsored by UNESCO-MCBN, the American Diabetes Association and the German Diabetes Society. Diabetes Metab Res Rev, 2001, 17(3): 189-212
    [159] Pierce GN, Dhalla NS. Heart mitochondrial function in chronic experimental diabetes in rats.Can J Cardiol, 1985, 1(1): 48-54
    [160] Mokhtar N, Lavoie JP, Rousseau-Migneron S et al. Physical training reverses defectin mitochondrial energy production in heart of chronically diabetic rats. Diabetes, 1993, 42(5): 682-687
    [161] Tanaka Y, Konno N, Kako KJ. Mitochondrial dysfunction observed in situ in cardiomyocytes of rats in experimental diabetes. Cardiovasc Res, 1992, 26(4): 409-414
    [162] Tomita M, Mukae S, Geshi E et al. Mitochondrial respiratory impairment in streptozotocin-induced diabetic rat heart. Jpn Circ J, 1996, 60(9): 673-682
    [163] Radi R, Cassina A, Hodara R. Nitric oxide and peroxynitrite interactions with mitochondria. Biol Chem, 2002, 383(3-4): 401-409
    [164] MacMillan-Crow LA, Cruthirds DL, Ahki KM et al. Mitochondrial tyrosine nitration precedes chronic allograft nephropathy. Free Radic Biol Med, 2001, 31(12): 1603-1608
    [165] Valdez LB, Alvarez S, Arnaiz SL et al. Reactions of peroxynitrite in the mitochondrial matrix. Free Radic Biol Med, 2000, 29(3-4): 349-356
    [166] RiobóNA, Clementi E, Melani M et al. Nitric oxide inhibits mitochondrial NADH:ubiquinone reductase activity through peroxynitrite formation. Biochem J, 2001, 359(Pt 1): 139-145
    [167] Pearce LL, Pitt BR, Peterson J. The peroxynitrite reductase activity of cytochrome c oxidase involves a two-electron redox reaction at the heme a(3)-Cu(B) site. J Biol Chem, 1999, 274(50): 35763-35767
    [168] Cai H, Harrison DG. Endothelial dysfunction in cardiovascular diseases. The role of oxidant stress. Circ Res, 2000, 87: 840–844
    [169] Rueckschloss U, Duerrschmidt N, Morawietz H. NADPH oxidase in endothelial cells: impact on atherosclerosis. Antioxid Redox Signal, 2003, 5: 171–180
    [170] Myatt L, Cui X. Oxidative stress in the placenta. Histochem Cell Biol, 2004, 122(4): 369-382
    [171] Rubani GM. The role of endothelium in cardiovascular homeostasis and diseases. JCardiovasc Pharmacol, 1993, 22: S1-14
    [172] Cohen RA. Role of nitric oxide in diabetic complications. Am J Ther, 2005, 12: 499–502
    [173] Laight DW, Carrier MJ, Anggard EE. Endothelial cell dysfunction and the pathogenesis of diabetic macroangiopathy. Diabetes Metab Res Rev, 1999, 15: 274-282
    [174] P?nu? C, Mo?a M, Vladu D et al. The endothelial dysfunction in diabetes mellitus. Rom J Intern Med, 2003, 41(1): 27-33
    [175] Lash JM, Nase GP, Bohlen HG. Acute hyperglycemia depresses arteriolar no formation in skeletal muscle. Am J Physiol, 1999, 277: 1513-1520
    [176] Kawano H, Motoyama T, Hirashima O et al. Hyperglycemia rapidly suppresses flow-mediated endothelium-dependent vasodilation of brachial artery. J Am Coll Cardiol, 1999, 34: 146-154
    [177] Title LM, Cummings PM, Giddens K et al. Oral glucose loading acutely attenuates endothelium-dependent vasodilation in healthy adults without diabetes: an effect prevented by vitamins C and E. J Am Coll Cardiol, 2000, 36: 2185-2191
    [178] Shige H, Ishikawa T, Suzukawa M et al. Endothelium-dependent flow-mediated vasodilation in the postprandial state in type 2 diabetes mellitus. Am J Cardiol, 1999, 84: 1272-1274
    [179] Vehkavaara S, Sepp?l?-Lindroos A, Westerbacka J et al. In vivo endothelial dysfunction characterizes patients with impaired fasting glucose. Diabetes Care, 1999, 22: 2055-2060
    [180] Tesfamariam B, Cohen RA. Free radicals mediate endothelial cell dysfunction caused by elevated glucose. Am J Physiol, 1992, 263: H321-326
    [181] Tesfamariam B. Free radicals in diabetic endothelial cell dysfunction. Free Radic Biol Med, 1994, 16: 383-391
    [182] Brezniceanu ML, Liu F, Wei CC et al. Catalase overexpression attenuatesangiotensinogen expression and apoptosis in diabetic mice. Kidney Int, 2007, 71(9): 912-923
    [183] Chan NN, Vallance P, Colhoun HM. Nitric oxide and vascular responses in Type I diabetes. Diabetologia, 2000, 43(2): 137-147
    [184] Farkas K, Sármán B, Jermendy G et al. Endothelial nitric oxide in diabetes mellitus: too much or not enough? Diabetes Nutr Metab, 2000, 13(5): 287-297
    [185] Endemann DH, Schiffrin EL Nitric oxide, oxidative excess, and vascular complications of diabetes mellitus. Curr Hypertens Rep, 2004, 6(2): 85-89
    [186] Sarchielli P, Galli F, Floridi A et al. Relevance of protein nitration in brain injury: a key pathophysiological mechanism in neurodegenerative, autoimmune, or inflammatory CNS diseases and stroke. Amino Acids, 2003, 25(3-4): 427-436
    [187] Reynolds MR, Berry RW, Binder LI. Nitration in neurodegeneration: deciphering the“Hows”“nYs”. Biochemistry, 2007, 46(25): 7325-7336
    [188] Butterfield DA, Reed TT, Perluigi M et al. Elevated levels of 3-nitrotyrosine in brain from subjects with amnestic mild cognitive impairment: implications for the role of nitration in the progression of Alzheimer’s disease. Brain Res, 2007, 1148: 243-248
    [189] Castegna A, Thongboonkerd V, Klein JB et al. Proteomic identification of nitrated proteins in Alzheimer’s disease brain. J Neurochem, 2003, 85(6): 1394-1401
    [190] Liu D, Bao F, Wen J et al. Mutation of superoxide dismutase elevates reactive species: comparison of nitration and oxidation of proteins in different brain regions of transgenic mice with amyotrophic lateral sclerosis. Neuroscience, 2007, 146(1): 255-264
    [191] Casoni F, Basso M, Massignan T et al. Protein nitration in a mouse model of familial amyotrophic lateral sclerosis: possible multifunctional role in the pathogenesis. J Biol Chem, 2005, 280(16): 16295-16304
    [192] El-Remessy AB, Bartoli M, Platt DH et al. Oxidative stress inactivates VEGF survival signaling in retinal endothelial cells via PI 3-kinase tyrosine nitration. JCell Sci, 2005, 118: 243-252
    [193] Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods, 1983, 65: 55– 63
    [194] Rajeswari O, Natarajan R, Nadler JL et al. Glucose induces lipid peroxidation and inactivation of membrane-associated ion-transport enzymes in human erythrocytes in vivo and in vitro. J Cell Physiol, 1991, 149: 100-109
    [195] Hissin, PJ, Hilf RA. Fluorimetric method for determination of oxidized and reduced glutathione in tissues. Anal Biochem, 1976, 74: 214-226
    [196] Jiao HL, Ye P, Zhao BL. Protective effects of green tea polyphenols on human HepG2 cells against oxidative damage of fenofibrate. Free Radic Biol Med, 2003, 35: 1121-1128
    [197] Ye J, Wang S, Leonard SS et al. Role of reactive oxygen species and p53 in chromium(VI)-induced apoptosis. J Biol Chem, 1999, 274: 34974–34980
    [198] Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem, 1976, 72: 248-254
    [199] Kwon H, Jun HS, Yang Y et al. Development of autoreactive diabetogenic T cells in the thymus of NOD mice. J Autoimmun, 2005, 24(1):11-23
    [200] Zou MH, Ullrich V, Cohen R. Peroxynitrite and vascular endothelial dysfunction in diabetes mellitus. Endothelium, 2004, 11: 89–97
    [201] Duffy A, Liew A, O'Sullivan J et al. Distinct effects of high-glucose conditions on endothelial cells of macrovascular and microvascular origins. Endothelium, 2006, 13(1): 9-16
    [202] Camici GG, Schiavoni M, Francia P et al. Genetic deletion of p66(Shc) adaptor protein prevents hyperglycemia-induced endothelial dysfunction and oxidative stress. Proc Natl Acad Sci U S A, 2007, 104(12): 5217-5222
    [203] Tachi Y, Okuda Y, Bannai C et al. High concentration of glucose causes impairmentof the function of the glutathione redox cycle in human vascular smooth muscle cells. FEBS Let, 1998, 421: 19-22
    [204] Li G, Zhang H, Li Y et al. Protection of vascular endothelial cells from high glucose injury induced by quercetin. Zhong Yao Cai, 2002, 25(4): 268-270
    [205] Li YP, Wang YN, Deng H et al. Protective effect of losartan on endothelial cells exposed to high glucose levels in vitro. Zhejiang Da Xue Xue Bao Yi Xue Ban, 2006, 35(3): 238-244
    [206] Dai Z, Liao DF, Jiang DJ et al. 3,4,5,6-Tetrahydroxyxanthone prevents vascular endothelial cell apoptosis induced by high glucose. Naunyn Schmiedebergs Arch Pharmacol, 2004, 370(4): 314-319
    [207] Catherwood MA, Powell LA, Anderson P et al. Glucose-induced oxidative stress in mesangial cells. Kidney Int, 2002, 61(2): 599-608
    [208] Wang SX, Xiong XM, Song T et al. Protective effects of cariporide on endothelial dysfunction induced by high glucose. Acta Pharmacol Sin, 2005, 26(3): 329-333
    [209] Ye G, Metreveli NS, Donthi RV et al. Catalase protects cardiomyocyte function in models of type 1 and type 2 diabetes. Diabetes, 2004, 53(5): 1336-1343
    [210] Yue KK, Chung WS, Leung AW et al. Redox changes precede the occurrence of oxidative stress in eyes and aorta, but not in kidneys of diabetic rats. Life Sci, 2003, 73(20): 2557-2570
    [211] Lee GT, Ha H, Jung M et al. Delayed treatment with lithospermate B attenuates experimental diabetic renal injury. J Am Soc Nephrol, 2003, 14(3): 709-720
    [212] Shimoike T, Inoguchi T, Umeda F et al. The meaning of serum levels of advanced glycosylation end products in diabetic nephropathy. Metabolism, 2000, 49(8): 1030-1035
    [213] Zúrová-NedelcevováJ, NavarováJ, DrábikováK et al. Participation of reactive oxygen species in diabetes-induced endothelial dysfunction. Neuro Endocrinol Lett, 2006, (S) 2: 168-171
    [214] Berent-Spillson A, Russell JW. Metabotropic glutamate receptor 3 protects neurons from glucose-induced oxidative injury by increasing intracellular glutathione concentration. J Neurochem, 2007, 101(2): 342-354
    [215] Ksiazek K, Breborowicz A, J?rres A et al. Oxidative stress contributes to accelerated development of the senescent phenotype in human peritoneal mesothelial cells exposed to high glucose. Free Radic Biol Med, 2007, 42(5): 636-641
    [216] Agardh CD, Hultberg B, Nayak RC et al. Bovine retinal pericytes are resistant to glucose-induced oxidative stress in vitro. Antioxid Redox Signal, 2005, 7(11-12): 1486-1493
    [217] Powell LA, Warpeha KM, Xu W et al. High glucose decreases intracellular glutathione concentrations and upregulates inducible nitric oxide synthase gene expression in intestinal epithelial cells. J Mol Endocrinol, 2004, 33(3): 797-803
    [218] Kashiwagi A, Asahina T, Ikebuchi M et al. Abnormal glutathione metabolism and increased cytotoxicity caused by H2O2 in human umbilical vein endothelial cells cultured in high glucose medium. Diabetologia, 1994, 37(3): 264-269
    [219] Weidig P, McMaster D, Bayraktutan U. High glucose mediates pro-oxidant and antioxidant enzyme activities in coronary endothelial cells. Diabetes Obes Metab, 2004, 6(6): 432-441
    [220] Kamata H, Hirata H. Redox regulation of cellular signalling. Cell Signal, 1999, 11: 1–14
    [221] Klaunig JE, Xu Y, Isenberg JS et al. The role of oxidative stress in chemical carcinogenesis. Environ Health Perspect, 1998, 106(Suppl 1): 289–295
    [222] Myhrea O, Andersena JM, Aarnesc H et al. Evaluation of the probes 2′,7′-dichlorofluorescin diacetate, luminol, and lucigenin as indicators of reactive species formation. Biochem Pharmaco, 2003, 65(10): 1575-1582
    [223] Scott JA, Homcy CJ, Khaw BA et al. Quantitation of intracellular oxidation in a renal epithelial cell line. Free Radic Biol Med, 1988, 4: 79–83
    [224] Zhu H, Bannenberg GL, Moldeus P et al. Oxidation pathways for the intracellular probe 2′,7′-dichlorofluorescein. Arch Toxicol, 1994, 68: 582–587
    [225] Pricci F, Leto G, Amadio L et al. Oxidative stress in diabetes-induced endothelial dysfunction involvement of nitric oxide and protein kinase C. Free Radic Biol Med, 2003, 35(6): 683-694
    [226] Oberley LW. Free radicals and diabetes. Free Radic Biol Med, 1988, 5: 113-124
    [227] Baynes JW. Role of oxidative stress in development of complications in diabetes. Diabetes, 1991, 40: 405-412
    [228] Williamson JR, Chang K, Eragos M et al. Hyperglycemic pseudohypoxia and diabetic complications. Diabetes, 1993, 42: 801-813
    [229] Ross R. The pathogenesis of atherosclerosis-an update. N Engl J Med, 1986, 314:488-500
    [230] Graier WF, Grubenthal I, Dittrich P et al. Intracellular mechanism of high D-glucose-induced modulation of vascular cell proliferation. Eur J Pharmacol, 1995, 294: 221-229
    [231] Carmody BJ, Arora S, Wakefield MC et al. Progesterone inhibits human infragenicular arterial smooth muscle cell proliferation induced by high glucose and insulin concentrations. J Vasc Surg, 2002, 36(4): 833-838
    [232] Giugliano D, Marfella R, Coppola L et al. Vascular effects of acute hyperglycemia in humans are reversed by L-Arginine. Evidence for reduced availability of nitric oxide during hyperglycemia. Circulation, 1997, 95: 1783-1790
    [233] Bosse HM, Bachmann S. Immunohistochemically detected protein nitration indicates sites of renal nitric oxide release in Goldblatt hypertension. Hypertension, 1997, 30(4): 948-952
    [234] Adachi T, Matsui R, Xu S et al. Antioxidant improves smooth muscle sarco/endoplasmic reticulum Ca(2+)-ATPase function and lowers tyrosine nitration in hypercholesterolemia and improves nitric oxide-induced relaxation. Circ Res,2002, 90(10): 1114-1121
    [235] Hsieh CC, Lau YT. Migration of vascular smooth muscle cells is enhanced in cultures derived from spontaneously hypertensive rat. Pflug Arch Eur J Phy, 1998, 435: 286–292
    [236]刘红梅,张天蓝,王夔。氧化脂质和细胞间相互作用对血管钙化和骨矿物丢失的影响:La3+的作用。博士论文,2004,62
    [237] Natarajan R, Gonzales N, Xu L et al. Vascular smooth muscle cells exhibit increased growth in response to elevated glucose. Biochem Biophys Res Commun, 1992, 187(1): 552-560
    [238] Suzuki LA, Poot M, Gerrity RG et al. Diabetes accelerates smooth muscle accumulation in lesions of atherosclerosis. Diabetes, 2001, 50: 851-860
    [239] Kobayashi Y, Naruse K, Hamada Y et al. Human proinsulin C-peptide prevents proliferation of rat aortic smooth muscle cells cultured in high-glucose conditions. Diabetologia, 2005, 48(11): 2396-2401
    [240] Kim MJ, Park KG, Lee KM et al. Cilostazol Inhibits Vascular Smooth Muscle Cell Growth by Downregulation of the Transcription Factor E2F. Hypertension, 2005, 45: 552-556
    [241] Ling S, Little PJ, Williams MR et al. High glucose abolishes the antiproliferative effect of 17beta-estradiol in human vascular smooth muscle cells. Am J Physiol Endocrinol Metab, 2002, 282(4): E746-751
    [242] Sharpe PC, Yue KKM, Catherwood MA et al. The effects of glucose-induced oxidative stress on growth and extracellular matrix gene expression of vascular smooth muscle cells. Diabetologia, 1998, 41: 1210-1219
    [243] Peiro C, Lafuente N, Matesanz N et al. High glucose induces cell death of cultured human aortic smooth muscle cells through the formation of hydrogen peroxide. Br J Pharmaco, 2001, 133: 967-974
    [244] Rao GN, Berk BC. Active oxygen species stimulate vascular smooth muscle cellgrowth and proto-oncogene expression. Circ Res, 1992, 70: 593-599
    [245] Yoshida K, Hirokawa J, Tagami S et al. Weakened cellular scavenging activity against oxidative stress in diabetes mellitus: regulation of glutathione synthesis and efflux. Diabetologia, 1995, 38(2):201-210
    [246] Murakami K, Kondo T, Ohtsuka Y et al. Impairment of glutathione metabolism in erythrocytes from patients with diabetes mellitus. Metabolism, 1989, 38(8): 753-758
    [247] Powell LA, Nally SM, McMaster D et al. Restoration of glutathione levels in vascular smooth muscle cells exposed to high glucose conditions. Free Radic Biol Med, 2001, 31: 1149-1155
    [248] Urata Y, Yamamoto H, Goto S et al. Lone exposure to high glucose concentration impairs the responsive expression ofγ-glutamylcysteine synthetase by interleukin-1βand tumor necrosis factor-αin mouse endothelial cells. J Biol Chem, 1996, 271: 15146-15152
    [249] Sun M, Fan HW, Ma HY et al. Protective effect of total glucosides of Picrorhiza scrophulariiflora against oxidative stress in glomerular mesangial cells induced by high glucose. Yao Xue Xue Bao, 2007, 42(4): 381-385
    [250] Ishibashi Y, Sugimoto T, Ichikawa Y et al. Glucose dialysate induces mitochondrial DNA damage in peritoneal mesothelial cells. Perit Dial Int, 2002, 22(1): 11-21
    [251] Ruiz-Mu?oz LM, Vidal-Vanaclocha F, Lampreabe I. Enalaprilat inhibits hydrogen peroxide production by murine mesangial cells exposed to high glucose concentrations. Nephrol Dial Transplant, 1997, 12(3): 456-464
    [252] Ganz MB, Seftel A. Glucose-induced changes in protein kinase C and nitric oxide are prevented by vitamin E. Am J Physiol Endocrinol Metab, 2000, 278(1):E146-152
    [253] Pacheco ME, Beltrán A, Redondo J et al. High glucose enhances inducible nitric oxide synthase expression. Role of protein kinase C-betaII. Eur J Pharmacol, 2006, 538(1-3):115-123
    [254] Muniyappa R, Srinivas PR, Ram JL et al. Calcium and protein kinase C mediate high-glucose-induced inhibition of inducible nitric oxide synthase in vascular smooth muscle cells. Hypertension, 1998, 31(1 Pt 2): 289-295
    [255] Zhao Y, Lu N, Li H et al. High glucose induced human umbilical vein endothelial cell injury: involvement of protein tyrosine nitration. Mol Cell Biochem, 2008, 311(1-2): 19-29
    [256] Asghar M, Monjok E, Kouamou G et al. Super CitriMax (HAC-SX) attenuates increases in oxidative stress, inflammation, insulin resistance, and body weight in developing obese Zucker rats. Mol Cell Biochem, 2007, 304: 93-99
    [257] Ischiropoulos H, al-Mehdi AB. Peroxynitrite-mediated oxidative protein modifications. FEBS Let, 1995, 364: 279-282
    [258] Gow A, Duran D, Thom SR et al. Carbon dioxide enhancement of peroxynitrite-mediated protein tyrosine nitration. Arch Biochem Biophys, 1996, 333: 42-48
    [259] Huie RE, Padmaja S. The reaction of NO with superoxide. Free Radic Res Comm, 1993, 18(4):195-199
    [260] Lorenzi M, Montisano DF, Toledo S et al. Increased single strand breaks in DNA of lymphocytes from diabetic subjects. J Clin Invest, 1987, 79(2): 653-656
    [261] Porta M, La Selva M, Bertagna A et al. High glucose concentrations inhibit DNA synthesis and replication without causing death or impairing injury repair in cultured human endothelial cells. Diabetes Res, 1988, 7(2): 59-63
    [262] Curcio F, Ceriello A. Decreased cultured endothelial cell proliferation in high glucose medium is reversed by antioxidants: new insights on the pathophysiological mechanisms of diabetic vascular complications. In Vitro Cell Dev Biol, 1992, 28A(11-12): 787-790
    [263] Zhao Y, Li H, Gao Z et al. Effects of flavonoids extraced from Scutellaria baicalensis Georgi on Hemin-nitrite-H2O2 induces liver injury. Eur J Pharm, 2006,536(1-2) : 192-199
    [264] Turowski SG, Jank KE, Fung HL. Inactivation of hepatic enzymes by inhalant nitrite--in vivo and in vitro studies. AAPS J, 2007, 9(3): E298-305
    [265] Chen HJ, Chang CM, Lin WP et al. H(2)O(2)/Nitrite-Induced Post-translational Modifications of Human Hemoglobin Determined by Mass Spectrometry: Redox Regulation of Tyrosine Nitration and 3-Nitrotyrosine Reduction by Antioxidants. Chembiochem, 2008, 9(2): 312-323
    [266] Zhao YL, Gao ZH, Li HL et al. Hemin/nitrite/H2O2 induces brain homogenate oxidation and nitration: effects of some flavonoids. Biochim Biophys Acta, 2004, 1675: 105-112

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700