用户名: 密码: 验证码:
奈比洛尔舒张血管及保护自发性高血压大鼠血管内皮的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景:奈比洛尔是一个高度选择性β1受体阻断剂,具有独特的舒血管作用。前期研究表明,奈比洛尔的舒血管作用具有一氧化氮(NO)依赖性,但其具体信号转导途径并不清楚。PI3K/Akt/eNOS是细胞内重要的信号转导通路。Akt可磷酸化内皮型一氧化氮合酶(eNOS),促进NO释放。同时,血管内皮NO的释放还受不同亚型K+通道的调节。PI3K/Akt/eNOS信号传导通路或K+通道是否参与奈比洛尔的舒血管作用还不得而知。另外,实验显示,奈比洛尔促进内皮NO释放可能有血管差异。
     目的:本研究拟通过离体血管张力实验,观察奈比洛尔对Wistar大鼠不同血管(主动脉、颈动脉、肾动脉、肠系膜动脉和股动脉)舒张作用的差异;观察NOS抑制剂,不同亚型K+通道阻断剂和PI3K/Akt阻断剂对奈比洛尔舒张作用的影响,进一步探讨奈比洛尔舒血管的机制。
     方法:成年雄性Wistar大鼠,220-250g,击头致昏,立即取主动脉、颈动脉、肾、肠系膜和股动脉,置于O2饱和的4℃生理盐溶液(physiological salt solution, PSS)中。主动脉和颈动脉剔除脂肪及周围结缔组织后,剪成3-4mm的血管环。血管环用两根不锈钢微型挂钩贯穿血管管腔,水平横向悬挂在浴管内,下方固定,上方以一细钢丝连于张力换能器(PowerLab),经PowerLab计算机生物信号采集分析系统记录血管的舒缩变化。浴管内含有通以100%O2、37℃的PSS 10ml。为了使标本处于长度-张力曲线的最适点开始收缩,主动脉和颈动脉环悬挂在浴管后,立即分别给予2.0g和1.0g的前负荷,温育2h。在温育期间不断调整张力,使之维持稳定,每20min更换一次新鲜的PSS。所有动脉环用60 mmol/L KCl多次刺激,当标本对刺激稳定时,即相邻连续两次同样的刺激所引起的收缩幅度差别<10%;且在此基础上10-5mol/L乙酰胆碱(acetylcholine, Ach)所引起的舒张幅度≥30%时,认为血管环组织结构完整,功能正常,开始正式实验,观察药物干预的作用。
     用大头针固定肠系膜动脉,肾动脉和股动脉主干和周围组织,去除动脉周围的脂肪组织,选取动脉的三级分支血管,剪取2mm左右的血管环。将两根直径为40μm的钨丝穿入管腔,固定血管环在Multi Myograph System-610M浴槽内传感器上。浴槽内含有5ml PSS,持续通以100%O2,温度控制在37℃。为了使血管环处于最佳反应状态,调整肠系膜动脉、肾动脉和股动脉的跨壁压,使其分别保持在相当于100mmHg、80mmHg和100mmHg的基础压力状态,平衡60min,每20min更换新鲜的37℃PSS液。血管环的张力变化通过DMT换能系统采集,并用Chart 5.3生物信号分析处理软件记录。为了检测血管环在离体状态下对血管活性物质的反应性,在开始正式实验之前,用60 mmol/L KC1预收缩血管。当收缩达稳定的平台时,用Ach(10-5mol/L)舒张,连续二次。当相邻两次刺激的收缩幅度差别不大于10%时;在此基础上当Ach所引起的舒张幅度≥20%,认为血管环组织结构完整,功能正常,开始正式实验。
     用60 mmol/L KCl或苯肾上腺素(phenylephrine, Phe)(主动脉和颈动脉用10-6mol/L,肾动脉、肠系膜动脉和股动脉用10-5mol/L)预收缩不同动脉。收缩达平台后,累计加入奈比洛尔(10-7-10-5 mol/L),观察其舒张作用,建立奈比洛尔的累积对数浓度—反应曲线(Logarithm Cumulative Concentration Response Curve, LCCR)。PSS液冲洗3次,使血管张力达原来基线水平。稳定60min后,再次用60 mmol/L KC1或Phe收缩动脉。收缩达平台后,分别在浴管中加入不同亚型的K+通道阻断剂iberiotoxin (100nmol/L)、格列本脲(glibenclamide,0.1 mmol/L)、4-氨基吡啶(4-aminopyridine,1 mmol/L)和氯化钡(BaCl2, lmmol/L); PI3K阻断剂Wortmannin (5×10-7 mol/L); Akt阻断剂(lL-6-hydroxymethyl-chiro-inositol 2-(R)-2-O-methyl-3-O-octadecylcarbonate,10-5 mol/L);NOS阻断剂左旋硝基精氨酸甲酯(L-NAME,100μmol/L)。当血管活动再次达到平台后,在浴管中累计加入奈比洛尔(10-7-10-5mol/L)。以60 mmol/L KC1或Phe引起的张力升高为100%,评价NOS阻断剂,K+通道阻断剂和PI3K/Akt阻断剂对奈比洛尔的舒血管效应的影响。
     结果:奈比洛尔可浓度依赖性地舒张Phe或KCl收缩的大鼠不同动脉,其最大舒张效应(Emax)因收缩剂不同而有差异。Phe收缩血管时,奈比洛尔Emax顺序为:肠系膜动脉(96.7±12.8%)≈主动脉(94.2±5.4%)>股动脉(84.84±12.1%)≈肾动脉(80.3±3.4%)>颈动脉(74.9±10.1%)。KCl收缩血管时,奈比洛尔对肠系膜动脉的舒张作用最大(90.5±15.2%),其余动脉Emax无显著性差异:股动脉(75.7±17.7%),主动脉(73.1±11.3%),肾动脉(71.6±6.2%),颈动脉(70.9±7.1%)。奈比洛尔对不同动脉的舒张作用均可以被eNOS抑制剂L-NAME (100μmol/L)抑制,但不受P13K抑制剂wortmannin (5×10-7 mol/L)和选择性Akt抑制剂(lL-6-hydroxymethyl-chiro-inositol 2-(R)-2-O-methyl-3-O-octadecylcarbonate,10-5 mol/L)的影响。同样,K+通道阻断剂:iberiotoxin (100 nmol/L),格列本脲(0.1 mmol/L),4-氨基吡啶(1mmol/L), BaCl2 (1 mmol/L)对奈比洛尔的舒血管作用也无显著性影响。
     结论:奈比洛尔可浓度依赖性地舒张Phe或KCl收缩的大鼠不同动脉。无论是K+通道还是PI3K/Akt/eNOS信号通路均不参与奈比洛尔对大鼠主动脉、颈动脉、肾动脉、肠系膜动脉和股动脉的舒张作用。
     研究背景:高血压是严重威胁人类健康和生命的疾病。实验证实,高血压患者和高血压动物模型存在血管内皮功能减退,后者又加速了高血压靶器官的损害。血管内皮功能是“内皮-高血压-心血管事件”链的始动因子和载体。血管内皮功能不全可表现为血管舒缩失衡,血管内皮细胞分泌的活性物质改变,内皮结构损伤,血管重构等方面。逆转高血压内皮功能不全已经成为降压之外的另一治疗靶点。β受体阻断剂在高血压治疗中有广泛的应用。奈比洛尔是高度选择性β1受体阻滞剂,既有β1受体阻滞作用,又能增加一氧化氮(NO)生物利用度,扩张血管,没有一般β受体阻断剂代谢方面的缺点,是当前较佳β受体阻断剂。奈比洛尔可改善自发性高血压大鼠(SHR)主动脉的血管反应性,增加其血浆中NO的含量。但是,有关奈比洛尔对SHR血管重构、内皮损伤、血管中活性物质水平、小动脉血管反应性等影响的研究比较少。
     目的:本研究拟通过观察奈比洛尔对SHR主动脉和肾小叶间动脉重构、血管内皮损伤、血管活性物质水平及不同动脉血管反应性的影响,进一步探讨奈比洛尔对SHR血管内皮的保护作用。
     方法:SHR和同源正常血压大鼠Wister-Kyoto(WKY),随机分成4组:(1)SHR+Nebivolol组(n=6):奈比洛尔(8mg/kg/day, i.g.); (2) SHR+Atenolol组(n=6):阿替洛尔(80mg/kg/day, i.g.); (3) SHR空白对照组(n=6);(4)WKY空白对照组(n=6)。给药过程中,每周在同一时间测量各组大鼠的体重及尾动脉收缩压。给药8周后,用3%戊巴比妥钠(30 mg/kg, i.p.)麻醉大鼠。腹主动脉采血后,迅速取主动脉、颈动脉、肾、肠系膜动脉和股动脉。肾脏及一部分主动脉用4%多聚甲醛固定,用于HE染色,进行形态学观察和血管内径(luminal radius, L),中膜厚度(media thicknes, M),中膜/内径(M/L)的测量;一部分主动脉切片经免疫组织化学染色分析,观察主动脉内皮细胞八因子相关抗原(FⅧ)表达。一部分主动脉制成10%组织匀浆,与血浆离心后,测定主动脉和血浆NO(硝酸还原酶法),血管紧张素Ⅱ(AngⅡ)和内皮素(ET-1)(放射免疫法)和血浆vWF(ELISA)水平。另一部分主动脉和其他动脉(颈动脉、肾动脉、肠系膜动脉、股动脉)用于离体血管张力实验,观察SHR不同动脉对Phe、KCl、ET-1、AngⅡ的收缩反应及对Ach和硝普钠(SNP)的舒张反应性。
     结果:
     (1)实验期间,SHR体重及收缩压均明显高于同龄WKY。奈比洛尔和阿替洛尔对SHR大鼠体重无影响。与阿替洛尔比较,奈比洛尔可明显降低SHR收缩压,此降压作用在给药后4周最显著。
     (2)主动脉形态学观察结果:各组大鼠主动脉L无显著性差异,但SHR主动脉M,M/L较WKY显著增高。奈比洛尔可降低SHR主动脉M和M/L,但阿替洛尔对此无影响。
     (3)肾小叶间动脉形态学观察结果:与WKY比较,SHR肾小叶间动脉L减小,M与M/L增高。奈比洛尔治疗后,SHR肾小叶间动脉L增加,M和M/L显著降低,但阿替洛尔对此无影响。
     (4)主动脉内皮FⅧ免疫组织化学:SHR主动脉FⅧ阳性表达较WKY弱,棕色内皮层不完整。奈比洛尔给药后,SHR主动脉内皮细胞FⅧ阳性表达增强,棕色层显色较清晰,内皮完整。阿替洛尔给药后对SHR主动脉FⅧ表达无影响。
     (5)血浆vWF含量:与WKY组比较,SHRⅧ浆vWF水平显著升高。奈比洛尔可降低SHR血浆vWF,而阿替洛尔对SHR血浆vWF水平无显著性影响。
     (6)血浆及主动脉NO、ET-1、NO/ET-1:与WKY比较,SHR血浆和主动脉NO含量降低;主动脉ET-1含量增加,但是血浆ET-1水平在两组间无明显改变。而且,SHR主动脉和血浆NO/ET-1较WKY显著降低。奈比洛尔可增加SHR血浆及主动脉NO含量和NO/ET-1,但对血浆和主动脉ET-1含量无影响。阿替洛尔对SHR血浆及主动脉NO、ET-1、NO/ET-1无显著影响。
     (7)血浆及主动脉AngⅡ、NO/AngⅡ:SHR血浆和主动脉AngⅡ水平较WKY显著增加,NO/AngⅡ降低。奈比洛尔对血浆AngⅡ含量无影响,但可降低主动脉AngⅡ含量,使血浆和主动脉NO/AngⅡ增加。阿替洛尔对血浆及主动脉AngⅡ、NO/AngⅡ无显著影响。
     (8)不同动脉血管反应性:
     SHR主动脉、颈动脉、肾动脉、肠系膜动脉和股动脉对Phe(10-8-10-5mol/L)、KCl(20-120m mol/L);颈动脉对ET-1 (10-11-10-8mol/L)、AngⅡ(10-9-10-5mol/L)及主动脉对AngⅡ的收缩反应显著高于WKY;不同动脉对Ach (10-10-10-5 mol/L)的舒张效应则弱于WKY,而对SNP (10-10-10-4 mol/L)的舒张反应在两组无显著性差异。
     奈比洛尔可以降低SHR不同动脉对四种收缩剂的反应,其程度因血管不同而异:对KCl收缩的抑制作用在颈动脉和股动脉尤为明显;对Phe的抑制在主动脉、肾动脉、股动脉显著;对ET-1和AngⅡ的抑制在主动脉显著。同时,奈比洛尔可增强SHR不同动脉对Ach的舒张反应,尤其在肾动脉;但是奈比洛尔对不同动脉SNP的舒张无影响。
     阿替洛尔对SHR不同动脉对四种收缩剂收缩反应的抑制作用有血管差异。阿替洛尔可抑制除肾动脉和肠系膜动脉外其余动脉对KCl的收缩;抑制除肠系膜动脉外其余动脉对Phe的收缩;减少主动脉和颈动脉对ET-1, AngⅡ的收缩。阿替洛尔可增强SHR肾动脉对Ach的舒张,对SNP的舒张无影响。
     结论:奈比洛尔在显著降压的同时,可改善SHR血管重构,减少主动脉内皮损伤,增加SHR血浆和主动脉舒血管物质水平,降低缩血管物质含量,改善不同动脉的血管反应性,重建血管舒缩平衡。
     研究背景:血管内皮功能不全在心血管疾病的发生发展中起重要作用,有效预防内皮功能受损可延缓乃至逆转相关病变进程。一氧化氮(nitric oxide, NO)在内皮功能调节中发挥重要作用,被认为是维持血管结构和功能的主要因子。内源性一氧化氮合酶(NOS)的抑制剂非对称性二甲基精氨酸(asymmetric dimethylarginine, ADMA)竞争性抑制NOS活性,减少NO生成。大量资料显示,ADMA水平的增高与多种病理状况下血管内皮功能不全有显著的相关性,可作为一个新的内皮功能不全预测因子。通过降低ADMA从而改善血管内皮功能为心血管疾病防治提供了新途径。我们第二部分的研究显示,奈比洛尔可以保护SHR血管内皮功能。但有关奈比洛尔血管内皮保护作用与ADMA系统关系的研究较少。
     研究目的:本实验拟从组织和细胞水平探讨奈比洛尔对内皮细胞的保护作用与ADMA系统的关系。
     研究方法:
     1、奈比洛尔对SHR ADMA系统的影响。SHR大鼠及WKY大鼠随机分成4组:(1)SHR+Nebivolol组(n=6):给予奈比洛尔8 mg/kg/day; (2) SHR+Atenolol组(n=6):给予阿替洛尔80mg/kg/day; (3) SHR空白对照组(n=6);(4)WKY空白对照组(n=6)。奈比洛尔,阿替洛尔溶于蒸馏水中灌胃,对照组给予等体积蒸馏水灌胃。给药8周后,3%戊巴比妥钠(30mg/kg, i.p.)麻醉大鼠,腹主动脉取血后,迅速分离主动脉,肠系膜动脉,将其置于液氮中冷冻后-70℃保存。离心分离血浆,测ADMA (ELISA法)和NO(硝酸还原酶法)含量,NOS活性(化学法)。提取主动脉和肠系膜动脉总RNA,用RT-PCR分析eNOS,DDAH-2和PRMT-1 mRNA表达。提取主动脉和肠系膜动脉总蛋白,用Western bloting分析DDAH-2和PRMT-1蛋白表达。采用冰冻切片荧光染色行主动脉原位活性氧(ROS)检测。
     2、奈比洛尔对AngⅡ诱导损伤的人脐静脉内皮细胞(HUVECs)的影响。用AngⅡ1μmol/L培养HUVECs 24h,不加或加入阿替洛尔20μmol/L、奈比洛尔(5、10、20μmol/L)预处理1h。0.25%胰酶消化细胞,获取细胞悬液,离心收集细胞上清液,测ADMA (ELISA)和NO水平(硝酸还原酶法)水平,NOS活性(化学法)。提取HUVECs,总RNA,用RT-PCR分析eNOS, DDAH-2和PRMT-1 mRNA表达。提取HUVECs,总蛋白,用Western bloting分析DDAH-2和PRMT-1蛋白表达,同时检测细胞内DDAH活性。
     3、奈比洛尔对ADMA损伤HUVECs的拮抗作用。用ADMA 16μmol/L培养HUVECs 24h,不加或加入阿替洛尔20μmol/L、奈比洛尔(5、10、20μmol/L)预处理1h。0.25%胰酶消化细胞,获取细胞悬液,离心收集细胞上清液,测NO水平(硝酸还原酶法)水平、NOS活性(化学法)。提取HUVECs,总RNA,用RT-PCR分析eNOS mRNA表达,同时测细胞ROS水平。
     4、ADMA对离体大鼠主动脉血管反应性的影响及奈比洛尔对此的影响。成年雄性Wistar大鼠,击头致昏,快速分离主动脉。主动脉剔除脂肪及周围结缔组织后,剪成3-4mm的血管环,悬挂在浴管内,经PowerLab计算机生物信号采集分析系统记录血管的舒缩变化。观察ADMA (10-7-10-4 mol/L)对大鼠主动脉静息张力、Phe(10-6mol/L)预收缩主动脉张力、Ach(10-10-10-5mol/L)舒血管作用的影响及奈比洛尔(10-7,10-6和10-5mol/L)对此的影响。
     结果:
     1、与WKY比较,SHR血浆ADMA水平显著升高,NO水平和NOS活性明显下降。SHR主动脉和肠系膜动脉eNOS及DDAH-2 mRNA表达下降,PRMT-1 mRNA表达增加;DDAH-2蛋白表达下降,PRMT-1蛋白表达增加;主动脉原位ROS荧光强度增强。奈比洛尔可降低SHR血浆ADMA水平,增加NO含量和NOS活性,上调SHR主动脉和肠系膜动脉eNOS mRNA及DDAH-2 mRNA/蛋白表达,下调PRMT-1 mRNA/蛋白表达,降低SHR主动脉原位ROS荧光强度。阿替洛尔对SHR上述改变无影响。
     2、AngⅡ1μmol/L培养HUVECs 24h可明显增加上清液ADMA水平,降低NO水平和NOS、DDAH活性,下调eNOS mRNA及DDAH-2 mRNA/蛋白表达,上调RMT-1 mRNA/蛋白表达。奈比洛尔(5、10、20μmol/L)可剂量依赖性抑制AngⅡ1μmol/L所致的上述改变。预先给予阿替洛尔20μmol/L则没有起到类似的作用。
     3、ADMA 16μmol/L培养HUVECs 24h后,明显增加上清液ADMA水平,降低NO含量和NOS活性,升高细胞内ROS水平,下调eNOS mRNA表达。奈比洛尔(5、10、20、μmol/L)可剂量依赖性抑制ADMA 16μmol/L所致的上述效应。预先给予阿替洛尔20μmol/L则没有起到类似的作用。
     4、离体血管张力实验表明,ADMA (10-7-10-4 mol/L)对离体大鼠主动脉静息张力无影响,但可剂量依赖性升高Phe(10-6 mol/L)预收缩大鼠主动脉的张力,抑制Ach(10-10-10-5mol/L)的舒张反应。奈比洛尔(10-7,10-6,10-5mol/L)可剂量依赖性抑制ADMA对Phe预收缩大鼠主动脉张力的升高,减少ADMA 10-5 mol/L对大鼠主动脉Ach舒张反应的抑制。
     结论:奈比洛尔可通过下调PRMT-1表达,增加DDAH活性和表达,降低ADMA水平,保护内皮细胞。同时,奈比洛尔可拮抗ADMA导致的细胞损伤和血管收缩。
Background:Nebivolol is a highly selectiveβ1 adrenoceptor blocker with additional vasodilating properties. It has been shown that the nebivolol-induced vasorelaxation is nitric oxide (NO) dependent. However, the nature of the transduction pathway that mediates nebivolol's activation remains elusive. PI3K/Akt/eNOS is an important cell signal transduction pathway. The serine/tyrosine protein kinase Akt phosphorylates endothelial cell nitric oxide synthase (eNOS) and enhances the ability of eNOS to generate NO. Previous studies have shown that the release of NO from the endothelium may be ascribed to the modulation of different types of K+ channels. It has also been show that there was a difference in the NO release induced by nebivolol among different arteries.
     Purpose:The present study was designed to determine the relaxation of nebivolol on different arteries (aorta, carotid artery, renal artery, mesenteric artery and femoral artery); to observe the effects of NOS inhibitor, K+ channels inhibitors or PI3K/Akt inhibitors on the vasorelaxation induced by nebivolol in different rat arteries.
     Methods:Male Wistar rats (200-250g) were killed by cervical dislocation. Then thoracic aortas, carotid arteries, renal arteries, mesenteric arteries and femoral arteries were removed and placed in chilled (4℃) physiological salt solution (PSS) which was gassed with 100% O2. Aortas, carotid arteries were cleaned of connective tissue and fat, and cut into 3-4mm long rings. For the recording of tension the vessel rings were mounted, between 2 L-shaped stainless steel hooks, in 10ml organ baths filled with oxygenated PSS solution (bubbled with 100%O2 and maintained at 37℃) (pH 7.4). Each preparation was fixed, via a silk thread, to an isometric force transducer (A.D. Instruments, PowerLab, Australia) and force was recorded via PowerLab computer system (A.D. Instruments). Each vessel ring was subjected to an initial resting tension (aorta,2g; carotid artery, 1g). A 2h equilibration period was allowed before any experimental intervention, and during equilibration, the bath was flushed every 20 minutes with the fresh PSS. After equilibration, the rings were activated 2 times with 60mmol/L KCl. The integrity of endothelium was presumed by observation that the relaxation induced by 10-5mol/L acetylcholine (Ach) on 60 mmol/L KCl induced contraction was greater than 30%. When the contraction induced by 60 mmol/L KCl and the relaxation induced by 10-5 mol/L Ach were repeatable (the change was less than 10% between successive contractions or relaxation), the effects of the drugs to be tested were observed.
     The femoral artery, the third-order branches of the superior mesenteric artery and renal artery were isolated and cut into 2mm-long rings. The rings were mounted in separate 5ml tissue baths filled with PSS solution (bubbled with 100% O2 and maintained at 37℃) (pH 7.4) using 40μm steel wire in a small-vessel myograph (Multi Myograph System-610M, Danish Myo Technology A/S, Denmark) for tension recordings. The rings were normalized according to standard procedures and stretched to a state equal to 100mmHg,80mmHg, 100mmHg, respectively. The rings were equilibrated for at least for 1h, and during equilibration, the bath was flushed every 20 minutes with the fresh PSS. After equilibration, the rings were activated 2 times with 60mmol/L KC1. The integrity of endothelium was presumed by observation that the relaxation induced by 10"5 mol/L Ach on contraction induced by 60 mmol/L KCl was greater than 20%. When the contraction induced by 60 mmol/L KCl and the relaxation induced by 10-5 mol/L Ach were repeatable (the change was less than 10% between successive contractions or relaxation), the effects of the drugs to be tested were observed.
     Vessels were then washed extensively, and subsequently contracted with phenylephrine (Phe) (aorta and carotid artery were pre-contracted with 10"6 mol/L, mesenteric artery, femoral artery and renal artery were pre-contracted with 10"5 mol/L) or with 60 mmol/L KCl. Following attainment of plateau constriction in response to Phe or KCl, the logarithm cumulative concentration response curve (LCCRC) to nebivolol (10-7-10-5 mol/L) was performed. Then the vessels were contracted with Phe or 60mmol/L KCl again. Following attainment of plateau constriction, specific inhibitors of each type of K+channels:iberiotoxin (100 nmol/L), glibenclamide (0.1 mmol/L),4-aminopyridine (4-AP,1 mmol/L), BaCl2 (1 mmol/L), wortmannin (5×10"7 mol/L, a selective inhibitor of phosphatidylinositol 3-kinase (PI3K)), Akt inhibitor (lL-6-hydroxymethyl-chiro-inositol 2-(R)-2-O-methyl-3-O-octadecylcarbonate,10-5 mol/L, a selective inhibitor of Akt) and NG-nitro-L-arginine methyl ester (L-NAME,100μmol/L), an inhibitor of NO synthase were added to the bathing medium respectively. When the plateau constriction was attained, nebivolol (10-7-10'5 mol/L) was added cumulatively. So the effects of NOS inhibitor, K+channels inhibitors or PI3K/Akt inhibitors on the vasorelaxation induced by nebivolol in different rat arteries were studied.
     Results:Nebivolol (10-7-10-5 mol/L) concentration-dependently relaxed pre-contractions induced by KC1 and PE in different rat arteries. The Emax of the relaxation of nebivolol was different according to the contractors. The rank order of vasodilator efficacy as measured in relation to the maximal vasodilation induced by nebivolol (10"7-10-5 mol/L) was:mesenteric artery (96.7±12.8%)≈aorta (94.2±5.4%)>femoral artery (84.8±12.1%)≈renal artery (80.3±3.4%)>carotid artery (74.9±10.1%) pre-contracted with Phe. In arteries contracted with 60mmol/L KCl, the maximal vasodilation was similar, expect in mesenteric artery (90.57±15.2%):femoral artery (75.7±17.7%), aorta (73.1±11.3%), renal artry (71.6±6.2%), carotid artery (70.9±7.1%). The vasodilator effect of nebivolol, in concentrations of 3 and 10μmol/L, was significantly blocked by 100μmol/L of the NOS inhibitor L-NAME in all arteries The exposure of the vessel rings to a selective inhibitor of phosphatidylinositol 3-kinase (PI3K) wortmannin (5×10-7 mol/L) or a selective inhibitor of Akt (1L-6-hydroxymethyl-chiro-inositol 2-(R)-2-O-methyl-3-O-octadecylcarbonate,10-5 mol/L) did not influence nebivolol-induced vasorelaxation. Similarly, K+channels blockers:iberiotoxin (100 nmol/L), glibenclamide (0.1 mmol/L),4-aminopyridine (1 mmol/L), or BaCl2(1 mmol/L) had no influence on the relaxation of nebivolol in arteries precontracted by Phe or KCl.
     Conclusion:Nebivolol produced a concentration-dependent vasodilation in different rat arteries pre-contracted by Phe or KCl. In the isolated rat aorta, carotid artery, femoral artery, mesenteric artery and renal artery, neither K+channels nor PI3K/Akt/eNOS pathway was involved in the relaxation induced by nebivolol.
     Background:Hypertension is a major risk factor for cardiovascular disease. Experiments show that there is endothelial dysfunction in animal and human hypertension, which in turn accelerates the damage of target organs. Endothelia dysfunction, which may manifest as vasomotor imbalance and changes in vaso-active substances and so on, is the initiator factors and carrier of "endothelial-high blood pressure-cardiovascular events" chain. Vascular endothelial damage enables the vascular remodeling. The remodeling can be an early manifestation of vascular structural changes and the basis for a number of cardiovascular events. It has been became a new target for hypertension treatment to improve the endothelia function. Nebivolol is a highly selectiveβ1-adrenergic receptor antagonist that can blockβ1-adrenergic receptor and promote endothelium-dependent vasodilation by increasing bioavailability of nitric oxide (NO). Compared with other traditionalβ-adrenergic receptor antagonists, nebivolol, without having the metabolic defects, is a bestβ-adrenergic receptor antagonist at present. Studies show that nebivolol can ameliorate the vascular reaction of aorta and improve the plasma NO concentration of SHR. But the data is few about the effect of nebivolol on the reaction of arteriole, the vaso-activesubstance in artery and the reconstruction of vascular.
     Purpose:The aim of the study was to assess the protective effect of nebivolol on endothelial dysfunction in spontaneously hypertensive rats (SHR) by observing the reconstruction of arteries, vascular endothelial damage, levels of vaso-activesubstance and the vascular responses of different arteries.
     Methods:SHR and age-matched Wister-Kyoto (WKY) rats were randomly divided into 4 groups:(1) SHR+Nebivolol group(n=6):SHR treated with nebivolol(8 mg/kg/day, i.g.); (2) SHR+Atenolol group (n=6):SHR treated with Atenolol (80 mg/kg/day, i.g.); (3) SHR control group (n=6):SHR treated with vehicle once daily, i.g.; (4) WKY control group (n=6):WKY treated with vehicle once daily, i.g. Therapy continued for 8 weeks, body weight and tail systolic blood pressure were measured weekly. At the end of this study, animals were anesthetized with 3% sodium pentobarbital (30 mg/kg, i.p.). Blood was draw by abdominal aortic puncture, then the aorta, carotid artery, renal, mesentery and femoral artery were moved rapidly. Renal and a part of aorta were fixed with 4% paraformaldehyde to observe the vascular morphological changes, including vessel lumen diameter (L), media thickness (M) and M/L. Expression of FVM in aorta was performed by immunohistochemistry analysis. Levels of NO (nitric acid reducdase assay), endothelin-1 (ET-1, radioimmunoassay), angiotensin II (AngⅡ, radioimmunoassay) in plasma, aorta and von Willebrand factor (vWF, ELISA) in plasma were measured. The contraction of different arteries (aorta, carotid artery, renal artery, femoral artery and mesentery artery) to Phe, KCl, ET-1, AngⅡand relaxation to acetylcholine (Ach) and sodium nitroprusside (SNP) were also studied in vitro.
     Results:
     (1) During the study, the body weight and systolic blood pressure were higher in SHR than in age-matched WKY. Nebivolol and atenolol had no effect on the body weight of SHR. Compared with atenolol, treatment with nebivolol induced an acute and significant reduction in systolic blood pressure; this reached a maximum in the fourth week.
     (2) Morphometry study of aorta:There was no difference in L among different groups, but M and M/L increased in SHR than in WKY. Treatment with nebivolol reduced M and M/L in SHR while Atenolol had no effect.
     (3) Morphometry study of interlobular artery in renal:The L decreased, but M and M/L of interlobular artery increased in SHR. Treatment with nebivolol raised L and lessened M and M/L in SHR, but atenolol had no effect.
     (4) Thoracic aorta immunohistochemistry assay to identify FⅧin endothelia:The expression of FⅧwas weakly positive in SHR than in WKY, the brown endothelium was not intact and continuous. Treated with nebivolol, the expression of FⅧincreased and the brown endothelium was clear and intact, however atenolol had no effect.
     (5) Level of vWF in plasma:The level of vWF increased in SHR than in WKY. Nebivolol reduced the level of vWF in SHR, but atenolol had no influence.
     (6) Levels of NO, ET-1 and NO/ET-1 in plasma and aorta:The levels of NO, NO/ET-1 in plasma and aorta were lowered and ET-1 in aorta was increased in SHR than in WKY; but no difference was found in plasma ET-1 between SHR and WKY. Nebivolol increased the level of NO and NO/ET-1 in plasma and aorta, but had no influence on level of ET-1 in aorta and plasma. Atenolol had no effect on theses changes in SHR.
     (7) Levels of Ang II and NO/AngⅡin plasma and aorta:The level of Ang II was increased and NO/Ang II was reduced in SHR plasma and aorta than in WKY. Nebivolol had no effect on Ang II in plasma, but reduced it in aorta. So the NO/Ang II in plasma and aorta were increased after nebivolol treatment. Atenolol had no effect on the changes in SHR.
     (8) Vascular reaction of different arteries:
     The contractions to Phe, KCl in different arteries; to ET-1 in carotid artery; to AngⅡin aorta and carotid artery were increased in SHR than in WKY. The relaxation to Ach decreased in SHR than in WKY, but there was no difference of relaxation to SNP among groups.
     Nebivolol reduced the contraction of different arteries to Phe, KCl, AngⅡand ET-1 in SHR, but there was difference in the reduction based on the kind of arteries. It was marked to KCl in carotid artery and femoral artery, to Phe in aorta, renal artery, femoral artery, and to ET-1 and Ang II in aorta. Nebivolol increased the relaxation of different arteries to Ach, especially in renal artery, but had no effect on the relaxation of different arteries to SNP.
     Atenolol just decreased the contraction of different arteries to KCl apart from renal artery and mesenteric artery; to Phe besides mesenteric artery; to ET-1, AngⅡin aorta and carotid artery. Atenolol increased the relaxation of renal artery to Ach in SHR, but had no effect on the relaxation to SNP.
     Conclusion:The antihypertensive effect of nebivolol in SHR was accompany by protect on endothelial function:retarding vascular remodeling; reducing the injury of aorta endothelia cell; modulate the unbalance of vasoactive substances in aorta and plasma; improving the vascular reaction to different vasomotors, resuming the balance of relaxation and contraction.
     Objectives:Endothelial dysfunction plays an important role in the development of cardiovascular diseases. Nitric oxideis is recognized as a major mediator in regulating vascular construction and function. Aasymmetric dimethylarginine (ADMA), an endogenous NOS inhibitor that compatetively inhibits nitric oxide synthase (NOS) activity and reduces NO level, has been considered a new predictor of endothelial dysfunction. In a variety of pathophysiological conditions, plasm ADMA has been found rising significantly, and then may induce endothelial dysfunction. With the understanding of endothelial dysfunction and pathological roles of ADMA in cardiovascular disease, it may become a new therapeutic avuenues to improve endothelial function by reducing ADMA level. Nebivolol can protect vascular endothlia function. But data is few about the relationship of protective effect of nebivolol on vascular and ADMA.
     Aim:To investigate the relationship of protective effect of nebivolol on vascular and ADMA.
     Methods:
     1. Effect of nebivolol on ADMA system of SHR. SHR and age-matched Wister-Kyoto (WKY) rats were randomly divided into 4 groups:(1) SHR+Nebivolol group (n=6):SHR treated with nebivolol(8 mg/kg/day, i.g.); (2) SHR+Atenolol group (n=6):SHR treated with Atenolol(80 mg/kg/day, i.g.); (3) SHR control group (n=6):SHR treated with vehicle once daily, i.g.; (4) WKY control group (n=6):WKY treated with vehicle once daily, i.g. After treatment for 8 weeks, rats were anesthetized with 3% sodium pentobarbital (30 mg/kg, i.p.). Blood was draw by abdominal aortic puncture, then the aorta, mesentery artery were moved rapidly and kept in-70℃. The levels of ADMA (ELISA), NO (nitric acid reducdase assay) and NOS activity (chemical method) in plasma were measured. The mRNA expression of eNOS, DDAH-2, PRMT-1 in aorta and mesenteric artery were measured by RT-PCR. The protein expression of DDAH-2 and PRMT-1 in aorta and mesenteric artery were measured by Western blot. ROS level in aorta were also measured.
     2. Effect of nebivolol on HUVECs cultured with AngⅡ. HUVECs were cultured with Ang II 1μmol/L for 24h in the absence or presence of nebivolol (5,10 or 20μmol/L) or atenolol (20μmol/L) for 1 h. The supernaent in the conditioned medium was collected by centrifugation for determination of ADMA (ELISA), NO (nitric acid reducdase assay) and NOS activity (chemical method). The expression of eNOS, DDAH-2, PRMT-1 mRNA (RT-PCR), the protein expression of DDAH-2 and PRMT-1 (Western blot), activity of DDAH in HUVECs were also measured.
     3. Effect of nebivolol on HUVECs cultured with ADMA. HUVECs were cultured with ADMA 16μmol/L for 24h in the absence or presence of nebivolol (5,10 or 20μmol/L) or atenolol (20μmol/L) for 1 h. The supernaent in the conditioned medium was collected by centrifugation for determination of NO and NOS activity. The expression of eNOS mRNA (RT-PCR), ROS in HUVECs were also measured.
     4. Effect of nebivolol on influence of ADMA on vascular reponse of rat aorta. Male Wistar rats were killed by cervical dislocation. Then thoracic aortas were removed quickly. Aortas was cleaned of connective tissue and fat, and cut into 3-4mm long rings. Each preparation was fixed, via a silk thread, to an isometric force transducer and force was recorded via PowerLab computer-7 -4 system (A.D. Instruments). The effects of ADMA (10-10 mol/L) on aorta resting tone, aorta pre-contracted by Phe (10-6mol/L), relaxation induced by Ach (10-10-10-5 mol/L) and the effect of nebivolol (10-5,10-6,10-5mol/L) on the function of ADMA on rat aorta were observed in virto.
     Rusults:
     1. Compared with WKY, the level of plasma ADMA was elevated significantly, plsma NO, activity of NOS were decreased in SHR. In aorta and mesenteric artery of SHR, the mRNA expression of eNOS, mRNA/protein expression of DDAH-2 reduced, but mRNA/protein expression of PRMT-1 increased. ROS level in aorta also increased in SHR than in WKY. Nebivolol treatment increased plasma NO and activity of NOS, decreased ADMA leve. Nebivlolol up regulated mRNA expression of eNOS and mRNA/protein expression of DDAH-2; down regulated mRNA/protein expression of PRMT-1 in aorta and mesenteric artery. Nebivolol reduced ROS level of SHR aorta. Atenolol had no effect on the changes in SHR.
     2. AngⅡ(1μmol/L) for 24h significantly decreased NO level and NOS activity, increased the mRNA/protein expression of PRMT-1, decreased DDAH activity, mRNA expression of eNOS and mRNA/expression of DDAH-2, resulting in elevation of ADMA level. Pretreatment with nebivolol (5,10 or 20μmol/L) concentration-dependently attenuated the above effects by AngⅡ. Atenolol (20μmol/L) had no influence on the effects induced by AngⅡ.
     3. ADMA (16μmol/L) for 24h significantly markedly decreased NO level, NOS activity and eNOS mRNA; and increased intracellular ROS generation. Pretreatment with nebivolol (5,10 or 20μmol/L) concentration-dependently attenuated the above effects by ADMA. Atenolol (20μmol/L) had no influence on the effects induced by ADMA.
     4. ADMA (10-7-10-4 mol/L) had no effect on the restiong tone of rat aorta, but ADMA concentration-dependently increased the tone of aorta pre-contracted by Phe (10 mol/L) and inhibited Ach (10-10-10-5 mol/L) induced relaxation in vitro. Nebivolol (10-5,10-6,10-5 mol/L) dose-dependently decreased the elevation of ADMA on pre-contracted rat aorta and the inhibition of ADMA 10-5 mol/L on relaxation induced by Ach.
     Conclusion:Nebivolol reduced ADMA by increasing DDAH activity/expression and reducing PRMT-1 expression. Nebivolol also can inhibit cell injury and contraction induced by ADMA.
引文
1.马湘俊.β-受体阻滞剂在扩张型心肌病心力衰竭治疗中的应用.心脑血管病防治2001;1(3):39-40.
    2. Bridtow MR. What type of beta-blocker should be used to treatchronic heart failure.Ciculation 2000; 102(5); 484-6.
    3. Kim MH, Devlin WH, Das SK et al. Effects of beta-adrenergicblocking therapy on left ventricular diastolic relaxation propertiesin patients with dilated cardiomyopathy. Circulation 1999; 100(7):729-35.
    4. Van Bortel LM, Fici F, Mascagni F. Efficacy and tolerability of nebivolol compared with other antihypertensive drugs:a meta-analysis. Am J Cardiovasc Drugs 2008;8(1):35-44.
    5. Cockcroft J. A review of the safety and efficacy of nebivolol in the mildly hypertensive patient. Vasc Health Risk Manag 2007; 3(6):909-17.
    6.苏哲坦.新一代β阻滞剂的代表:Nebivolol.心血管病学进展2000;21(6):369-70.
    7. Van Nueten L, Schelling A, Vertommen C et al. Nebivolol enalapril in the treatment of essential hypertension:a double blind randomized trial. J Hum Hypertens 1997; 11:813-9.
    8. Marceau M, Lacourciere Y, Cleroux J. Effects of nebivolol and atenolol on regional and systemic hemodynamics at rest and during exercise in hypertensive subjects. Am J Hypertens 1998; 11(Pt2):125.
    9. Nikolaos Tzemos, Lim PO, MacDonald TM. Nebivolol reverses endothelial dysfunction in essential hypertension a randomized, double blind crossover study. Circulation 2001; 104: 511-4.
    10. Weiss R. Nebivolol:a novel beta-blocker with nitric oxide-induced vasodilatation. Vasc Health Risk Manag 2006; 2(3):303-8.
    11. Ignarro LJ. Experimental evidences of nitric oxide-dependent vasodilatory activity of nebivolol, a third-generation beta-blocker. Blood Press Suppl 2004 Oct; 1:2-16.
    12. Ignarro LJ, Byrns RE, Trinh K et al. Nebivolol:a selective beta (1)-adrenergic receptor antagonist that relaxes vascular smooth muscle by nitric oxide-and cyclic GMP-dependent mechanisms. Nitric Oxide 2002 Sep; 7(2):75-82.
    13. Dawes M, Brett SE, Chowienczyk PJ et al. The vasodilator action of nebivolol in forearm vasculature of subjects with essential hypertension. Br J Clin Pharmacol 1999 Sep; 48(3):460-3.
    14. Cockcroft JR, Chowienczyk PJ, Brett SE et al. Nebivolol vasodilates human forearm vasculature:evidence for an L-arginine/NO-dependent mechanism. J Pharmacol Exp Ther 1995 Sep; 274(3):1067-71.
    15. Ladage D, Brixius K, Hoyer H et al. Mechanisms underlying nebivolol-induced endothelial nitric oxide synthase activation in human umbilical vein endothelial cells. Clin Exp Pharmacol Physiol 2006 Aug; 33(8):720-4.
    16. Mason RP, Kubant R, Jacob RF et al. Effect of nebivolol on endothelial nitric oxide and peroxynitrite release in hypertensive animals:Role of antioxidant activity. J Cardiovasc Pharmacol 2006 Jul; 48(1):862-9.
    17. Fratta Pasini A, Garbin U, Nava MC et al. Nebivolol decreases oxidative stress in essential hypertensive patients and increase nitric oxide by reducing its oxidative inactivation. J Hypertens 2005; 23:589-96.
    18. Georgescu A, Pluteanu F, Flonta ML et al. Nebivolol induces a hyperpolarizing effect on smooth muscle cells in the mouse renal artery by activation of beta-2-adrenoceptors. Pharmacology 2008; 81(2):110-7.
    19. Broeders MA, Doevendans PA, Bekkers BC et al. Nebivolol:a third-generation beta-blocker that augments vascular nitric oxide release:endothelial beta (2)-adrenergic receptor-mediated nitric oxide production. Circulation 2000 Aug 8; 102(6):677-84.
    20. De Groot AA, Mathy MJ, van Zwieten PA et al. Involvement of the beta3 adrenoceptor in nebivolol-induced vasorelaxation in the rat aorta. J Cardiovasc Pharmacol 2003 Aug; 42(2):232-6.
    21. Dessy C, Saliez J, Ghisdal P et al. Endothelial beta3-adrenoreceptors mediate nitric oxide-dependent vasorelaxation of coronary microvessels in response to the third-generation beta-blocker nebivolol. Circulation 2005 Aug 23; 112(8):1198-205.
    22. Kakoki M, Hirata Y, Hayakawa H et al. Effects of vasodilatory beta-adrenoceptor antagonists on endothelium-derived nitric oxide release in rat kidney. Hypertension 1999 Jan; 33(1 Pt 2):467-71.
    23. Grundt C, Meier K, Grundt A et al. Evidence for an estradiol-agonistic action of nebivolol in spontaneously hypertensive rats. J Hypertens 2007 May; 25(5):1001-7.
    24. Garban HJ, Buga GM, Ignarro LJ. Estrogen receptor-mediated vascular responsiveness to nebivolol:a novel endothelium-related mechanism of therapeutic vasorelaxation. J Cardiovasc Pharmacol 2004 May; 43(5):638-44.
    25. Kalinowski L, Dobrucki LW, Szczepanska-Konkel M et al. Third-generation beta-blockers stimulate nitric oxide release from endothelial cells through ATP dfflux:a novel mechanism for antihypertensive actions. Circulation 2003; 107:2747-52.
    26. Ferro A, Coash M, Yamamoto T et al. Nitric oxide-dependent beta2-adrenergic dilatation of rat aorta is mediated through activation of both protein kinase A and Akt. Br J Pharmacol 2004 Oct; 143(3):397-403.
    27. Zhengyu L, Yasushi F, Yasuko K et al. Acute modulation of endothelial Akt/PKB activity alters nitric oxide-dependent vasomotor activity in vivo. J Clinical Investigation 2000 Aug; 106(4):493-9.
    28. Ferrer M, Marin J, Encabo A et al. Role of K+ channels and sodium pump in the vasodilation induced by acetylcholine, nitric oxide and cyclic GMP in the rabbit aorta. Gen Pharmacol 1999; 33:35-41.
    29. Satake N, Shibata M, Shibata S. The involvement of KCa, KATP and KV channels in vasorelaxing responses to acetylcholine in rat aortic rings. Gen Pharmacol 1997; 28:453-7.
    30. Bolotina VM, Najibi S, Palacino PJ et al. Nitric oxide directly activates calcium-dependent potassium channels in vascular smooth muscle. Nature 1994; 368:850-3.
    31. Cowan CL, Palacino JJ, Najibi S et al. Potassium channel-mediated relaxation to acetylcholine in rabbit arteries. J Pharmacol Exp Ther 1993; 266:1482-9.
    32. Sobey CG. Potassium channel function in vascular disease. Arterioscler Thromb Vasc Biol 2001; 21(1):28-38.
    33. Altwegg LA, d'Uscio LV, Barandier C et al. Nebivolol induces NO-mediated relaxations of rat small mesenteric but not of large elastic arteries. J Cardiovasc Pharmacol 2000 Sep; 36(3):316-20.
    34. Kamishima T, Quayle JM. Ca2+-induced Ca2+ release in cardiac and smooth muscle cells. Biochem Soc Trans 2003; 31(5):943-6.
    35.韩启德,文允镒.血管生物学[M].北京:北京医科大学、中国协和医科大学联合出版社,1997:74-92.
    36. Kozlovski VI, Lomnicka M, Chlopicki S. Nebivovol and carvedilol induce NO-dependent coronary vasodilatation that is unlikely to be mediated by extracellular ATP in the isolated guinea pig heart. Pharmacol Rep 2006; 58 Suppl:103-10.
    37. Chlopicki S, Kozlovski VI, Gryglewski RJ. No-dependent vasodilation induced by nebivolol in coronary circulation is not mediated by beta-adrenoceptors or by 5 HT1A-receptors. J Physiol Pharmacol 2002 Dec; 53(4 Pt 1):615-24.
    38. Quang, Rozec B, Audigane L et al. Investigation of the different adrenoceptor targets of nebivolol enantiomers in rat thoracic aorta. Br J Pharmacol 2009; 156:601-8.
    39. Friebe A, Koesling D. Regulation of nitric oxide-sensitive guanylyl cyclase. Circ Res 2003; 93(2):96-105.
    40. Qi YM, YangD J, Duan X et al. Endomorphins inhibit con-tractile responses of rat thoracic aorta rings induced by phe-nylephrine and angiotensin II in vitro. Acta Pharm acol Sin 2002; 23(1):40-41.
    41. Aljada A, Dandona P. Effect of insulin on human aortic endothelial nitric oxide synthase.
    Metabolism 2000; 49(2):147-53.
    42. Dimmeler S, Fleming I, Fisslthaler B et al. Activation of nitric oxide synthase in endothelial cells by Akt-dependent phosphorylation. Nature 1999; 399(6736):601-5.
    43. Zeng G, Nystrom FH, Ravichandran LV et al. Roles for insulin receptor, PI3-kinase, and Akt in insulin-signaling path ways related to p roduction of nitric oxide in human vascular endothelial cells. Circulation 2000; 101(13):1539-45.
    44. Ferro A, Coash M, Yamamoto T et al. Nitric oxide-dependent beta2-adrenergic dilatation of rat aorta is mediated through activation of both protein kinase A and Akt. Br J Pharmacol 2004; 143(3):397-403.
    45. Santhanam AV, Viswanathan S, Dikshit M. Activation of protein kinase B/Akt and endothelial nitric oxide synthase mediates agmatine-induced endothelium-dependent relaxation. Eur J Pharmacol 2007; 572(2-3):189-6.
    46. Brouet A, Sonveaux P, Dessy C, et al. Hsp90 ensures the transition from the early Ca2_-dependent to the late phosphorylation dependent activation of the endothelial nitric-oxide synthase in vascular endothelial growth factor-exposed endothelial cells. J Biol Chem 2001; 276:32663-9.
    47. Brouet A, Sonveaux P, Dessy C et al. Hsp90 and caveolin are key targets for the proangiogenic nitric oxidemediated effects of statins. Circ Res 2001; 89:866-73.
    48. Maffei A, Vecchione C, Aretini A, Poulet R, Bettarini U, Gentile MT, Cifelli G. Characterization of Nitric Oxide Release by Nebivolol and Its Metabolites. Blood Vessels 2006; 19:579-86.
    49. NelsonMT, Quayle JM. Physiological roles and p roperties of potassium channels in arterial smooth muscle.Am J Physiol 1995; 268 (4 Pt 1):C799-C822.
    50. Jackson WF. Ion channels and vascular tone. Hypertension 2000; 35 (1 Pt 2):173-8.
    51. Cairrao E, Alvarez E, Santos-Silva AJ et al I. Potassium channels are involved in testosterone-induced vasorelaxation of human umbilical artery. Naunyn Schmiedebergs Arch Pharmacol 2008; 376(5):375-83.
    52. Deenadayalu VP, White RE, Stallone JN et al. Testosterone relaxes coronary arteries by opening the large-conductance, calcium-activated potassium channel. Am J Physiol Heart Circ Physiol 2001; 281(4):H1720-7.
    53. Georgescua A, Pluteanub F, Flontab ML et al. The cellular mechanisms involved in the vasodilator effect of nebivolol on the renal artery. Eur J Pharmacol 2005; 508:159-66.
    1. Johnson RJ, Feig DI, Nakagawa T et al. Pathogenesis of essential hypertension:Historical paradigms and modern insights. J Hypertens 2008; 26:381-91.
    2. Nakamura Y, Saitoh S, Takagi S et al. Impact of abnormal glucose tolerance, hypertension and other risk factors on coronary artery disease. Circ J 2007; 71:20-25.
    3. Kunes J, Hojna S, Kadlecova M et al. Altered balance of vasoactive systems in experimental hypertension:The role of relative NO deficiency. Physiol Res 2004; 53(Supp 1):S23-34.
    4. Vanhoutte PM. Endothelial dysfunction:The first step toward coronary arteriosclerosis. Circ J 2009; 73:595-601.
    5. Deng LY, Li JS, Schiffrin EL. Endothelium dependent patients:mechanisms and comparison with normotensive subjets and with responses of vessels from spontaneously hypertensive rats. Clin Sci 1995; 88:611-22.
    6. Vanhoutte PM, Feletou M, Taddei S. Endotheliumdependent contractions in hypertension. Br J Pharmacol 2005; 144:449-58.
    7. Pechanova O, Dobesova Z, Cejka J, et al. Vasoactive systems in L-NAME hypertension:the role of inducible nitric oxide synthase. J Hypertens 2004; 22:167-73.
    8. Torok J, Koprdova R, Cebova M et al. Functional and structural pattern of arterial responses in hereditary hypertriglyceridemic and spontaneously hypertensive rats in early stage of experimental hypertension. Physiol Res 2006; 55 (Suppl 1):S65-71.
    9. Kung CF, Luscher TF. Different mechanisms of endothelial dysfunction with aging and hypertension in rat aorta. Hypertension 1995 Feb; 25(2):194-200.
    10. Abeywardena MY, Jablonskis LT, Head RJ. Age-and hypertension-induced changes in abnormal contractions in rat aorta. J Cardiovasc Pharmacol 2002; (40):930-7.
    11. Yang D, Gluais P, Zhang JN, Vanhoutte PM et al. Endothelium-dependent contractions to acetylcholine, ATP and the calcium ionophore A 23187 in aortas from spontaneously hypertensive and normotensive rats. Fundam Clin Pharmacol 2004; 18:321-6.
    12. Luscher TF, Diederich D, Weber E et al. Endothelium-dependent responses in carotid and renal arteries of normotensive and hypertensive rats. Hypertension 1998; 11:573-8.
    13. Johnson FK, Johnson RA, Peyton KJ et al. Arginase inhibition restores arteriolar endothelial function in Dahl rats with salt2induced hypertension. Am J Physiol Regul Integr Comp Physiol 2005; 288 (4):R1057-62.
    14. Bussemaker E, Popp R, Fisslthaler B et al. Aged spontaneously hypertensive rats exhibit a selective loss of EDHF-mediated relaxation in the renal artery. Hypertension 2003; 42: 562-8.
    15. Dohi Y, Kojima M, Sato K. Benidipine improves endothelial function in renal resistance arteries of hypertensive rats. Hypertension 1996; 28:58-63.
    16. Goto K, Edwards FR, Hill CE. Depolarization evoked by acetylcholine in mesenteric arteries of hypertensive rats attenuates endothelium-dependent hyperpolarizing factor. J Hypertens 2007; 25:345-59.
    17. Matsumoto T, Kakami M, Noguchi E et al. Imbalance between endothelium-derived relaxing and contracting factors in mesenteric arteries from aged OLETF rats, a model of Type 2 diabetes. Am J Physiol Heart Circ Physiol 2007; 293:H1480-90.
    18. Mori Y, Ohyanagi M, Koida S et al. Effects of endothelium-derived hyperpolarizing factor and nitric oxide on endothelial function in femoral resistance arteries of spontaneously hypertensive rats. Hypertens Res 2006; 29:187-95.
    19. Luscher TF, Vanhoutte PM. Endothelium-dependent responses in human blood vessels. Trends Pharmacol Sci 1988; 9:181-4.
    20. Nitenberg A, Chemla D, Antony I. Epicardial coronary artery constriction to cold pressor test is predictive of cardiovascular events in hypertensive patients with angiographically normal coronary arteries and without other major coronary risk factor. Atherosclerosis 2004; 173 (1):115-23.
    21. Giannarelli C, De Negri F, Virdis A et al.Nitric oxide modulates tissue plasminogen activator release in normotensive subjects and hypertensive patients.Hypertension 2007; Apr;49(4):878-84.
    22. Panza JA, Quyyumi AA, Brush JE J et al. Abnormal endothelium-dependent vascular relaxation in patients with essential hypertension. N Engl J Med 1990; 23:22-7.
    23. Brunner H, Cockcroft JR, Deanfield J, et al. Endothelial function and dysfunction. Part Ⅱ: Association with cardiovascular risk factors and diseases. A statement by the Working Group on Endothelins and Endothelial Factors of the European Society of Hypertension. J Hypertens 2005; 23:233-24.
    24. Rubanyi GM, Botelho LH. Endothelins. FASEB J 1991 Sep; 5(12):2713-20.
    25. Sunano S, Sekiguchi F. Endothelium-derived factors in hypertensive blood vessels, especially nitric oxide and hypertension. Yakugaku Zasshi 2003 Jul; 123(7):495-515.
    26. Sunano S, Watanabe H, Tanaka S et al. Endothelium-derived relaxing, contracting and hyperpolarizing factors of mesenteric arteries of hypertensive and normotensive rats.Br J Pharmacol 1999 Feb; 126(3):709-16.
    27. Taddei S,Virdis A,Ghiadoni L et al. Effects of antihypertensive Drugs on Endothelial dysfunction:Clinical Implications. Drugs 2002; 62(2):265-284.
    28. Folkow B, Hallback M, Lundgren Y et al. Importance of adaptive changes in vascular design for establishment of primary hypertension, studied in man and spontaneously hypertensive rats. Circ Res 1973; 32:12-113.
    29. Veverka A, Salinas JL. Nebivolol in the treatment of chronic heart failure. Vasc Health Risk Manag 2007; 3(5):647-54.
    30. Altwegg LA, d'Uscio LV, Barandier C et al. Nebivolol induces NO-mediated relaxations of rat small mesenteric but not of large elastic arteries. J Cardiovasc Pharmacol 2000 Sep; 36(3):316-20.
    31. Weiss R. Nebivolol:a novel beta-blocker with nitric oxide-induced vasodilatation.Vasc Health Risk Manag 2006; 2(3):303-8.
    32. Tzemos N, Lin PO, MacDonald TM. Nebivolol reserves endothelial dysfunction in essential hypertension:a randomized, double blind, crossover study. Circulation 2001; 104:511-4.
    33. Estela Guerrero, Felipe Voces, Noelia Ardanaz et al. Long-Term Treatment With Nebivolol Improves Arterial Reactivity and Reduces Ventricular Hypertrophy in Spontaneously Hypertensive Rats. J Cardiovasc PharmacolTM 2003; 42; 348-55.
    34. Andre D, Arnet U, Yang Z, Luscher TF. Nebivolol inhibits human aortic smooth muscle cell growth:effects on cell cycle regulatory proteins. J Cardiovas Pharmacol 2000; 35:845-8.
    35. Blann AD, Taberner DA. A reliable marker of endothelial cell dysfunction:does it exist? Br J Haematol 1995,90(2):244-8.
    36. Arikan E, Sen S. Endothelial damage and hemostatic markers in patients with uncomplicated mild-to-moderate hypertension and relationship with risk factors. Clin Appl Thromb Hemost 2005; 11 (2):147-59.
    37. Sarabanan K, Paramasibam M, Dey S, et al. Biotinyl endothelin binding to endothelin receptor and its applications. J Cardiovasc Pharmacol 2004; 44 (3):287-93.
    38. Da Cunha JM, Rae GA, Ferreira SH et al. Endothelins induce ETB-receptor mediated mechanical hypernociception in hindpaw:roles of cAMP and protein kinase C. Eur J Pharmacol 2004; 501(123):87-94.
    39. Huang SC, Chang BS. Endothelin causes contraction of human esophagealmuscularismucosae through interaction with both ETA and ETB receptors. Regul Pep t 2004,117 (3):179-86.
    40. Sherman DL, Loscalzo J. Endothelial dysfunction and cardiovascular disease.Cardiologia 1997 Feb; 42(2):177-87.
    41. Loscalzo J. Nitric oxide and vascular disease.N Engl J Med 1995 Jul 27; 333(4):251-3.
    42. Jamali AH, Tang WH, Khot UN et al. The role of angiotensin receptor blockers in the management of chronic heart failure. Arch Intern Med 2001; 161:667-72.
    43. Zubkov AY, Ogihara K, Tumu P et al. Bloody cerebrospinal fluid alters contractility of
    cultured arteries. Neurol Res 1999 Sep; 21(6):553-8.
    44. Ignarro LJ. Experimental evidences of nitric oxidedependent vasodilatory activity of nebivolol, a third-generation β-blocker。Blood Press Suppl 2004 Oct; 1:2-16.
    45. Fratta Pasini A, Garbin U, Nava MC et al. Nebivolol decreases oxidative stress in essential hypertensive patients and increases nitric oxide by reducing its oxidative inactivation. J Hypertens 2005 Mar; 23(3):589-96.
    46. Mason RP, Kalinowski L, Jacob RF et al.Nebivolol reduces nitroxidative stress and restores nitric oxide bioavailability in endothelium of black Americans. Circulation 2005 Dec 13; 112(24):3795-801.
    47. Evangelista S, Garbin U, Pasini AF et al. Effect of DL-nebivolol, its enantiomers and metabolites on the intracellular production of superoxide and nitric oxide in human endothelial cells. Pharmacol Res 2007 Apr; 55(4):303-9.
    48. Maffei A, Aretini A, Vecchione C et al. Nebivolol induces nitric oxide production through eNOS phosphorylation. Am J Hypertens 2006; 19:579-86.
    49. Maffei A, Di Pardo A, Carangi R et al. Nebivolol induces nitric oxide release in the heart through inducible nitric oxide synthase activation. Hypertension 2007 Oct; 50(4):652-6.
    50. Schiffrin EL. State-of-the-Art Lecture:Role of endothelin-1 in hypertension. Hypertension 1999; 34:876-81.
    51. Nguyen PV, Parent A, Deng L Y. Effects of endothelin on blood vessels of DOCA2salt hypertensive rats. Ci rculation 1990; 82(Suppl Ⅲ):682-5.
    52. Januszewiez A, Lapinski M, Symonides B Dabrowska E et al. Elevated endothelin-1 plasma concentration in patients with essential hypertension. J Cardiovasc Risk 1994; 1 (1):81-5.
    53. Hlubocka Z, Umnerova V, Heller S et al. Is mild essential hypertension without obvious organ comp lications and risk factors associated with increased levels of circulating markers of endothelial dysfunction? VnitrLek 2002; 48 (8):718-23.
    54. GewaltigMT, Kojda G. Vasop rotection by nitric oxide:mechanisms and therapeutic potential. Cardiovasc Res 2002; 55 (2):250-60.
    55. Lim HW, New L, Han J et al. Calcineurin enhances MAPK phosphatase-1 expression and p38 MAPK inactivation in cardiac myocytes. J Biol Chem 2001 May 11; 276(19):15913-9.
    56.杨万松,黄体纲,樊振旺.高蔗糖诱发大鼠胰岛素抵抗和高血压机制实验研究.天津医药1998;(6):229-33.
    57. Lagami T, Murakami T, Higuchi K et al. Role of vascular wall rennin:intracellular and extracellular echanism. Blood Vessels 1991; 28:217-21.
    58. Numaguchi K, Egashira K, TakemutoM et al. Chronic inhibition of nitric oxide synthesis causes coronary microvascular remodeling in rats. Hypertens 1995; 26:957-62.
    59.吴振英,余承高,骆红艳et al.硝苯啶对高血压大鼠组织中血管紧张素Ⅱ和去甲肾上腺素含量的影响.同济医科大学学报1994;23(2):87-9.
    60. Huraux C, Makita T, Kurz S et al. Supemxide productions risk factors, and endothelium-dependent relaxations in human internal mammaly arteries. Circulation 1999; 99(1):53-96.
    61. Lodge NJ, Zhang R, HalakaN N et al. Functional role of endothelin ETA and ETB recep tors in venous and arterial smooth muscle. Eur J Pharm acol 1995; 287 (3):279-85.
    62. Barker JE, Anderson J, Treasure T et al. Influence of endothelium and surgical preparation on responses of human saphenous vein and internal thoracic artery to angiotensin Ⅱ. Br J Clin Pharmacol 1994 Jul; 38(1):57-62.
    63. Russell A, Watts S. Vascular reactivity of isolated thoracic aorta of the C57BL/6J mouse.J Pharmacol Exp Ther 2000 Aug; 294(2):598-604.
    64. Ding H, Triggle CR. Novel endothelium derived relaxing factors. Identification of factors and cellular targets. J Pharmacol Toxicol Methods 2000; 44 (2):441-52.
    65. Lovren F, Triggle C. Nitric oxide and sodium nitroprusside induced relaxation of the human umbilical artery. Br J Pharmacol 2000; 131 (3):521-9.
    1. Vallance P, Leone A, Calver A et al. Accumulation of an endogenous inhibitor of nitric oxide synthesis in chronic renal failure. Lancet 1992 Mar 7; 339(8793):572-5.
    2. Vallance P, Leiper J. Cardiovascular biology of the asymmetric dimethylarginine: dimethylarginine dimethylaminohydrolase pathway. Arterioscler Thromb Vasc Biol 2004; 24: 1023-30.
    3. Abhary S, Kasmeridis N, Burdon K et al. Diabetic retinopathy is associated with elevated serum asymmetric and symmetric dimethylarginines. Diabetes Care 2009 Nov; 32(11):2084-6.
    4. Landim MB, Casella Filho A, Chagas AC. Asymmetric dimethylarginine (ADMA) and endothelial dysfunction:implications for atherogenesis. Clinics (Sao Paulo) 2009 May; 64(5):471-8.
    5. Zakrzewicz D, Eickelberg O.From arginine methylation to ADMA:a novel mechanism with therapeutic potential in chronic lung diseases. BMC Pulm Med 2009 Jan 29; 9:5.
    6. Perticone F, Sciacqua A, Maio R et al.Endothelial dysfunction, ADMA and insulin resistance in essential hypertension. Int J Cardiol 2009 Jan 23.
    7. Boger RH. Asymmetric dimethylarginine (ADMA) and cardiovascular disease:insights from prospective clinical trials. Vasc Med (London, England) 2005; 10(Suppl.1):S19-25.
    8. Kielstein JT, Bode-Boger SM, Hesse G et al. Asymmetrical dimethylarginine in idiopathic pulmonary arterial hypertension.Arterioscler Thromb Vasc Biol 2005 Jul; 25(7):1414-8.
    9. Pullamsetti S, Kiss L, Ghofrani HA et al. Increased levels and reduced catabolism of asymmetric and symmetric dimethylarginines in pulmonary hypertension.FASEB J 2005 Jul; 19(9):1175-7.
    10. Matsuoka H, Itoh S, Kimoto M et al. Asymmetrical dimethylarginine, an endogenous nitric oxide synthase inhibitor, in experimental hypertension. Hypertension 1997 Jan; 29(1 Pt 2):242-7.
    11. Surdacki A, Nowicki M, Sandmann J et al. Reduced urinary excretion of nitric oxide metabolites and increased plasma levels of asymmetric dimethylarginine in men with essential hypertension.J Cardiovasc Pharmacol 1999 Apr; 33(4):652-8.
    12. Saitoh M, Osanai T, Kamada T et al. High plasma level of asymmetric dimethylarginine in patients with acutely exacerbated congestive heart failure:role in reduction of plasma nitric oxide level. Heart Vessels 2003 Sep; 18(4):177-82.
    13. Eid HM, Eritsland J, Larsen J et al. Increased levels of asymmetric dimethylarginine in populations at risk for atherosclerotic disease. Effects of pravastatin. Atherosclerosis 2003 Feb; 166(2):279-84.
    14. Lundman P, Eriksson MJ, Stuhlinger M et al. Mild-to-moderate hypertriglyceridemia in young men is associated with endothelial dysfunction and increased plasma concentrations of asymmetric dimethylarginine.J Am Coll Cardiol 2001 Jul; 38(1):111-6.
    15.Xia W, Feng W, Guan M et al. Increased Levels of Asymmetric Dimethylarginine and C-reactive protein are Associated with Impaired Vascular Reactivity in Essential Hypertension. Clin Exp Hypertens 2010 Jan; 32(1):43-8.
    16. Cable DG, Celotto AC, Evora PR et al. Asymmetric dimethylarginine endogenous inhibition of nitric oxide synthase causes differential vasculature effects.Med Sci Monit 2009 Sep; 15(9):BR248-53.
    17. Morris ST, McMurray JJ, Spiers A et al. Impaired endothelial function in isolated human uremic resistance arteries. Kidney Int 2001; 60:1077-82.
    18. Cardounel AJ, Cui H, Samouilov A et al. Evidence for the pathophysiological role of endogenous methylarginines in regulation of endothelial NO production and vascular function. J Biol Chem 2007; 282:879-87.
    19. Evora PR, Pearson PJ, Schaff HV. Impaired endothelium-dependent relaxation after coronary reperfusion injury:evidence for G-protein dysfunction. Ann Thorac Surg 1994; 57:1550-6.
    20. Toth J, Racz A, Kaminski PM, Wolin MS et al. Asymmetrical dimethylarginine inhibits shear stress-induced nitric oxide release and dilation and elicits superoxide-mediated increase in arteriolar tone. Hypertension 2007; 49:563-568.
    21.秦俭,陈运贞,周岐新et al.虎杖对ADMA作用的正常图兔主动脉血管条内皮功能的影响.中草药2004:5:535-8.
    22. Faraci FM, Brian JE Jr, Heistad DD. Response of cerebral blood vessels to an endogenous inhibitor of nitric oxide synthase. Am J Physiol 1995 Nov; 269(5 Pt 2):H 1522-7.
    23. Zhang GG, Bai YP, Chen MF et al. Asymmetric dimethylarginine induces TNF-alpha production via ROS/NF-kappaB dependent pathway in human monocytic cells and the inhibitory effect of reinioside C. Vascul Pharmacol 2008 Feb-Mar; 48(2-3):115-21.
    24. Li D, Xia K, Li NS et al. Reduction of asymmetric dimethylarginine involved in the cardioprotective effect of losartan in spontaneously hypertensive rats.Can J Physiol Pharmacol 2007 Aug; 85(8):783-9.
    25. Jiang DJ, Jia SJ, Dai Z et al. Asymmetric dimethylarginine induces apoptosis via p38 MAPK/caspase-3-dependent signaling pathway in endothelial cells.J Mol Cell Cardiol 2006 Apr; 40(4):529-39.
    26. Boger RH, Vallance P, Cooke JP. Asymmetric dimethylarginine (ADMA):a key regulator of nitric oxide synthase. Atheroscler Suppl 2003 Dec; 4(4):1-3.
    27. Dayoub H, Achan V, Adimoolam S et al. Dimethylarginine dimethylaminohydrolase regulates nitric oxide synthesis:genetic and physiological evidence.Circulation 2003 Dec 16; 108(24):3042-7.
    28. Melikian N, Wheatcroft SB, Ogah OS et al. Asymmetric dimethylarginine and reduced nitric oxide bioavailability in young Black African men.Hypertension 2007 Apr; 49(4):873-7.
    29. Boger RH, Bode-Boger SM. Asymmetric dimethylarginine, derangements of the endothelial nitric oxide synthase pathway, and cardiovascular diseases. Semin Thromb Hemost 2000; 26(5):539-545.
    30. Boger RH. The emerging role of asymmetric dimethylarginine as a novel cardiovascular risk factor. Circ Res 2003; 59:824-833.
    31. Bedford MT, Richard S. Arginine methylation an emerging regulator of protein function. Mol Cell 2005,18(3):263-72.
    32. Sydow K, Miinzel T. ADMA and oxidative stress. Atheroscler Suppl 2003 Dec; 4(4):41-51.
    33. Zoccali C, Benedetto FA, Maas R et al. Asymmetric dimethylarginine, C-reactive protein, and carotid intima-media thickness in end-stage renal disease.J Am Soc Nephrol 2002 Feb; 13(2):490-6.
    34. Boger RH.The emerging role of asymmetric dimethylarginine as a novel cardiovascular risk factor. Cardiovasc Res 2003 Oct 1; 59(4):824-33.
    35. Wojciak-Stothard B, Torondel B, Tsang LY et al. The ADMA/DDAH pathway is a critical regulator of endothelial cell motility. J Cell Sci 2007 Mar 15; 120(Pt 6):929-42.
    36. Wang D, Strandgaard S, Iversen J et al. Asymmetric dimethylarginine, oxidative stress, and vascular nitric oxide synthase in essential hypertension. Am J Physiol Regul Integr Comp Physiol 2009 Feb; 296(2):R195-200.
    37. Sasaki A, Doi S, Mizutani S, Azuma H. Roles of accumulated endogenous nitric oxide synthase inhibitors, enhanced arginase activity, and attenuated nitric oxide synthase activity in endothelial cells for pulmonary hypertension in rats. Am J Physiol Lung Cell Mol Physiol 2007 Jun; 292(6):L1480-7.
    38. Takiuchi S, Fujii H, Kamide K et al. Plasma asymmetric dimethylarginine and coronary and peripheral endothelial dysfunction in hypertensive patients. Am J Hypertens 2004 Sep; 17(9):802-8.
    39. Achan V, Broadhead M, Malaki M et al. Asymmetric dimethylarginine causes hypertension and cardiac dysfunction in humans and is actively metabolized by dimethylarginine dimethylaminohydrolase. Arterioscler Thromb Vasc Biol 2003 Aug 1; 23(8):1455-9.
    40. De Gennaro Colonna V, Bonomo S, Ferrario P et al. Asymmetric dimethylarginine (ADMA) induces vascular endothelium impairment and aggravates post-ischemic ventricular dysfunction in rats. Eur J Pharmacol 2007 Feb 28; 557(2-3):178-85.
    41. Sahach VF, Baziliuk OV, Kotsiuruba AV et al. Disorders of endothelium-dependent vascular reactions and of the arginase and NO-synthase pathways of L-arginine metabolism in arterial hypertension. Fiziol Zh 2000; 46(3):3-13.
    42. Kielstein JT, Impraim B, Simmel S, et al. Cardiovascular effects of systemic nitric oxide synthase inhibition with asymmetrical dimethylarginine in humans. Circulation 2004 Jan 20; 109(2):172-777.
    43. Leiper J, Murray-Rust J, McDonald N et al. S-nitrosylation of dimethylarginine dimethylaminohydrolase regulates enzyme activity:further interactions between nitric oxide synthase and dimethylarginine dimethylaminohydrolase.Proc Natl Acad Sci U S A 2002 Oct 15;99(21):13527-32.
    44. Boger RH, Sydow K, Borlak J et al. LDL cholesterol upregulates synthesis of asymmetrical dimethylarginine in human endothelial cells:involvement of S-adenosylmethionine-dependent methyltransferases. Circ Res 2000 Jul 21; 87(2):99-105.
    45. Smith CL, Birdsey CM, Anthony S et al. Dimethylarginene dimethylaminohydrolase activity modulates ADMA levels, VEGF expression, and cell phenotype.Biochem Biophys Res Commun 2003; 308(4):984-9.
    46. Boger RH, Bode-Boger SM, Tsao PS et al. An endogenous inhibitor of nitric oxide synthase regulates endothelial adhesiveness for monocytes. J Am Coll Cardiol 2000; 36:2287-95.
    47. Wu R, Millette E, Wu L et al. Enhanced superoxide anion formation in vascular tissues from spontaneously hypertensive and desoxycorticosterone acetate-salt hypertensive rats.J Hypertens 2001 Apr; 19(4):741-8.
    48. Heitzer T, Wenzel U, Hink U et al. Increased NAD(P)H oxidase-mediated superoxide production in renovascular hypertension:evidence for an involvement of protein kinase C. Kidney Int 1999 Jan; 55(1):252-60.
    49. Chen Y, Xu X, Sheng M et al. PRMT-1 and DDAHs-induced ADMA upregulation is involved in ROS-and RAS-mediated diabetic retinopathy. Exp Eye Res 2009 Dec; 89(6):1028-34.
    50. Benndorf R, Boger RH, Ergun et al. Angiotensin Ⅱ type 2 receptor inhibits vascular endothelial growth factor-induced migration and in vitro tube formation of human endothelial cells. Cir Res 2003; 93:438-47.
    51. Lin KY, Ito A, Asagami T, Tsao PS et al. Impaired nitric oxide synthase pathway in diabetes mellitus:role of asymmetric dimethylarginine and dimethylarginine dimethylaminohydrolase. Circulation 2002; 106:987-92.
    52. Sydow K, Schwedhelm E, Arakawa N et al. ADMA and oxidative stress are responsible for endothelial dysfunction in hyperhomocyste inemia:effects of L-arginine and B vitamins. Cardiovasc Res 2003; 57:244-52.
    53. Siekmeier R, Grammer T, Marz W. Roles of oxidants, nitric oxide, and asymmetric dimethylarginine in endothelial function. J Cardiovasc Pharmacol The 2008 Dec; 13(4):279-97.
    54. Nageswara R, Aleksandr V, Marschall S. Oxidative stress and vascular disease. Arterioscler Thromb Vasc Biol 2005; 25:29-38.
    55. Veresh Z, Racz A, Lotz G, Koller A. ADM A impairs nitric oxide-mediated arteriolar function due to increased superoxide production by angiotensin Ⅱ-NADPH oxidase pathway. Hypertension 2008 Nov; 52(5):960-6.
    56. Feng Q, Lu X, Fortin AJ et al. Elevation of an endogenous inhibitor of nitric oxide synthesis in experimental congestive heart failure. Cardiovasc Res 1998; 37:667-75.
    57. Segarra G, Medina P, Ballester RM et al. Effects of some guanidino compounds on human cerebral arteries. Stroke 1999; 30:2206-11.
    58. Cable DG, Celotto AC, Evora PR et al. Asymmetric dimethylarginine endogenous inhibition of nitric oxide synthase causes differential vasculature effects. Med Sci Monit 2009 Sep; 15(9):BR248-53.
    1.马湘俊.β-受体阻滞剂在扩张型心肌病心力衰竭治疗中的应用.心脑血管病防治2001;1(3):39-40.
    2. Bridtow MR. What type of beta-blocker should be used to treatchronic heart failure.Ciculation,2000; 102(5):484-6.
    3. Kim MH, Devlin WH, Das SK et al. Effects of beta-adrenergicblocking therapy on left ventricular diastolic relaxation propertiesin patients with dilated cardiomyopathy. Circulation,1999; 100(7):729-35.
    4. Janssen PA. Nebivolol:-a new form of cardiovascular therapy? Drug Invest 1991; 3(Suppl 1):1-2.
    5. Siebert CD, H"ansicke A, Nagel T. Stereocemical comparison of nebivolol with other beta-blockers. Chirality 2007; 20:103-9.
    6. Labrid C, Rocher I, Guery O. Structure-activity relationships as a response to the pharmacological differences in beta-receptor ligands. Am J Hypertens 1989; 11(Pt2): 245S-251S.
    7. Mutschler E, Geisslinger G, Kroemer HK et al. Beta-adrenozeptor-agonisten. In:Mutschler E, ed.Arzneimittelwirkungen Lehrbuch der Pharmakologie und Toxikologie,8th edition. Stuttgart:Wissenschaftliche Verlagsgesellschaft,2001; S342-S348.
    8. Pauwels PJ, Gommeren W, Van Lommen G et al. The receptor binding profile of the new antihypertensive agent nebivolol and its stereoisomers compared with various beta-adrenergic blockers. Mol Pharmacol 1988; 34:843-51.
    9. Ignarro LJ. Experimental evidences of nitric oxide-dependent vasodilatory activity of nebivolol, a third generation beta-blocker. Blood Press 2004; Suppl 1:2-16.
    10. Brixius K, Bundkirchen A, Bolck B et al. Nebivolol, bucindolol, metoprolol and carvedilol are devoid of intrinsic sympathomimetic activity in human myocardium. Br J Pharmacol 2001; 133:1330-8.
    11. Bundkirchen A, Nguyen Q, Brixius K et al. Lack of inverse agonistic activity of nebivolol, its d-and 1-enantiomers and of in vivo metabolized nebivolol in human myocardium. Eur J Pharmacol 2003b; 476:97-105.
    12. Sacco G, Evangelista S, Criscuoli M et al. Involvement of nitric oxide in both central and peripheral haemodynamic effect of d/1-nebivolol and its enantiomers in rats. Eur J Pharmacol 2005; 511:167-74.
    13. Xhonneux R, Wouters L, Reneman RS et al. The 1-enantiomer of nebivolol potentiates the
    blood pressure lowering effect of the d-enantiomer. Eur J Pharmacol 1990; 181:261-5.
    14. Schneider J, Fruh C, Wilffert B et al. Effects of selective betal-adrenoceptor antagonist, nebivolol, on cardiovascular parameters in the pithed normotensive rat. Pharmacology 1990; 40:33-41.
    15. Van de Water A, Xhonneux R, Reneman RS et al. Cardiovascular effects of dl-nebivolol and its enantiomers-a comparison with those of atenolol. Eur J Pharmacol 1988b; 156:95-103.
    16. Van Nueten L, De Cr'ee J. Nebivolol:Comparison of the effects of dl-nebivolol, d-nebivolol,1-nebivolol, atenolol, and placebo on exercise-induced increases in heart rate and systolic blood pressure. Cardiovasc Drugs Ther 1998; 12:339-44.
    17. De Cree J, Genkens H, Verhaegen H. Noninvasive cardiac haemodynamics of nebivolol. Drug Invest 1991; 3(Suppll):40-50.
    18. Himmelmann A, Hedner T, Snoeck E et al. Haemodynamic effects and pharmacokinetics of oral d-and 1-nebivolol in hypertensive patients. Eur J Clin Pharmacol 1996; 51:259-64.
    19. Stoleru L, Wijns W, van Eyll C et al. Effects of d-nebivolol and 1-nebivolol on left ventricular systolic and diastolic function:Comparison with dl-nebivolol and atenolol. J Cardiovasc Pharmacol 1993; 22:183-90.
    20. Evangelista S, Garbin U, Fratta-Pasini A et al. Effect of dl-nebivolol, its enantiomers and metabolites on the intracellular production of superoxide and nitric oxide in human endothelial cells. Pharm Res 2007; 55:303-9.
    21. Ladage D, Brixius K, Hoyer H et al. Mechanisms underlying nebivolol-induced endothelial nitric oxide synthase activation in human umbilical vein endothelial cells. Clin Exp Pharmacol Physiol 2006; 33:720-4.
    22. Mason R, Kubant R, Jacob RF et al. Effect of nebivolol on endothelial nitric oxide and peroxynitrite release in hypertensive animals:Role of antioxidant acrivity. J Cardiovasc Pharmacol 2006; 48:862-9.
    23. Arosio E, De Marchi S, Prior M et al. Effects of nebivolol and atenolol on small arteries and microcirculatory endothelium-dependent dilation in hypertensive patients undergoing isometric stress. J Hypertens 2002; 20:1793-7.
    24. Dessy C, Saliez J, Ghisdal P et al. Endothelial beta3-adrenoreceptors mediate nitric oxide-dependent vasorelaxation of coronary microvessels in response to the third-generation beta-blocker nebivolol. Circulation 2005; 112:1198-1205.
    25. Filippelli A. Effects of nebivolol on human platelet aggregation. J Cardiovasc Pharmacol 2001; 38:922-9.
    26. Mollnau H, Schulz E, Daiber A et al. Nebivolol prevents vascular NOS III uncoupling in experimental hyperlipidemia and inhibits NADPH oxidase activity in inflammatory cells. Arterioscler Thromb Vasc Biol 2003; 23:615-21.
    27. Fratta Pasini A, Garbin U, Nava MC et al. Nebivolol decreases oxidative stress in essential hypertensive patients and increases nitric oxide by reducing its oxidative inactivation. J Hypertens 2005; 23:589-96.
    28. Troost R, Schwedhelm E, Rojczyk S et al. Nebivolol decreases systemic oxidative stress in healthy volunteers. Br J Clin Pharmacol 2000; 50:377-9.
    29. Gao Y, Nagao T, Bond RA et al. Nebivolol induces endothelium-dependent relaxations of canine coronary arteries. J Cardiovasc Pharmacol 1991; 17:964-9.
    30. Hashimoto M, Tanabe Y, Gamoh S et al. Nebivolol, a new betal antagonist, can induce endothelium-dependent relaxations of porcine coronary artery by release of nitric oxide from the endothelial cells. Jpn J Pharmacol 1996; 71(Suppl):224P.
    31. Ignarro LJ, Byrns RE, Trinh K et al. Nebivolol:A selective betal-adrenergic receptor antagonist that relaxes vascular smooth muscle by nitric oxide-and cyclic GMP-dependent mechanisms. Nitric Oxide 2002(a); 7:75-82.
    32. Altwegg LA, d'Uscio LV, Barandier C et al. Nebivolol induces NO-mediated relaxations of rat small resistance but not of large elastic arteries. J Cardiovasc Pharmacol 2002; 36:316-20.
    33. Georgescu A, Pluteanu F, Flonta ML et al. The cellular mechanisms involved in the vasodilator effect of nebivolol on the renal artery. Eur J Pharmacol 2005; 508:159-66.
    34. Kakoki M, Hirata Y, Hayakawa H et al. Effects of vasodilatatory beta-adrenoceptor antagonists on endothelium-derived nitric oxide release in rat kidney. Hypertension 1999; 33(PtⅡ):467-71.
    35. Maffei A, Vecchione C, Aretini A et al. Characterization of nitric oxide release by nebivolol and its metabolites. Am J Hypertens 2006; 19:579-86.
    36. Parenti A, Filippi S, Amerini S, et al. Inositol phosphate metabolism and nitric-oxide synthase activity in endothelial cells are involved in the vasorelaxant activity of nebivolol. J Pharmacol Exp Ther 2000; 292:698-703.
    37. Kalinowski L, Dobrucki LW, Szczepanska-Konkel M et al. Third-generation beta-blockers stimulate nitric oxide release from endothelial cells through ATP efflux:A novel mechanism for antihypertensive action. Circulation 2003; 107:2747-52.
    38. Wang Y, Zhang M, Liu Y et al. Neither K+ channels nor PI3K/Akt mediates the vasodilative effect of nebivolol on different types of rat arteries.J Cardiovasc Pharmacol Ther 2009; 14(4):332-8.
    39. Buga GM, Ignarro LJ. Nebivolol, a nitric oxide releasing beta-adrenergic antagonist and
    NCX 4016, a nitric oxide releasing aspirin derivative inhibit proliferation of cultured rat aortic smooth muscle cells. Nitric Oxide 4:182-3.
    40. De Groot AA, Mathy MJ, van Zwieten PA et al. Involvement of the beta3 adrenoceptor in nebivolol-induced vasorelaxation in the rat aorta. J Cardiovasc Pharmacol 2003; 42:232-6.
    41. Rozec B, Quang TT, Noireaud J et al. Mixed beta3-adrenoceptor agonist and alpha 1-adrenoceptor antagonist properties of nebivolol in rat thoracic aorta. Br J Pharmacol 2006; 147:699-706.
    42. Rosenkranz S, Brixius K, Halbach R et al. Phosphodiesterase type 5 inhibitor sildenafil citrate does not potentiate the vasodilative properties of nebivolol in rat aorta. Life Sci 2006; 78:1103-7.
    43. Gryglewski RJ, Uracz W, Marcinkiewicz E, et al. Role of endothelial nitric oxide in pleiotropic action of cardiovascular drugs:Nebivolol. In:Gryglewski RJ, Minuz P, eds. Nitric oxide:Basic research and clinical applications. Amsterdam:IOS Press,2001; 57-69.
    44. Chlopicki S, Kozlovski VI, Gryglewski RJ. NO-dependent vasodilation induced by nebivolol in coronary circulation is not mediated by beta-adrenoceptors or by 5 HT1A-receptors. J Physiol Pharmacol 2002; 53:615-24.
    45. Lu HR, Vandeplassche G, Wouters L et al. Effects of beta-adrenoceptor antagonists on cardiac function in ischemic-reperfused myocardium of the isolated working rabbit heart. Eur J Pharmacol 1990; 184:65-74.
    46. d'Uscio LV, Arnet U, Yang Z, Luscher TF. Effects of nebivolol on vascular endothelium and smooth muscle:Comparison with atenolol. Data on file. Menarini Ricerche.1998.
    47. Van der Zee R, Doevedans P, Broeders M et al. Does nebivolol augment nitric oxide release from the human internal mammary artery and saphenous vein? Data on file. Menarini Ricerche.1997.
    48. Bowman AJ, Chen CP, Ford GA. Nitric oxide mediated venodilator effects of nebivolol. Br J Clin Pharmacol 1994; 38:199-204.
    49. Cockcroft JR, Chowienczyk PJ, Brett SE et al. Nebivolol vasodilates human forearm vasculature:Evidence for an 1-arginine/NO-dependent mechanism. J Pharmacol Exp Ther 1995; 274:1067-71.
    50. Dawes M, Brett SE, Chowienczyk PJ et al. The vasodilator action of nebivolol in forearm vasculature of subjects with essential hypertension. Br J Clin Pharmacol 1999; 48:460-3.
    51. Ghiadoni L, Magagna A, Versari D et al. Different effect of antihypertensive drugs on conduit artery endothelial function. Hypertension 2003; 41:1281-6.
    52. Tzemos N, Lim PO, MacDonald TM. Nebivolol reverses endothelial dysfunction in essential hypertension. A randomized, double-blind, crossover study. Circulation 2001; 104:511-4.
    53. Arosio E, De Marchi S, Prior M et al. Effects of nebivolol and atenolol on small arteries and microcirculatory endothelium-dependent dilation in hypertensive patients undergoing isometric stress. J Hypertens 2002; 20:1793-7.
    54. Lekakis JP, Protogerou A, Papamichael C et al. Effect of nebivolol and atenolol on brachial artery flow-mediated vasodilatation in patients with coronary artery disease. Cardiovasc Drugs Ther 2005; 19:277-81.
    55. Kubli S, Feihl F, Waeber B. Beta-blockade with nebivolol enhances the acetylcholine-induced cutaneous vasodilation. Clin Pharmacol Ther 2001; 69:238-44.
    56. Broeders MAW, Doevendans PA, Bekkers BCAM et al. Nebivolol:A third generation beta-blocker that augments vascular NO release. Circulation 2000; 102:677-84.
    57. Gosgnach W, Boixel C, Nevo N et al. Nebivolol induces calcium-independent signaling in endothelial cells by a possible beta-adrenergic pathway. J Cardiovasc Pharmacol 2001; 38:191-9.
    58. Brehm BR, Wolf SC, Bertsch D et al. Effects of nebivolol on proliferation and apoptosis of human coronary artery smooth muscle and endothelial cells. Cardiovasc Res 2001; 49:430-9.
    59. Fratta Pasini A, Garbin U, Nava MC, Stranieri C et al. Nebivolol decreases oxidative stress in essential hypertensive patients and increases nitric oxide by reducing its oxidative inactivation. J Hypertens 2005; 23:589-96.
    60. Mason R, Kalinowski L, Jacob R et al. Nebivolol reduces nitroxidative stress and restores nitric oxide bioavailability in endothelium of black Americans. Circulation 2005; 112:3795-801.
    61. Janssen PA. Nebivolol-a new form of cardiovascular therapy? Drug Invest 1991; 3(Suppl 1):1-2.
    62. Janssens WJ, Cools F. Effect of nebivolol on the isolated guinea-pig ileum:No interaction with 5-HT1A serotonergic or with atypical beta-adrenergic receptors. JRF Preclinical Research Report N 106542, dated May 1994.
    63. Zschauer AO, Sielczak MW, Smith DA et al. Norepinephrine-induced contraction of isolated rabbit bronchial artery:Role of alpha 1-and alpha 2-adrenoceptor activation. J Appl Physiol 1997; 82:1918-25.
    64. Garban HJ, Buga GM, Ignarro LJ. Estrogen receptor-mediated vascular responsiveness to nebivolol:A novel endothelium-related mechanism of therapeutic vasorelaxation. J Cardiovasc Pharmacol 2004; 43:638-44.
    65. Cominacini L, Fratta Pasini A, Garbin U et al. Nebivolol and its 4-keto derivative increase nitric oxide in endothelial cells by reducing its oxidative inactivation. J Am Coll Cardiol 2003; 42:1838-44.
    66. Brixius K, Song Q, Malick A et al. ENOS is not activated by nebivolol in human failing myocardium. Life Sci 2006; 79:1234-41.
    67. Mory A. Comparaison de l'effet n'evibolol versus at'enolol surl'espression des NO-synthases dans les cellules myocardiques. Dataon file. Menarini Ricerche.2001.
    68. Cosentino F, Bonetti S, Rehorik R et al. Nitric oxide-mediated relaxations in salt-induced hypertension:Effect of chronic betal-selective receptor blockade. J Hypertens 2002; 20:421-8.
    69. Oelze M, Daiber A, Brandes RP, et al. Nebivolol inhibits superoxide formation by NADPH oxidase and endothelial dysfunction in angiotensin Ⅱ-treated rats. Hypertension 2006; 48:677-84.
    70. Hoyer D, Clarke DE, Fozard Hogan JC et al. In vivo EDRF activity influences platelet function. Br J Pharmacol 1988; 94:1020-22.
    71. Falciani M, Rinaldi B, D'Agostino B et al. Effects of nebivolol on human platelet aggregation. J Cardiovasc Pharmacol 2001; 38:922-9.
    72. Sala C, Barelli MV, Buonamici V. Aumento dei livelli di GMP ciclico intrapiastrinico dopo trattamento cronico connebivololo in ipertesi essenziali. XVII Italian Arterial Hypertension Congress Rome 2001; 254:16-19.
    73. Gresele P. Studies on anti-thrombotic activity of nebivolol. Data on file. Menarini Ricerche. 2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700