用户名: 密码: 验证码:
脂联素对高脂血症大鼠血管内皮功能的改善作用及其机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景
     随着社会的发展、居民生活水平的提高及生活方式的改变,由高脂血症引起的以肥胖、胰岛素抵抗、高血压为表现的代谢综合征(MS)的发病率逐年升高并呈年轻化趋势,由此导致的心血管疾病的发生已成为危害人类健康的主要杀手。大量的基础研究表明,血管内皮是许多心血管疾病或危险因子作用的重要靶器官,它具有相当活跃的内分泌和代谢功能;进一步的研究证实,由精氨酸缺乏、一氧化氮合酶(NOS)表达改变及超氧化物导致的一氧化氮(NO)破坏增加及其它多种因素参与的内皮功能紊乱,可使血管收缩与舒张因子、促凝血和抗凝血介质、促生长和抑制生长物质之间的平衡失调,从而构成了这些心血管疾病的共同病理生理基础。因此,寻求改善内皮功能的途径,能够为防治高脂血症与MS向心血管疾病发展提供新的思路及策略。
     近年来,随着对脂肪组织生物学功能研究的深入,人们逐渐发现,脂肪组织产生的多种生物活性物质,不但对体内能量代谢有着重要调节作用,还可以调节心血管系统的结构与功能。因此脂肪组织已被公认为人体内最大的内分泌器官。在脂肪细胞分泌的众多生物活性物质中,脂联素(Adiponectin)是最新且生物活性最为重要的脂肪细胞因子,因而成为研究最为活跃的焦点。近年临床观察表明,血浆脂联素水平与内皮功能失调及冠心病的发病率呈显著负相关,提示脂联素可能是一种强有力的内皮保护因子。然而目前国内外对其机制的研究仍不完善,特别是对脂联素在高脂血症这一MS中至关重要的病变环节所致内皮功能失调中的作用目前知之甚少。因此阐明脂联素与高脂血症性内皮功能障碍的关系及其作用机理无疑对于揭示脂联素改善内皮功能的机理具有重要的理论意义,且对于将脂联素用于防治内皮功能障碍相关性疾病具有广阔的临床应用前景。
     研究目的
     1.明确脂联素对高脂血症所致内皮功能障碍的抑制作用。
     2.阐明脂联素改善内皮功能的信号机制,尤其是脂联素与血管内源性NOS-NO系统及血管氧化应激之间的关系。
     实验方法
     选用成年SD大鼠,随机分为正常饮食组及高脂饮食组。14周后,取其主动脉,以脂联素球状片段gAd(2μg/ml)孵育4小时。观察gAd对血管内皮功能,NO、超氧化物及过氧化亚硝酸阴离子的生成,NADPH氧化酶的表达以及NOS的活性和表达的影响。
     实验结果
     1.脂联素可以增加高脂血症大鼠血管对内皮依赖性血管舒张剂的舒张反应,显著改善其血管内皮功能。
     2.尽管脂联素能够改善高脂血症大鼠血管内皮功能,但未增加其血管NO的生成。进一步实验发现,它可促进内皮型NOS(eNOS)的活性及磷酸化表达,抑制诱导型NOS(iNOS)的活性及表达。
     3.脂联素可抑制高脂血症大鼠血管超氧化物(·O2?)的生成和NADPH氧化酶的表达,同时促进其抗氧化物的活性。
     4.脂联素能够降低高脂血症大鼠血管过氧化亚硝酸阴离子(ONOO?)的生成量。
     结论
     1.本研究首次发现,脂联素急性治疗可显著抑制高脂血症介导的血管内皮功能失调。
     2.进一步研究表明,脂联素抑制超氧化物生成、保护生物活性NO、阻断毒性ONOO?形成,是其改善内皮功能,发挥血管保护作用的重要机制。
Background
     Metabolic syndrome is characterized by a group of metabolic and hemostatic abnormalities, including impaired glucose tolerance, hyperinsulinemia, hypertension, dyslipidemia, oxidant stress, and endothelial dysfunction. Considerable evidence from both animal experiments and clinical observations indicates that endothelial dysfunction, which was involved in deficiencies of arginine supply, alterations of nitric oxide synthase (NOS) expression and increased destruction of nitric oxide (NO) by superoxide (·O2?), contributes significantly to subsequent development of cardiovascular disease through a variety of pathological pathways in metabolic syndrome. Therefore, improvement of endothelial dysfunction is an available approach that can reduce morbility and mortality of cardiovascular disease caused by metabolic syndrome.
     Adiponectin is a novel cytokine secreted from adipose tissue. Clinical observations have demonstrated that hypoadiponectinemia is closely related to endothelial dysfunction in peripheral arteries and that plasma total adiponectin concentrations are inversely related to the risk of myocardial infarction. These results suggest that adiponectin might be a potent endothelial protective molecule. However, whether supplementation of adiponectin may attenuate endothelial dysfunction caused by hyperlipidemia has not been previously investigated. To determine whether adiponectin might improve endothelial function in hyperlipidemic animals and to investigate the mechanisms involved show a light on the possibility that therapeutic application of gAd may be a useful treatment of metabolic disorders with vascular complication.
     Aims
     1. To determine whether treatment with adiponectin might improve endothelial function in vascular segments isolated from hyperlipidemic animals.
     2. If so, to investigate the mechanisms through which adiponectin exerts its vasculoprotective effects in hyperlipidemic rats, especially its actions associated with vascular NO bioactivity and oxidative stress. Methods
     Adult rats were fed with a regular or a high-fat diet for 14 wk. The aorta was isolated, and vascular segments were incubated with vehicle or the globular domain of adiponectin (gAd, 2μg/ml) for 4 h. The effect of gAd on endothelial function, nitric oxide (NO) and superoxide production, nitrotyrosine formation, gp91phox expression, and endothelial/inducible nitric oxide synthase activity/ expression was determined.
     Results
     1. Treatment of hyperlipidemic aortic segments in vitro with gAd enhanced acetylcholine (ACh)-induced vasorelaxation in an NO-dependent fashion.
     2. Treatment with gAd had no significant effect on hyperlipidemia-induced NO overproduction. Further study showed gAd enhanced eNOS phosphorylation and inhibited iNOS expression in hyperlipidemic vessels.
     3. Treatment with gAd significantly reduced superoxide (·O2?) and NADPH oxidase (gp91phox) overexpression, meanwhile, enhanced antioxidant capacity in hyperlipidemic vessels.
     4. Treatment with gAd attenuated peroxynitrite overproduction in hyperlipidemic vessels.
     Conclusions
     1. We have observed for the first time that acute treatment with gAd significantly attenuated hyperlipidemia induced endothelial dysfunction.
     2. We have provided direct evidence that inhibiting superoxide production, preserving NO from destruction, and blocking the formation of toxic ONOO? are the major mechanisms by which adiponectin exerts its vasculoprotective effect.
引文
1. Isomaa B, Almgren P, Tuomi T, Torsen B, Lahti K, Nissen M. Cardiovascular Morbidity and Mortality Associated with the Metabolic Syndrome. Diabetes Care, 2001, 24: 683-689.
    2. Reaven GM. Role of insulin resistance in human disease. Diabetes, 1988, 37: 1595-1607.
    3. Isomaa B. A major health hazard: the metabolic syndrome. Life Sci, 2003, 73: 2395-2411.
    4. Alberti KG, Zimmet P, Shaw J. IDF Epidemiology Task Force Consensus Group. The metabolic syndromea new worldwide definition. Lancet, 2005, 366:1059-1062.
    5. Alberti KG, Zimmet P, Shaw J. Metabolic syndrome-a new world-wide definition. A Consensus Statement from the International Diabetes Federation. Diabet Med, 2006, 23: 469-480.
    6. Ford ES, Giles WH, Dietz W H. Preyalence of the metabolic syndrome among US adults: findings from the third National Health and Nutrltion Examination Survey. JAMA, 2002, 287: 356-359.
    7. Kim MH, Lee HS, Park HJ, Kim WY. Risk factors associated with metabolic syndrome in Korean elderly. Ann Nutr Metab, 2007, 51: 533-540.
    8. Jia WP, Xiang KS, Chen L. A comparison of the application of two working definitions of metablie syndrom in Chinese po-pulation. Zhong Hua Yi Xue Za Zhi, 2004, 84: 534-538.
    9. Stern MP, Williams K, Gonzalez-Villalpando C, Hunt KJ, Haffner SM. Does the metabolic syndrome improve identifi cation of individuals at risk of type 2 diabetes and/or cardiovascular disease? Diabetes Care, 2004, 27: 2676-2681.
    10. UKPDS Group. UK Prospective Diabetes Study 17: A nine-year update of a randomized, controlled trial on the effect of improved metabolic control on complications in non-insulin-dependent diabetes mellitus. Ann Intern Med, 1996, 124:136-145.
    11. Sattar N, Gaw A, Scherbakova O, Ford I, O'Reilly DS, Haffner SM, Isles C, Macfarlane PW, Packard CJ, Cobbe SM, Shepherd J. Metabolic syndrome with and without creactive protein as a predictor of coronary heart disease and diabetes in the West of Scotland Coronary Prevention Study. Circulation, 2003, 108: 414-419.
    12. Hu G, Qiao Q, Tuomilehto J, Balkau B, Borch-Johnsen K, Pyorala K; DECODE Study Group. Prevalence of the metabolic syndrome and its relation to all-cause and cardiovascular mortality in nondiabetic European men and women. Arch Intern Med, 2004, 164: 1066-1076.
    13. Hu G, Qiao Q, Tuomilehto J, Eliasson M, Feskens EJ, Pyorala K; DECODE Insulin Study Group. Plasma insulin and cardiovascular mortality in non-diabetic European men and women: a meta-analysis of data from eleven prospective studies. The DECODE Insulin Study Group. Diabetologia, 2004, 47:1245-1256.
    14. Carr DB, Utzschneider KM, Hull RL, Kodama K, Retzlaff BM, Brunzell JD, Shofer JB, Fish BE, Knopp RH, Kahn SE. Intra-abdominal fat is a major determinant of the National Cholesterol Education Program Adult Treatment Panel III criteria for the metabolic syndrome. Diabetes, 2004, 53: 2087-2094.
    15. Nakamura T, Tokunaga K, Shimomura I, Nishida M, Yoshida S, Kotani K, Islam AH, Keno Y, Kobatake T, Nagai Y. Contribution of visceral fat accumulation to the development of coronary artery disease in non-obese men. Atherosclerosis, 1994, 107:239-246.
    16. Bonora E, Kiechl S, Willeit J, Oberhollenzer F, Egger G, Targher G, Alberiche M, Bonadonna RC, Muggeo M. Prevalence of insulin resistance in metabolic disorders: the Bruneck Study. Diabetes, 1998, 47: 1643-1649.
    17. Nesto RW. The relation of insulin resistance syndromes to risk of cardiovascular disease. Rev Cardiovasc Med, 2003, 4: S11-S18.
    18. Zimmet P, Alberti KG, Shaw J. Global and societal implications of the diabetes epidemic. Nature, 2001, 414: 782-787.
    19. Carey VJ, Walters EE, Colditz GA, Solomon CG, Willett WC, Rosner BA, Speizer FE, Manson JE. Body fat distribution and risk of noninsulin- dependent diabetes in women: the Nurses’ Health Study. Am J Epidemiol, 1997, 145: 614-619.
    20. Anderson PJ, Critchley JA, Chan JC, Cockram CS, Lee ZS, Thomas GN, Tomlinson B. Factor analysis of the metabolic syndrome: obesity vs insulin resistance as the central abnormality. International Journal of Obesity, 2001, 25:1782.
    21. Manson JE, Willet WC, Stampfer MJ, Colditz GA, Hunter DJ, Hankinson SE. Body weight and mortality among women. N Eng J Med, 1995, 333: 677-685.
    22. Juahan-Vague I, Alessi MC. PAI-1, obesity, insulin resistance and risk of cardiovascular events. Thromb Haemost, 1997, 78: 656-660.
    23. Larsson B, Svardsudd K, Welin L, Wilhelmsen L, Bjorntorp P, TibblinG. Abdominal adipose tissue distribution, obesity, and risk of cardiovascular disease and death: 13 year follow up of participants in the study of men born in 1913. Br Med J, 1984, 288: 1401-1404.
    24. Lapidus L, Bengtsson C, Larsson B, Pennert K, Rybo E, Sjostrom L. Distribution of adipose tissue and risk of cardiovascular disease and death: a 12 year follow up of participants in the population study of women in Gothenburg, Sweden. Br Med J, 1984, 289:1257-1261.
    25. Ducimetiere P, Richard J, Cambien F. The pattern of subcutaneous fat distribution in middle-aged men and the risk of coronary heart disease: the Paris Prospective Study. Int J Obes, 1986, 10: 229-240.
    26. Borkan GA, Hults DE, Gerzof SG, Robbins AH, Silbert CK. Age changes in body composition revealed by computed tomography. J Gerontol, 1983,38: 673-677.
    27. Lemieux S, Prud’homme D, Bouchard C, Tremblay A, Despr’es JP. Sex differences in the relation of visceral adipose tissue accumulation to total body fatness. Am J Clin Nutr, 1993, 58: 463-467.
    28. Wajchenberg BL. Subcutaneous and visceral adipose tissue: their relation to the metabolic syndrome. Endocr Rev, 2000, 21: 697-738.
    29. Perusse L, Despres JP, Lemieux S, Rice T, Rao DC, Bouchard C. Familial aggregation of abdominal visceral fat level: results from the Quebec family study. Metabolism, 1996, 45: 378-382.
    30. Fujimoto WY. The growing prevalence of non-insulin-dependent diabetes in migrant Asian populations and its implications for Asia. Diabetes Res Clin Pract, 1992, 15: 167-183.
    31. Haffner SM, D’Agostino R, Saad MF, Rewers M, Mykkanen L, Selby J, Howard G, Savage PJ, Hamman RF, Wagenknecht LE, Bergman RN. Increased insulin resistance and insulin secretion in nondiabetic African- Americans and Hispanics compared with non-Hispanic whites. The Insulin Resistance Atherosclerosis Study. Diabetes, 1996, 45: 742-748.
    32. Trayhurn P, Beattie JH. Physiological role of adipose tissue: White adipose tissue as an endocrine and secretory organ. Proc Nutr Soc, 2002, 60: 329-332.
    33. 梁真, 程桦, 李焱, 黎锋, 黄秀琼, 聂佩珍, 戚以勤. 应用高葡萄糖钳夹技术评价高 TG 血症人群胰岛素分泌和胰岛素敏感性. 中华内分泌代谢杂志, 2005, 21: 211-214.
    34. Ascaso JF, Real JT, Merchante A, Rodrigo A, Carmena R. Lipoprotein phenotype and insulin resistance in familial combined hyperlipidemia. Metabolism, 2000, 49: 1627-1631.
    35. Eschwege E. The dysmetabolic syndrome, insulin resistance and increased cardiovascular (CV) morbidity and mortality in type 2 diabetes: aetiological factors in the development of CV complications. Diabetes Metab, 2003, 29: S19-27.
    36. Yusuf S, Hawken S, Ounpuu S, Dans T, Avezum A, Lanas F, McQueen M, Budaj A, Pais P, Varigos J, Lisheng L; INTERHEART Study Investigators. Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): case-control study. Lancet, 2004, 364:937-952.
    37. Breuer HW. Hypertriglyeeridemia: a review of clinical relevance and treatment options: focus on cerivastatin. Curr Med Res Opin, 2001, 17: 60-73.
    38. Ma XL, Hu A, Liu HR, Tao L, Christopher TA, Lopez BL. Peroxynitrite is responsible for high concentrations of NO-induced myocardial apoptosis. Nitric Oxide, 2004, 11: 120-121.
    39. Abrams J. Role of endothelial dysfunction in coronary artery disease. Am J Cardiol, 1997, 79: 2-9.
    40. Erishman WH. Biologic markers as predict or so cardiovascular disease. Am J Med, 1998, 104: 18S-27S.
    41. Chambers JC, McGregor A, Jean-Marie J, Kooner JS. Abnormal ities of vascular endothelial function may contribute to increased coronary heart disease risk in UK Indian Asians. Heart, 1999, 81: 501-509.
    42. Jooke JE, Hannemann MM. Adverse endothelial function and the insulin resintance syndrome. J Intern Med, 2000, 247: 425-431.
    43. Zeng G, Quon MJ. Insulin-stimulated production of nitric oxide is inhibited by wortmannin. Direct measurement in vascular endothelial cells. J Clin Invest, 1996, 98: 894-898.
    44. Potenza MA, Marasciulo FL, Chieppa DM, Brigiani GS, Formoso G, Quon MJ, Montagnani M. Insulin resistance in spontaneously hypertensive rats is associated with endothelial dysfunction characterized by imbalance between NO and ET-1 production. Am J Physiol Heart Circ Physiol, 2005, 289: H813-H822.
    45. Formoso G, Chen H, Kim JA, Montagnani M, Consoli A, Quon MJ. Dehydroepiandrosterone mimics acute actions of insulin to stimulateproduction of both nitric oxide and endothelin-1 via distinct phosphatidylinositol 3-kinase- and mitogen-activated protein kinase- dependent pathways in vascular endothelium. Mol Endocrinol, 2006, 20: 1153-1163.
    46. Potenza MA, Marasciulo FL, Tarquinio M, Quon MJ, Montagnani M. Treatment of spontaneously hypertensive rats with rosiglitazone and/or enalapril restores balance between vasodilator and vasoconstrictor actions of insulin with simultaneous improvement in hypertension and insulin resistance. Diabetes, 2006, 55: 3594-3603.
    47. Jiang ZY, Lin YW, Clemont A, Feener EP, Hein KD, Igarashi M, Yamauchi T, White MF, King GL. Characterization of selective resistance to insulin signaling in the vasculature of obese Zucker (fa/fa) rats. J Clin Invest, 1999, 104: 447-457.
    48. Cusi K, Maezono K, Osman A, Pendergrass M, Patti ME, Pratipanawatr T, DeFronzo RA, Kahn CR, Mandarino LJ. Insulin resistance differentially affects the PI 3-kinase- and MAP kinase-mediated signaling in human muscle. J Clin Invest, 2000, 105: 311-320.
    49. Arcaro G, Cretti A, Balzano S, Lechi A, Muggeo M, Bonora E, Bonadonna RC. Insulin causes endothelial dysfunction in humans: sites and mechanisms. Circulation, 2002, 105: 576-582.
    50. Creager MA, Lüscher TF, Cosentino F, Beckman JA. Diabetes and Vascular Disease Pathophy-sioligy, Clinical Consequences, and Medical Theapy: Part I. Circulation, 2003, 108: 1527-1532.
    51. 郭志坚, 侯凡凡, 梁敏, 王力, 张训, 刘志强. 糖基化终极产物刺激内皮细胞分泌单核细胞趋化蛋白-1 信号传导途径. 中华医学杂志, 2003, 83: 1075-1079.
    52. Hashimoto M, Akishita M, Eto M, Kozaki K, Ako J, Sugimoto N, Yoshizumi M, Toba K, Ouchi Y. The impairment of flow-mediated vasodilatation in obese men with visceral fat accumulation. Int J ObesRelat Metab Disord, 1998, 22: 477-484.
    53. Yoshizumi M, Perrela MA, Burnett Jr JC, Lee M-E. Tumor necrosis factor downregulates an endothelial nitric oxide synthase mRNA by shortening its half-life. Circ Res, 1993, 73: 205-209.
    54. Hotamisligil GS, Arner P, Caro JF, Atkinson RL, Spiegelman BM. Increased adipose tissue expression of tumor necrosis factor-a in human obesity and insulin resistance. J Clin Invest, 1995, 95: 2409-2415.
    55. Hamdy O, Ledbury S, Mullooly C, Jarema C, Porter S, Ovalle K, Moussa A, Caselli A, Caballero AE, Economides PA, Veves A, Horton ES. Lifestyle modification improves endothelial function in obese subjects with the insulin resistance syndrome. Diabetes Care, 2003, 26: 2119-2125.
    56. Cai H and Harrison DG. Endothelial dysfunction in cardiovascular diseases: the role of oxidant stress. Circ Res, 2000, 87: 840-844.
    57. Beckman JS and Koppenol WH. Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and ugly. Am J Physiol, 1996, 271: C1424-C1437.
    58. Babior BM. NADPH oxidase: an update. Blood, 1999, 93(5): 1464-1476.
    59. Groemping Y, Rittinger K. Activation and assembly of the NADPH oxidase: a structural perspective. Biochem J, 2005, 386: 401-4l6.
    60. Huie RE and Padmaja S. The reaction of no with superoxide. Free Radic Res Commun, 1993, 18: 195-199.
    61. Schulz E, Jansen T, Wenzel P, Daiber A, Münzel T. Nitric Oxide, Tetrahydrobiopterin, Oxidative Stress, and Endothelial Dysfunction in Hypertension. Antioxid Redox Signal. 2008 Mar 5; [Epub ahead of print]
    62. Lakka HM, Laaksonen DE, Lakka TA, Niskanen LK, Kumpusalo E, Tuomilehto J and Salonen JT. The metabolic syndrome and total and cardiovascular disease mortality in middle-aged men. JAMA, 2002, 288: 2709-2716.
    63. Olkkonen VM and Lehto M. Oxysterols and oxysterol binding proteins:role in lipid metabolism and atherosclerosis. Ann Med, 2004, 36: 562-572.
    64. Davda RK, Stepniakowski KT, Lu G, Ullian ME, Goodfriend TL and Egan BM. Oleic acid inhibits endothelial nitric oxide synthase by a protein kinase C-independent mechanism. Hypertension, 1995, 26: 764-770.
    65. Pleiner J, Sehaller G, Mktermayer F. FFA-induced endothe1ial dysfunction can be corrected by vitamin C. J Clin Endocrinol Metab, 2002, 87: 2913-2917.
    66. Hu E, Liang P, Spiegelman BM. AdipoQ is a novel adipose-specific gene dysregulated in obesity. J Biol Chem, 1996, 271: 10697-10703.
    67. Maeda K, Okubo K, Shimomura I, Funahashi T, Matsuzawa Y, Matsubara K. cDNA cloning and expression of a novel adipose specific collagen-like factor, apM1 (adipose most abundant gene transcript 1). Biochem Biophys Res Commun, 1996, 221: 286-289.
    68. Nakano Y, Tobe T, Choi-Miura NH, Mazda T, Tomita M. Isolation and characterization of GBP28, a novel gelatin-binding protein purified from human plasma. J Biochem, 1996, 120: 803-812.
    69. Scherer PE, Williams S, Fogliano M, Baldini G, Lodish HF. A novel serum protein similar to C1q, produced exclusively in adipocytes. J Biol Chem, 1995, 270: 26746-26749.
    70. Heid IM, Wagner SA, Gohlke H, Iglseder B, Mueller JC, Cip P, Ladurner G, Reiter R, Stadlmayr A, Mackevics V, Illig T, Kronenberg F, Paulweber B: Genetic architecture of the APM1 gene and its influence on adiponectin plasma levels and parameters of the metabolic syndrome in 1,727 healthy Caucasians. Diabetes, 2006, 55: 375-384.
    71. Tso AW, Sham PC, Wat NM, Xu A, Cheung BM, Rong R, Fong CH, Xu JY, Cheng KK, Janus ED, Lam KS: Polymorphisms of the gene encoding adiponectin and glycaemic outcome of Chinese subjects with impaired glucose tolerance: a 5-year follow-up study. Diabetologia, 2006, 49:1806–1815.
    72. Vasseur F, Lepretre F, Lacquemant C, Froguel P. The genetics ofadiponectin. Curr Diab Rep, 2003, 3: 151-158.
    73. Lin LY,Lin CY,Su TC, Liau CS. Angiotensin II-induced apoptosis in human endothelial cells is inhibited by adiponectin through restoration of the association between endothelial nitric oxide synthase and heat shock protein 90. FEBS Letters, 2004, 574: 106-110.
    74. Fruebis J, Tsao TS, Javorschi S, Ebbets-Reed D, Erickson MR, Yen FT, Bihain BE, Lodish HF. Proteolytic cleavage product of 30-kDa adipocyte complement-related protein increases fatty acid oxidation in muscle and causes weight loss in mice. PNAS, 2001, 98: 2005-2010.
    75. Pajvani UB, Du X, Combs TP, Berg AH, Rajala MW, Schulthess T, Engel J, Brownlee M, Scherer PE. Structure-function studies of the adipocyte- secreted hormone Acrp30/adiponectin. JBC, 2003, 278: 9073-9085.
    76. Pajvani UB, Hawkins M, Combs TP, Rajala MW, Doebber T, Berger JP, Wagner JA, Wu M, Knopps A, Xiang AH, Utzschneider KM, Kahn SF, Olefsky JM, Buchanan TA, Scherer PE. Complex distribution, not absolute amount of adiponectin, correlates with thiazolidine-mediated improvement in insulin sensitivity. J Biol Chem, 2004, 279: 12152-12162.
    77. Arita Y, Kihara S, Ouchi N, Takahashi M, Maeda K, Miyagawa J, Hotta K, Shimomura I, Nakamura T, Miyaoka K, Kuriyama H, Nishida M, Yamashita S, Okubo K, Matsubara K, Muraguchi M, Ohmoto Y, Funahashi T, Matsuzawa Y. Paradoxical decrease of an adipose-specific protein, adiponectin, in obesity. Biochem Biophys Res Commun, 1999, 257: 79-83.
    78. Statnick MA, Beavers LS, Conner LJ, Corominola H, Johnson D, Hammond CD, Rafaeloff-Phail R, Seng T, Suter TM, Sluka JP, Ravussin E, Gadski RA, Caro JF. Decreased expression of apM1 in omental and subcutaneous adipose tissue of humans with type 2 diabetes. Int J Exp Diabetes Res, 2000, 1: 81-88.
    79. Haluzík M, Pa?ízková J, Haluzík MM. Adiponectin and its role in the obesity induced insulin resistance and related complications. Physiol Res, 2004, 53: 123-129.
    80. Diez JJ, Iglesias P. The role of the novel adipocyte-derived hormon adiponectin in human disease. Eur J Endocrinol, 2003, 148: 293-300.
    81. Nadler ST, Stoehr JP, Schueller KL, Tanimoto G, Yandell BS, Attie AD. The expression of adipogenic genes is decreased in obesity and diabetes mellitus. PNAS, 2001, 97: 11371-11376.
    82. Hotta K, Funahashi T, Bodkin NL, Ortmeyer HK, Arita Y, Hansen BC, Matsuzawa Y. Circulating concentrations of the adipocyte protein adiponectin are decreased in parallel with reduced insulin sensitivity during the progression to type 2 diabetes in rhesus monkeys. Diabetes, 2001, 50: 1126-1133.
    83. Ma K, Cabrero A, Saha PK, Kojima H, Li L, Chang BH, Paul A, Chan L. Increased β-oxidation but no insulin resistance or glucose intolerance in mice lacking adiponectin. J Biol Chem, 2002, 277: 34658-34661.
    84. Yamauchi T, Kamon J, Ito Y, Tsuchida A, Yokomizo T, Kita S, Sugiyama T, Miyagishi M, Hara K, Tsunoda M, Murakami K, Ohteki T, Uchida S, Takekawa S, Waki H, Tsuno NH, Shibata Y, Terauchi Y, Froguel P, Tobe K, Koyasu S, Taira K, Kitamura T, Shimizu T, Nagai R, Kadowaki T. Cloning of adiponectin receptors that mediate antidiabetic metabolic effects. Nature, 2003, 423: 762-769.
    85. Halleux CM, Takahashi M, Delporte ML, Detry R, Funahashi T, Matsuzawa Y, Brichard SM. Secretion of adiponectin and regulation of apM1 gene expression in human visceral adipose tissue. Biochem Biophys Res Commun, 2001, 288: 1102-1107.
    86. Fasshauer M, Klein J, Lossner U, Paschke R. Negative regulation of adipose-expressed galectin 12 by isoproterenol, tumor necrosis factor α, insulin and dexamethasone. Eur J Endocrinol, 2002, 147: 553-559.
    87. Zhang Y, Matheny M, Zolotukhin S, Tumer N, Scarpace PJ. Regulation of adiponectin and leptin gene expression in white and brown adipose tissues: influence of β3-adrenergic agonists, retinoic acid, leptin and fasting. Biochim Biophys Acta, 2002, 1584: 115-122.
    88. Maeda N, Shimomura I, Kishida K, Nishizawa H, Matsuda M, Nagaretani H, Furuyama N, Kondo H, Takahashi M, Arita Y, Komuro R, Ouchi N, Kihara S, Tochino Y, Okutomi K, Horie M, Takeda S, Aoyama T, Funahashi T, Matsuzawa Y. Diet-induced insulin resistance in mice lacking adiponectin/ACRP30. Nat Med, 2002, 8:731-737.
    89. Combs TP, Pajvani UB, Berg AH, Lin Y, Jelicks LA, Laplante M, Nawrocki AR, Rajala MW, Parlow AF, Cheeseboro L, Ding YY, Russell RG, Lindemann D, Hartley A, Baker GR, Obici S, Deshaies Y, Ludgate M, Rossetti L, Scherer PE. A transgenic mouse with a deletion in the collagenous domain of adiponectin displays elevated circulating adiponectin and improved insulin sensitivity. Endocrinology, 2004, 145: 367-383.
    90. Fiaschi T, Buricchi F, Cozzi G, Matthias S, Parri M, Raugei G, Ramponi G, and Chiarugi P. Redox-dependent and ligand-independent trans-activation of insulin receptor by globular adiponectin. Hepatology, 2007, 46:130-139.
    91. Stefan N, Vozarova B, Funahashi T, Matsuzawa Y, Weyer C, Lindsay RS, Youngren JF, Havel PJ, Pratley RE, Bogardus C, Tataranni PA. Plasma adiponectin concentration is associated with skeletal muscle insulin receptor tyrosine phosphorylation, and low plasma concentration precedes a decrease in whole-body insulin sensitivity in humans. Diabetes, 2002, 51: 1884-1888.
    92. Tugwood JD, Issemann I, Anderson RG, Bundell KR, McPheat WL, Green S. The mouse peroxisome proliferator activated receptor recognizes a response element in the 5. flanking sequence of the rat acyl CoA oxidase gene. EMBO J, 1992, 11: 433-439.
    93. Yamauchi T, Kamon J, Waki H, Terauchi Y, Kubota N, Hara K, Mori Y, Ide T, Murakami K, Tsuboyama-Kasaoka N, Ezaki O, Akanuma Y, Gavrilova O, Vinson C, Reitman ML, Kagechika H, Shudo K, Yoda M, Nakano Y, Tobe K, Nagai R, Kimura S, Tomita M, Froguel P, Kadowaki T. The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity. Nat Med, 2001, 7: 941-946.
    94. Tomas E, Tsao TS, Saha AK, Murrey HE, Zhang Cc C, Itani SI, Lodish HF, Ruderman NB. Enhanced muscle fat oxidation and glucose transport by ACRP30 globular domain: acetyl-CoA carboxylase inhibition and AMP-activated protein kinase activation. PNAS, 2002, 99: 16309-16313.
    95. Ceddia RB, Somwar R, Maida A, Fang X, Bikopoulos G, Sweeney G. Globular adiponectin increases GLUT4 translocation and glucose uptake but reduces glycogen synthesis in rat skeletal muscle cells. Diabetologia, 2005, 48: 132-139.
    96. Kahn BB, Alquier T, Carling D, Hardie DG. AMP-activated protein kinase: ancient energy gauge provides clues to modern understanding of metabolism. Cell Metab, 2005, 1: 15-25.
    97. Fu Y, Luo N, Klein RL, Garvey WT. Adiponectin promotes adipocyte differentiation, insulin sensitivity, and lipid accumulation. J Lipid Res, 2005, 46: 1369-1379.
    98. Elbatarny HS, Netherton SJ, Ovens JD, Ferguson AV, Maurice DH. Adiponectin, ghrelin, and leptin differentially influence human platelet and human vascular endothelial cell functions: implication in obesity-associated cardiovascular diseases.Eur J Pharmacol, 2007, 558: 7-13.
    99. Kubota N, Terauchi Y, Yamauchi T, Kubota T, Moroi M, Matsui J, Eto K, Yamashita T, Kamon J, Satoh H, Yano W, Froguel P, Nagai R, Kimura S, Kadowaki T, Noda T. Disruption of adiponectin causes insulin resistance and neointimal formation. J Biol Chem, 2002, 277: 25863-25866.
    100. Yamauchi T, Kamon J, Waki H, Imai Y, Shimozawa N, Hioki K, Uchida S, Ito Y, Takakuwa K, Matsui J, Takata M, Eto K, Terauchi Y, Komeda K, Tsunoda M, Murakami K, Ohnishi Y, Naitoh T, Yamamura K, Ueyama Y, Froguel P, Kimura S, Nagai R, Kadowaki T. Globular adiponectin protected ob/ob mice from diabetes and apoE-deficient mice from atherosclerosis. J Biol Chem, 2003, 278: 2461-2468.
    101. Okamoto Y, Kihara S, Ouchi N, Nishida M, Arita Y, Kumada M, Ohashi K, Sakai N, Shimomura I, Kobayashi H, Terasaka N, Inaba T, Funahashi T, Matsuzawa Y. Adiponectin reduces atherosclerosis in apolipoprotein E-deficient mice. Circulation, 2002, 106, 2767-2770.
    102. Cesari M, Pessina AC, Zanchetta M, De Toni R, Avogaro A, Pedon L, Dorigatti F, Maiolino G, Rossi GP. Low plasma adiponectin is associated with coronary artery disease but not with hypertension in high-risk nondiabetic patients. J Intern Med, 2006, 260: 474-483.
    103. Lin HV, Kim JY, Pocai A, Rossetti L, Shapiro L, Scherer PE, Accili D. Adiponectin resistance exacerbates insulin resistance in insulin receptor transgenic/knockout mice. Diabetes, 2007, 56: 1969-1976.
    104. Kim CH, Pennisi P, Zhao H, Yakar S, Kaufman JB, Iganaki K, Shiloach J, Scherer PE, Quon MJ, LeRoith D. MKR mice are resistant to the metabolic actions of both insulin and adiponectin: discordance between insulin resistance and adiponectin responsiveness. Am J Physiol Endocrinol Metab, 2006, 291: E298-E305.
    105. Lihn AS, ?stergard T, Nyholm B, Pedersen SB, Richelsen B, Schmitz O. Adiponectin expression in adipose tissue is reduced in first degree relatives of type 2 diabetic patients. Am J Physiol Endocrinol Metab, 2003, 284: E443-E448.
    106. Tsuchida A, Yamauchi T, Ito Y, Hada Y, Maki T, Takekawa S, Kamon J, Kobayashi M, Suzuki R, Hara K, Kubota N, Terauchi Y, Froguel P, Nakae J, Kasuga M, Accili D, Tobe K, Ueki K, Nagai R, Kadowaki T. Insulin/Foxo1 pathway regulates expression levels of adiponectin receptors and adiponectin sensitivity. J Biol Chem, 2004, 279: 30817-30822.
    107. Inukai K, Nakashima Y, Watanabe M, Takata N, Sawa T, Kurihara S, Awata T, Katayama S. Regulation of adiponectin receptor gene expression in diabetic mice. Am J Physiol Endocrinol Metab, 2005, 288: E876-E882.
    108. Staiger H, Kaltenbach S, Staiger K, Stefan N, Fritsche A, Guirguis A, Péterfi C, Weisser M, Machicao F, Stumvoll M, H?ring HU. Expression of adiponectin receptor mRNA in human skeletal muscle cells is related to in vivo parameters of glucose and lipid metabolism. Diabetes, 2004, 53: 2195-2201.
    109. Berk ES, Kovera AJ, Boozer CN, Pi-Sunyer FX, Johnson JA, Albu JB. Adiponectin levels during low- and high-fat eucaloric diets in lean and obese women. Obes Res, 2005, 13:1566-1571.
    110. Kobayashi H, Ouchi N, Kihara S, Walsh K, Kumada M, Abe Y, Funahashi T, Matsuzawa Y. Selective suppression of endothelial cell apoptosis by the high molecular weight form of adiponectin. Circ Res, 2004, 94: e27-31.
    111. Rothenbacher D, Brenner H, M?rz W, Koenig W. Adiponectin, risk of coronary heart disease and correlations with cardiovascular risk markers. Eur Heart J, 2005, 26: 1640-1646.
    112. Goldstein BJ, Scalia R. Adiponectin: a novel adipokine linking adipocytes and vascular function. J Clin Endocrinol Metab, 2004, 89: 2563-2568.
    113. Efstathiou SP, Tsioulos DI, Tsiakou AG, Gratsias YE, Pefanis AV, Mountokalakis TD. Plasma adiponectin levels and five-year survival after fist-ever ischemic stroke. Stroke, 2005, 36: 1915-1919.
    114. Shibata R, Sato K, Pimentel DR, Takemura Y, Kihara S, Ohashi K, Funahashi T, Ouchi N, Walsh K. Adiponectin protects against myocardial ischemia/reperfusion injury through AMPK and COX-2 dependent mechanisms. Nat Med, 2005, l1: 1096-1103.
    115. Tao L, Gao E, Jiao X, Yuan Y, Li S, Christopher TA, Lopez BL, Koch W, Chan L, Goldstein BJ, Ma XL. Adiponectin cardioprotection after myocardial ischemia/reperfusion involves the reduction of oxidative/nitrative stress. Circulation, 2007, 115: 1408-1416.
    116. Bernhard I, Vitolds M, Andreas S. Plasma adiponectin levels and sonographic phenotypes of subclinical carotid artery atherosclerosis data from the SAPHIR study. Stroke, 2005, 36: 2577-2582.
    117. Berg AH, Scherer PE. Adipose tissue, inflammation, and cardiovascular disease. Circ Res, 2005, 96: 939-949.
    118. Kamon J, Yamauchi T, Muto S, Takekawa S, Ito Y, Hada Y, Ogawa W, Itai A, Kasuga M, Tobe K, Kadowaki T. A novel IKK-beta inhibitor stimulates adiponectin levels and ameliorates obesity-linked insulin resistance. Biochem Biophys Res Commun, 2004, 323: 242-248.
    119. Kumada M, Kihara S, Ouchi N, Kobayashi H, Okamoto Y, Ohashi K, Maeda K, Nagaretani H, Kishida K, Maeda N, Nagasawa A, Funahashi T, Matsuzawa Y. Adiponectin specifically increased tissue inhibitor of metalloproteinase-1 through interleukin-10 expression in human macrophages.Circulation, 2004, 109: 2046-2049.
    120. Chen H, Montagnani M, Funahashi T, Shimomura I, Quon MJ. Adiponectin stimulates production of nitric oxide in vascular endothelial cells. J Biol Chem 2003; 278: 45021-45026.
    121. Xi W, Satoh H, Kase H, Suzuki K, Hattori Y. Stimulated HSP90 binding to eNOS and activation of the PI3k pathway contribute to globular adiponectin-induced NO production: Vasorelaxation in response to globular adiponectin. Biochem Biophys Res Commun, 2005, 332: 200-205.
    122. Motoshima H, Wu X, Mahadev K, Goldstein BJ. Adiponectin suppresses proliferation and superoxide generation and enhances eNOS activity in endothelial cells treated with oxidized LDL. Biochem Biophys Res Commun, 2004, 315: 264-271.
    123. Ito A, Tsao PS, Adimoolam S, Kimoto M, OgawaT, Cooke JP. Novel mechanism for endothe]ial dysfunction : Dysregulation of dimethyl arginine dimethyl aminohydrolase. Circulation, 1999, 99: 3092-3095.
    124. Mayret-Mesquiti M, Perez-Mendez O, Rodriguez ME, Fortoul TI, Gorocica P, Bernal-Alcantara D, Montano LF and Alvarado-Vasquez N. Hypertriglyceridemia is linked to reduced nitric oxide synthesis in women with hypertensive disorders of pregnancy. Hypertens Pregnancy, 2007, 26: 423-431.
    125. Taniguchi J, Honda H, Shibusawa Y, Iwata T and Notoya Y. Alteration in endothelial function and modulation by treatment with pioglitazone in rabbit renal artery from short-term hypercholesterolemia. Vascul Pharmacol, 2005, 43: 47-55.
    126. Yao D, Vlessidis AG, Gou Y, Zhou X, Zhou Y, Evmiridis NP. Chemiluminescence detection of superoxide anion release and superoxide dismutase activity: modulation effect of Pulsatilla chinensis. Anal Bioanal Chem, 2004, 379: 171–177.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700