用户名: 密码: 验证码:
缺氧环境下BMSCs促进VECs增殖和血管形成
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     观察成人骨髓间充质干细胞在体外缺氧环境下对人脐静脉内皮细胞增殖和血管形成能力的影响并探讨其可能机制,为干细胞更好的应用于临床上缺血缺氧性疾病的治疗提供理论依据。
     方法:
     收集成人骨髓血,密度梯度离心法收集分离BMSCs并进行体外扩增培养,传至第4代用于实验;流式细胞技术鉴定BMSCs表面标志物。
     收集BMSCs常氧环境(氧浓度为21%)下培养24h和缺氧环境下(含1%O2,5%CO2和94%N2的混合气体环境)培养24h后的细胞上清液即条件培养基。HUVECs传代培养后分成3组进行实验:对照组、 BMSCsCMN-HUVECs组和BMSCsCMH-HUVECs组,各实验组细胞于缺氧环境下用含不同条件培养基的培养液培养,体外血管形成实验分析3组HUVECs在Matrigel上管腔样结构形成情况,并进行量化比较;MTT检测3组HUVECs增殖能力。
     BMSCs在缺氧环境下培养0h、12h、24h和48h后,RT-PCR检测细胞内SDF-1和VEGF的基因表达情况,0h为对照组,12h、24h和48h为实验组;ELISA法检测细胞上清液中SDF-1和VEGF的蛋白含量。
     结果:
     1.人BMSCs传至第4代呈漩涡状长梭形即纤维母细胞样生长;对数生长期的HUVECs多为多角形或短梭形,呈”铺路石”样排列生长
     2.人BMSCs阳性表达CD29、CD44和CD90,而阴性表达CD34、CD45和CD106
     3. BMSCsCMH-HUVECs组管腔样结构多于对照组和BMSCsCMN-HUVECs组。[14±2.3与3±0.59;14±2.3与5±1.1,P<0.05]
     4.不同缺氧时间点(12h,24h和48h)BMSCsCMH-HUVECs组细胞增殖能力均显著高于对照组和BMSCsCMN-HUVECs组。[0.54±0.053与0.33±0.041,0.68±0.091与0.42±0.048,0.72±0.106与0.49±0.074;0.54±0.053与0.31±0.041,0.68±0.091与0.43±0.071,0.72±0.106与0.51±0.086,P<0.05]
     5.不同缺氧时间点(12h,24h和48h)BMSCs的SDF-1和VEGF基因表达水平均显著高于对照组。[VEGF:0.718±0.048vs0.532±0.081,0.922±0.104vs0.532±0.081,0.843±0.092vs0.532±0.081;SDF-1:0.569±0.091vs0.361±0.035,0.701±0.046vs0.361±0.035,0.695±0.074vs0.361±0.035,P<0.05]
     6. BMSCsCMH中SDF-1和VEGF蛋白含量均明显高于BMSCsCMN。[SDF-1:(4.52±0.44)ng/106cells与(1.37±0.09) ng/106cells;VEGF:(7.94±0.89) ng/106cell与(2.75±0.23) ng/106cells,P<0.05]。
     结论:
     1.缺氧环境下收集的条件培养基即BMSCsCMH显著提高HUVECs增殖和在Matrigel上管腔样结构形成能力
     2.缺氧显著上调BMSCs的SDF-1和VEGF基因表达,并促进二者大量分泌至细胞上清液中发挥作用;
     3.成人BMSCs在缺氧环境下通过旁分泌SDF-1和VEGF提高血管内皮细胞增殖活性和管腔样结构形成能力,促进血管新生。
Objective:
     To investigate the effects of human bone marrow msesenchymal stem cells(BMSCs) on proliferation and angiogenesis of human umbilical vein endothelial cells(HUVECs) and its possible mechanism in hypoxia; For the better used ofmesenchymal stem cells in the treatment of Ischemia-Hypoxia disease in clinicalprovided theortical basis.
     Methods:
     Collected human bone marrow, BMSCs separated by density gradient centrif-ugation were cultured, expanded in vitro and used at passage4; Their phenotypiccharacterizations were indentified by flow cytometry(FCM).
     After BMSCs exposed to normoxic(oxygen concentration was21%) andhypoxia(an atmosphere containing1%O2,5%CO2and94%N2) for24h, then collectedcells supernatant(named as conditioned medium, CM). HUVECs were cultured,expanded, passaged and divided into three groups: the control group, BMCsCMN–HUVECs and BMSCsCMH-HUVECs. Cells in each experimental group werecultured with different CM in hypixia. Tube-like structures formation of HUVECs inMatrigel were analyzed as the assay of angiogenesis in vitro, and conductedquantitative comparison; Proliferation of HUVECs were detected by MTT.
     BMSCs exposed to hypoxia for0h,12h,24h and48h, intracellular levels ofSDF-1and VEGF mRNA were assayed by RT-PCR, the group of0h as the controlgroup,12h,24h and48h as experimental groups. The secretion of SDF-1and VEGFquantitatively analyzed by ELISA.
     Results:
     1. Under inverted phase-contrast microscopy, Human BMSCs exhibited swirlinglong fusiform namely fibroblast-like morphology growth;HUVECs were polygon orshort spindle, exhibited “paving stone” like arrangement growth.
     2. BMSCs expressed CD29,CD44and CD90,but CD34,CD45and CD106 were negative.
     3. The number of tube-like structures of cells in BMSCsCMH-HUVECs group inMatrigel increased significantly compared with the control group and BMSCsCMN-HUVECs group.[14±2.3与3±0.59;14±2.3与5±1.1, P<0.05]
     4. The proliferation of cells in BMSCsCMH-HUVECs group at the different timepoints of hypoxia(12h,24h and48h) increased significantly compared with thecontrol group and BMSCsCMN-HUVECs group.[0.54±0.053vs0.33±0.041,0.68±0.091vs0.42±0.048,0.72±0.106vs0.49±0.074;0.54±0.053vs0.31±0.041,0.68±0.091vs0.43±0.071,0.72±0.106vs0.51±0.086, P<0.05]
     5. The expression of SDF-1and VEGF mRNA at the different time point ofhypoxia(12h,24h and48h) were higher than those of the control group.[VEGF:0.718±0.048vs0.532±0.081,0.922±0.104vs0.532±0.081,0.843±0.092vs0.532±0.081; SDF-1:0.569±0.091vs0.361±0.035,0.701±0.046vs0.361±0.035,0.695±0.074vs0.361±0.035, P<0.05]
     6. The expression of SDF-1and VEGF protein in BMSCsCMHobviously higherthan those of BMSCsCMN.[VEGF:(7.94±0.89) ng/106cell vs (2.75±0.23) ng/106cells; SDF-1:(4.52±0.44)ng/106cells vs (1.37±0.09) ng/106cells, P<0.05].
     Conclusion:
     1. BMSCsCMHpromoted proliferation and tube-like structures formation inMatrigel of HUVECs.
     2. Hypoxia significantlt up-regulated the gene expression of SDF-1and VEGF inBMSCs; and promoted the cytokine of SDF-1and VEGF secreted into cellsupernatant considerablely, then came into play.
     3. Human BMSCs improved proliferation and tube-like structures formation ofVascular endothelial cells(VECs) and promote angiogenesis in hypoxia,throughparacrined SDF-1and VEGF.
引文
[1] Golomb BA, Dang TT, and Criqui MH. Peripheral Arterial Disease: Morbidity andMortality Implications. Circulation.2006,114(7);688-99.
    [2] Zhang B, Sun XJ, and Ju CH. Thrombolysis with alteplase4.5-6hours after acute ischemicstroke. Eur Neurol.2011;65(3):170-4.
    [3] Ho TK, Shiwen X, Abraham D, et al. Stromal-Cell-Derived Factor-1(SDF-1)/CXCL12asPotential Target of Therapeutic Angiogenesis in Critical Leg Ischaemia. Cardiol Res Pract.2012;143209.
    [4] Gnecchi M, Zhang Z, Ni A, et al. Paracrine mechanisms in adult stem cell signaling andtherapy. Circ Res.2008;103(11): p1204-19.
    [5] Trivedi P, Tray N, Nguyen T, et al. Mesenchymal Stem Cell Therapy for Treatment ofCardiovascular Disease: Helping people sooner or later. Stem Cells Dev.2010;19(7)1109–1120.
    [6] Kan I, Melamed E, and Offen D. Integral therapeutic potential of bone marrowmesenchymal stem cells. Curr Drug Targets.2005;6(1):31-41.
    [7] Carmeliet P. VEGF gene therapy: stimulating angiogenesis or angiomagenesis? Nat Med.2000;6(10):1102—3.
    [8] Kerbel RS. Tumor angiogenesis.New England Joural of Medicine.2008;358(19):2039-49.
    [9] Grunewald M, Avraham I, Dor Y, et al. VEGF-induced adult neovascularization:recruitment, retention, and role of accessory cells. Cell.2006;124(1): p175-89.
    [10] Margaritescu O, Pirici D, Margaritescu C. VEGF expression in human brain tissue afteracute ischemic stroke.Rom J Morphol Embryol.2011;52(4):1383-92
    [11] Ratajczak MZ, Zuba-Surma E, Kucia M, et al. The pleiotropic effects of theSDF-1-CXCR4axis in organogenesis, regeneration and tumorigenesis. Leukemia.2006;20(11):1915-24.
    [12] Zheng H, Fu G, Dai T, et al. Migration of endothelial progenitor cells mediated by stromalcell-derived factor-1alpha/CXCR4via PI3K/Akt/eNOS signal transduction pathway.JCardiovasc Pharmacol.2007;50(3):274–280.
    [13] Hsiao ST, Asgari A, Lokmic Z, et al. Comparative analysis of paracrine factor expression inhuman adult mesenchymal stem cells derived from bone marrow,adipose, and dermal tissue.Stem Cells Dev.2012,Feb3..
    [14] Zhuang Y, Chen X, Xu M, et al. Chemokine stromal cell-derived factor1/CXCL12increases homing of mesenchymal stem cells to injured myocardium and neovasculari-zation following myocardial infarction. Chin Med J (Engl).2009;122(2): p183-7.
    [15] Tang J, Wang J, Zheng F, et al. Combination of chemokine and angiogenic factor genesand mesenchymal stem cells could enhance angiogenesis and improve cardiac functionafter acute myocardial infarction in rats. Mol Cell Biochem.2010;339(1-2): p.107-18.
    [16] Sorrell JM, Baber MA, and Caplan AI. Influence of adult mesenchymal stem cells on invitro vascular formation. Tissue Eng Part A.2009;15(7):1751-1761.
    [17] Kinnaird T, Stabile E, Burnett MS et al. Local delivery of marrowderived stromal cellsaugments collateral perfusion through paracrine mechanisms. Circulation.2004;109:1543–1549.
    [18] Caplan AI, and Dennis JE. Mesenchymal stem cells as trophic mediators. J Cell Biochem.2006;98(5):1076-84.
    [19] Hung SC, Pochampally RR, Chen SC, et al. Angiogenic effects of human multipotentstromal cell conditioned medium activate the PI3K-Akt pathway in hypoxic endothelialcells to inhibit apoptosis, increase survival, and stimulate angiogenesis. Stem Cells.2007;25(9):2363-70.
    [20] Sato T, Iso Y, Uyama, et al. Coronary vein infusion of multipotent stromal cells from bonemarrow preserves cardiac function in swine ischemic cardiomyopathy via enhancedvascularization. Lab Invest.2011;91(4): p553-64.
    [21] Hocking AM, and Gibran NS. Mesenchymal stem cells: paracrine signaling anddifferentiation during cutaneous wound repair. Exp Cell Res.2010;316(14): p2213-9.
    [22] Csete M. Oxygen in the cultivation of stem cells. Ann NY Acad Sci.2005;1049:1-8.
    [23] Ivanovic Z. Hypoxia or in situ normoxia: the stem cell paradigm. J Cell Physiol.2009;219(2):271-5.
    [24] Fiegl M, Spiekermann K. Hypoxia and expression of hypixia-related proteins in actuemyeloid leukemia. Leuk Res.2011;35(5):573-4.
    [25] Xu H, Zhu G, Tian Y. Protective effects of trimetazidine on bone marrow mesenchymalstem cells viabilite in an ex vivo model of hypoxia and in vivo model of locally myocardialischemia. J Huazhong Univ Sci Technolog Med Sci.2012;32(1):36-41.
    [26] Potier E, Ferreira E, Andriamanalijaona R, et al. Hypoxia affects mesenchymal stromal cellosteogenic differentiation and angiogenic factor expression. Bone.2007;40(4):1078-1087.
    [27] Das R, Jahr H, Van Osch GJ, et al. The role of hypoxia in bone marrow-derivedmesenchymal stem cells: considerations for regenerative medicine approaches. Tissue EngPart B Rev.2010;16(2):159-68.
    [28] Bouis D, Hospers GA, Meijer C,et al. Endothelium in vitro: a review of human vascularendothelial cell lines for blood vessel-related research. Angiogenesis.2001;4(2):91-102.
    [29] Barton M, Traupe T, and Haudenschild CC. Endothelin, hypercholesterolemia andatherosclerosis. Coron Artery Dis.2003;14(7):477-490.
    [30] Goon PK, Watson T, Shantsila E, et al. Standardization of circulating endothelial cellenumeration by the use of human umbilical vein endothelial cells. J Thromb Haemost.2007;5(4): p870-2.
    [31] Hacke W, Kaste M, Bluhmki E, et al. Thrombolysis with alteplase3to4.5hours after actueischemic stroke. N Engl J Med.2008;359(13):1317-29.
    [32] Roger VL, Go AS,Lloyd-Jones DM, et al. Heart disease and stroke ststistics—2011update:a report from the American Heart Association.Circulation.2011;123(4):e18-e209.
    [33] Del Zoppo GJ, Saver JL, Janch EC, et al. Expansion of the time window for treatment ofacute ischemic stroke with intravenous tissue plasminogen activator:a science advisoryfrom the Amerian Heart Association/American Stroke Association. Stroke.2009;40(8):2945-8.
    [34] Albers GW, Amarenco P, Eastom JD,et al. Antithrombotic and Thrombolytic Therapy forIschmic Stroke. Chest2008;133-630S.
    [35] Lisabeth LD, Beiser AS, Brown DL, et al. Age at natural menopause and risk of ischemicstroke:the Framingham Heart Study. Stroke.2009;40(4):1044-9.
    [36] Matsushita Y, Shima K, Nawashiro H, et al. Real-time moni toring of Glutamate followingfluid percussion injury with hypoxia in the rat. J Neurot rauma.2000;17(2):143-153.
    [37] HeissWD. The ischemic penumbra: correlates in imaging and implications for treatment ofischemic stroke. Cerebrovasc Dis.2011;32(4):307-20.
    [38] Font MA, Arboix A, and Krupinski J. Angiogenesis,neurogenesis and neuroplasticity inischemic stroke.Curr Cardiol Rev.2010;6(3):238-44.
    [39] Stamm C, Westphal B, Kleine HD, et al. Autologous bone marrow stem-cell transplantationfor myocardial regeneration. Lancet.2003;361(9351):45-6.
    [40] Ishikane S, Ohnishi S, Yamahara K, et al. Allogeneic injection of fetal membrane-derivedmesenchymal stem cells induces therapeutic angiogenesis in a rat model of hind limbischemia.Stem Cells.2008;26(10):2625-2633.
    [41] Rosova I, Dao M, Capoccia B, et al. Hypoxic preconditioning results in increased motilityand improved therapeutic potential of human mesenchymal stem cells. Stem Cells.2008;26(8):2173–2182.
    [42] Ghajar CM, Kachgal S, Kniazeva E, et al. Mesenchymal cells stimulate capillarymorphogenesis via distinct proteolytic mechanisms. Exp Cell Res.2010;316(5):813,-25.
    [43] Chen J, Park HC, Addabbo F, et al. Kidney-derived mesenchymal stem cells contribute tovasculogenesis, angiogenesis and endothelial repair Kidney. Kidney Int.2008;74(7):879-89.
    [44] Ukai R,Honmou O, Harada K, et al. Mesenchymal Stem Cells Derived from PeripheralBllod Protects against schemia. J Neurotrauma.2007;24(3):508-20.
    [45] Ghajar CM, Blevin KS, Huqhes CC, et al. Mesenchymal stem cells enhance angiogenesisin mechanically viable prevascularized tissues via early matrix metalloproteinaseupregulation. Tissue Eng.2006;12(10):2875-2888.
    [46] Bussolati B, Tetta C, and Camussi G, Contribution of stem cells to kidney repair. Am JNephrol.2008;28(5): p.813-22.
    [47] Oh JY, Kim MK, Shin MS, et al. The anti-inflammatory and anti-angiogenic role ofmesenchymal stem cells in corneal wound healing following chemical injury. StemCells.2008;26(4): p.1047-55.
    [48] Shen Q, Goderie SK, Jin L,et al. Endothelial Cells Stimulate Self-Renewal and EpangNeurogenesis of Neural Stem Cells.Science.2004;304(5675):1338-1340.
    [49] Lee EY, Xia Y, Kim WS, et al. Hypoxia-enhanced wound-healing function ofadipose-derived stem cells: increase in stem cell proliferation and up-regulation of VEGFand bFGF. Wound Repair Regen.2009;17(4):540-7.
    [50] Li Z, Guo J, Chang Q, et al. Paracrine role for mesenchymal stem cells in acute myocardialinfarction. Biol Pharm Bull.2009;32(8): p1343-6.
    [51] Hoffmann J, Glassford AJ, Doyle TC, et al. Angiogenic effects despite limited cell survivalof bone marrow-derived mesenchymal stem cells under ischemia. Thorac Cardiovasc Surg.2010;58(3):136-42.
    [52] Nguyen BK, Maltais S, Perrault LP, et al. Improved function and myocardial repair ofinfarcted heart by intracoronary injection of mesenchymal stem cell-derived growthfactors.J Cardiovasc Transl Res.2010;3(5):547-58.
    [53] Efimenko Alu, Starostina EE, Rubina KA, et al. Viability and angiogenic activity ofmesenchymal stromal cells from adipose tissue and bone marrow in hypoxia andinflammation in vitro. Tsitologiia.2010;52(2):144-154
    [54] Weil BR, Markel TA, Herrmann JL, et al. Mesenchymal stem cells enhance the viabilityand proliferation of human fetal intestinal epithelial cells following hypoxic injury viaparacrine mechanisms. Surgery.2009;146(2):190-197.
    [55] Lai RC, Chen TS, and Lim SK. Mesenchymal stem cell exosome:a novel stem cell-basedtherapy for cardiovascular disease.Regen Med.2011;6(4):48-92.
    [56] Zhen-Qiang F, Bing-Wei Y, Yong-Liang L, et al. Localized expression of human BMP-7by BM-MSCs enhances renal repair in an vivo model of ischemia reperfusion injury. GeneCells.2012;17(1):53-64.
    [57] Shabbir A, Zisa A, Lin H, et al. Activation of host tissue trophic factors through JAK-STAT3signaling: a mechanism of mesenchymal stem cell-mediated cardiac repair. Am JPhysiol Heart Circ Physiol.2010;299(5):H1428-38.
    [58] Shintani S, Murohara T, Ikeda H, et al. Mobilization of endothelial progenitor cells inpatients with acute myocardial infarction. Circulation.2001;103(23):2776-9.
    [59] Carrancio S, Lopez-Holgado N, Sanchez-Guijo, et al. Optimization of mesenchymal stemcell expansion procedures by cell separation and culture conditions modification. ExpHematol.2008;36(8):1014-21.
    [60] Rosova I, Dao M, Capoccia B, et al. Hypoxic preconditioning results in increased motilityand improved therapeutic potential of human mesenchymal stem cells. Stem Cells.2008;26(8):2173-82.
    [61] Hyvelin JM, Howell K, Nichol A, et al. Inhibition of Rho-kinase attenuates hypoxia-induced angiogenesis in the pulmonary circulation. Circ Res.2005;97(2):185-91.
    [62] Ohnishi S, Yasuda T, Kitamura S, et al. Effect of hypoxia on gene expression of bonemarrow-derived mesenchymal stem cells and mononuclear cells. Stem Cells.2007;25(5):1166-77.
    [63] Rivera CG, Mellberg S, Claesson-Welsh L, et al. Analtsis of VEGF-a regulated gene expre-ssion in endothelial cells to indentify genes linked to angiogenesis. PLoS One.2011;6(9):e24887.
    [64] Kaigler D, Krebsbach PH, Polverini PJ, et al. Role of vascular endothelial growyh fact or inbone marrow stromal cell modulation of endothelial cells. Tissue Eng.2003;9(1):95-103.
    [65] Li Z, Guo J, Chang Q, et al. Paracrine role for mesenchymal stem cells in acute myocardialinfarction. Biol Pharm Bull.2009;32(8): p1343-6.
    [66] Kagiwada H, Yashikit T, Ohshima A, et al. Human mesenchymal stem cells as a stablesource of VEGF-producing cells. J Tissue Eng Regen Med.2008;2(4): p184-9.
    [67] Tang JM, Wang JN, Zhang L, et al. VEGF/SDF-1Promotes Cardiac Stem CellMobilization and Myocardial Repair in the Infarcted Heart. Cardiovasc Res.2011;91(3):402-11.
    [68] Tang J, Wang J, Guo L, et al. Mesenchymal stem cells modified with stromal cell-derivedfactor1alpha improve cardiac remodeling via paracrine activation of hepatocyte growthfactor in a rat model of myocardial infarction. Mol Cells.2010;29(1): p9-19.
    [69] Loh SA, Chang EI,Galvez MG, et al. SDF-1alpha expression during wound healing in theaged is HIF dependent. Plast Reconstr Surg.2009;123(2Suppl): p65S-75S.
    [70] Ho TK, Tsui J, Xu S, et al. Angiogenic effects of stromal cell-derived factor-1(SDF-1/CXCL12) variants in vitro and the in vivo expressions of CXCL12variants andCXCR4in human critical leg ischemia. J Vas Surg.2010;51(3):689-699.
    [71] Yang Y, Tang G, Yan J, et al. Cellular and molecular mechanism regulating blood flowrecovery in acute versus gradual femoral artery occlusion are distinct in the mouse. J VacSurg.2008;48(6):1546-58.
    [72] Nakanishi C, Yamagishi M, Yamahara K, et al. Activation of cardiac progenitor cellsthrough paracrine effects of mesenchymal stem cells. Biochem Biophys Res Commun2008;374(1):11—6.
    [73] Grunewald M, Avraham I, Dor Y, et al. VEGF-induced adult neovascularization:recruitment, retention, and role of accessory cells. Cell.2006;124(1):175–189.
    [74] Petit I, Jin D, and Rafii S. The SDF-1-CXCR4signaling pathway: a molecular hubmodulating neo-angiogenesis. Trends Immunol.2007;28(7):299—307.
    [75] Nomura R, Yoshida D, and Teramoto A. Stromal cell-derived factor-1expression inpituitary adenoma tissues and upregulation in hypoxia. J Neurooncol,2009;94(2): p173-81.
    [76] Lee EY, Xia Y, Kim WS, et al. Hypoxia-enhanced wound-healing function of adipose-derived stem cells: increase in stem cell roliferation and up-regulation of VEGF and bFGF.Wound Repair Regen.2009;17(4): p.540-7.
    [77] Zentilin L, Tafuro S, Zacchigna S, et al. Bone marrow mononuclear cells are recruited tothe sites of VEGFinduced neovascularization but are not incorporated into the newlyformed vessels. Blood.2006;107(9):3546—54.
    [78] Kryczek I, Lange A, Mottram, et al. CXCL12and vascular endothelial growth factorsynergistically induce neoangiogenesis in human ovarian cancers. Cancer Res,2005;65(2):p465-72.
    [79] Tang J, Wang J, Yang J, et al. Adenovirus-mediated stromal cell-derived-factor-1alphagene transfer induces cardiac preservation after infarction via angiogenesis of CD133+stem cells and anti-apoptosis. Interact Cardiovasc Thorac Surg,2008.;7(5): p767-70.
    [80] Salcedo R, and Oppenheim JJ. Role of chemokines in angiogenesis: CXCL12/SDF-1andCXCR4interaction, a key regulator of endothelial cell responses, Microcirculation.2003;10(3-4):359-70.
    [1] Ota K, Nagai H, and Sheng G. Expression and hypoxic regulation of hif1alpha and hif2alphaduring early blood and endothelial cell differention in chick[J]. Gene Expr Patterns.2007;(7):761-766.
    [2] Ben-Shoshan J, Schwartz S, Luboshits G, et al. Constitutive expression of HIF-1alpha andHIF-1alpha in bone marrow stromal cells differentially promotes their proangiogenicproperties[J]. Stem cells.2008;26(10):2634-2643.
    [3] Patel SA, and Simon MC. Biology of hypoxia-inducible factor-2alpha in development anddisease[J]. Cell Death Differ.2008;15(4):628-634.
    [4] Chen L, Endler A, and Shibasaki F. Hypoxia and angiogenesis:regulation of hypoxia-inducible factors via novel bingding factors[J]. Exp Mol Med.2009;41(12):849-857.
    [5] Fong GH, and Takeda K. Role and regulation of proyl hydroxylase domain proteins[J].CellDeath Differ.2008;15(4):635-641.
    [6] Van Hagen M, Overmeer RM, Abolvardi SS, et al. RNF-4and VHL regulate the proteasomaldegradation of SUMO-conjugated hypoxia-inducible-2alpha[J]. Nucleic Acids Res.2010;38(6):1822-1931.
    [7] Sun H, Leverson D, Hunter T. Conserved function of RNF4family proteins in eukaryotes:targeting a ubiquitin ligase to SUMOylated proteins[J].EMBO J.2007;26(18):4102-4112.
    [8] Aprelikova O, Wood M, Tackett S, et al. Role of ETS transcription factors in the hypoxia-inducible factor-2target gene selection[J]. Cancer Res.2006;66(11):5641-5647.
    [9] Huc J, Sataur A, Wang L, et al. The N-terminal transactivation domain confers target genespecificity of hypoxia-inducible factors HIF-1alpha and HIF-2alpha[J]. Mol Biol Cell.2007;18(11):4528-4542.
    [10]Zwezdaryk KJ, Coffelt SB, Figueroa YG, et al. Erythropoietin,a hypoxia-regulated factor,elicits a pro-angiogenic prohram in human mesenchymal stem cell[J]. Exp Hematol.2007;35(4):640-652.
    [11]Jones EA, Le Noble F, Eichmann A. What determines blood vessel structure? Geneticprespecification vs.Hemodynamics[J]. Physiology(Bethesda).2006;21:388-395.
    [12]Huanf LE. Carrot and stick:HIF-alpha engages c-Myc in hypoxic adaptation [J]. Cell DeathDiffer.2008;15(4):672-677.
    [13]Mizukami Y, Fujki K, Duerr EM, et al. Hypoxic regulation of vascular endothelial growthfactor through the induction of phosphatidylinositol3-kinase/Rho/ROCK and c-Myc[J]. JBiol Chem.2006;281(20):13957-1363.
    [14]Li Q, Kluz T, Sun H, et al. Mechanisms of c-Myc degradatiob by nickel compounds andhypoxia[J]. PLoS One.2009;4(12):e8531.
    [15]Takeda N, Maemura K, Imai Y, et al. Endothelial PAS domain protein1gene promotesangiogenesis through the transactivation of both vascular endothelial growth factor and itsreceptor,Flt-1[J]. Circ Res.2004;95(2):146-153.
    [16]Autiero M, Waltenberger J, Communi D, et al. Role of PIGE in the intra-and intermolecularcross talk between the VEGF receptors Flt1and Flk1[J]. Nat Med.2003;9(7):936-943.
    [17]Dutta D, Ray S, Vivian JL, et al. Activation of the VEGFR1chromatin domain:an angiogenicsignal-ETS1/HIF-1alpha regulatory axis[J]. J Biol Chem.2008;283(37):25404-25413.
    [18]Das R, Jahr H, Farrell E, et al. The role of hypoxia in bone marrow-derived mesenchymalstem cell:considerations for regenerative medicine approaches[J]. Tissue Eng Part B Rev.2010;16(2):159-168.
    [19]Rosova I, Dao M, Nolta JA, et al. Hypoxic preconditioning results in increased motility andimproved therapeutic potential of human mesenchymal stem cell[J]. Stem Cell.2008;26(8):2173-2182.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700