用户名: 密码: 验证码:
磁场对大鼠股骨干骨折愈合中VEGF、FGF和TGF-β的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
骨折作为临床上常见病、多发病之一,已严重影响到患者的生活质量,如何促进骨折愈合一直是人们研究的热点,目前关于骨折愈合的研究有很多种,包括各种物理、化学以及生物手段。有研究表明,恒强旋转磁场(RCSMF)可以促进成骨细胞的增殖和分化,对骨质疏松有一定治疗作用,但有关恒强旋转磁场在骨折愈合中的应用研究鲜有文献报道。本研究旨在通过运用恒强旋转磁场对股骨骨折大鼠进行干预治疗来研究其在骨折愈合中的作用。
     实验选取2月龄、3月龄雄性SD大鼠80只,采用闭合性动物骨折模型造模方法,用髓机数表法将sD大鼠分成自然愈合对照组(c组)和磁场干预组(M组),将M组大鼠置于强度为0.4T的恒强旋转磁场中进行30分钟/天的干预治疗,每周6次。通过比较不同组别不同时点的sD大鼠骨折愈合情况来判断恒强旋转磁场在骨折愈合中的作用,并从组织学变化以及血管内皮生长因子(VEGF)、酸性成纤维生长因子(aFGF)、碱性成纤维生长因子(bFGF)以及转化生长因子(TGF-β)的变化情况来探讨恒强旋转磁场对骨折愈合影响的可能机制。
     结果发现,2周干预组VEGF光密度值显著高于对照组(P<0.01),3周、4周干预组VEGF光密度值也显著高于对照组(P<0.05):2周于预组bFGF光密度值、4周干预组aFGF光密度值和对照组相比具有显著性差异(P<0.01):2周干预组TGF-β1光密度值显著高于对照组(P<0.05),4周干预组TGF-β2光密度值显著高于对照组(P<0.01),其余各组间无明显差异;HE染色结果显示干预组大鼠骨折愈合情况优于实验对照组。
     本研究得出以下结论:与自然愈合相比,恒强旋转磁场干预能明显促进骨痂生长,促进骨折的修复;恒强旋转磁场干预能够促进VEGF诱导血管形成能力增加,恒强旋转磁场在2周和3周时显著促进bFGF的表达,在4周时促进aFGF的表达,可能与磁场干预促进不同时期骨细胞的有丝分裂有关。恒强旋转磁场在骨折后后2周促进TGF-β1的表达,可能与其促进问充质细胞增殖分化为软骨细胞和成骨细胞,参与骨折的修复有关:而在骨折后2、3和4周时显著促进TGF-β2的表达,提示磁场干预不仅使TGF-β2持续转化软骨细胞的能力增强,还可能与成骨细胞活性有关。
Erneture as one of the clinical common in jurys. have seriocsly affected the quality of life of the patients, how to promote the healing has always been the hot spot of the study, at present about how to promote the healing of the research has a lot of kinds, including all kinds of physical. chemical and biological met hods. Research has shown that constant strong rotating magnetie field can promote bone call proliferation and lifferentiation, for osteoporosis have certain treatment effert, but the applieation of constant strong rotating magnetic field in the research of fractore healing has few reports in the literature. This studs aims to throush the use of constant strong retating magnetic field in the Eracture healing of rats to study its iuteryention in the role of the Eracture healing.
     We select elshty2months.3months of male SD rats only. use closer Eracture model for the research, with random access method to (?) the SD rats into the natural healing group Groue W and magnctic field interention group (M group). M rats will be set in0.4T constant strong rotating milenetic field in30minules/day intervention treatment. six times a week. Through comparing the different erouns of SD rats to judge constant strotig rotating magnetic field in the role of the fracture realing, and use the (?) method to compare the changes of VEGF. aFGF. bEGF. IGF β1and tGF-β2to explore the mechanism of constant strong rotating magnetic field in fracture healing.
     The resulrs found that the VEGE OD value of M2is higher than that in The C2group (P<0.01). the OD value of M3, M4also siznifieaut (P<0.01); than that in natural group (P<0.05);2weaks and4wecks M group bFGF OD values compared with the C group have signifieant difference (P<0.01); M2TGF-β1OD value signifieantly higher than that in C group (P<0.05), the TGF-β2OD value of M4yrogp signilicantly higher than that in C group (P<0.01). and the rest of the group has no difference.
     The study concluded that compared with the natural healing, constant strong rotating magnetic field can obviously promote the intervention callus growth Constatant strong intervention can promote VEGF rotating magnetic field induced the formation of blood vessels ability increases, constant strong roptating magnetic field in two weeks and three weeks in significantly promote bFGF expression, in the four weeks of promoting the expression of aFGF, Constant strong rotating magnetic field in the two weeks after the fracture promote TGF-β1expression, and may promote mesenchymal cells for the proliferation and differentiation of cartilage cells and the osteoblast and participate in the fracture of the relevant repair; And after3and4weeks of the fracture can significantly promote TGF-beta2expression, indicating that the magnetic field not only make intervention TGF-beta2continuous transformation of cartilage cells ability strengthens, may also has some relationship with the osteoblast activity.
引文
[1]张小云.恒定磁场对骨组织中细胞影响的研究.中国骨质疏松杂志,2006,(04)
    [2]杨贞,沃兴德.磁生物学效应的研究进展.现代生物医学进展,2006,(09):86-90
    [3]张小云,张宇.旋转恒定磁场治疗骨质疏松机理之研究.中华医学会第三次全国骨质疏松和骨矿盐疾病学术会议,中国杭州,2004
    [4]Ozawa H, Shibasaki Y, et al. Electric fields stimulate DNA synthesis of mouse osteoblast-like cells (MC3T3-E1) by a mechanism involving calcium ions. Cell Physiol, 1989,138(3):477-483
    [5]关微华,高佩琦,许艳.恒定磁场对大鼠脑缺血.再灌注损伤保护作用的研究.中华物理医学与康复杂志,2003,(01):13-6
    [6]王勤友,马京香,黄宗清.血液在磁场环境下保存对红细胞保护作用的研究.临床输血与检验,2002,(02)
    [7]Sjodin B, Hellsten Westing Y. Biochemical mechanisms for oxygen free radical formation during exercise [J]. Sports medicine Auckland, NZ, 1990,10(4):236-254
    [8]黄园.运动性红细胞损伤机理的研究[D];北京体育大学;2001年
    [9]Higashi T, Yamagishi A, Takeuchi T, et al. Orientation of erythrocytes in a strong static magnetic field. Blood, 1993,82(4):28-34
    [10]Magnusson B H L, Rossander L. Iron metabolism and "sports anemia". II. A hematological comparison of elite runners and control subjects. Acta Med Scand, 1984;216(2):157-164
    [11]毕得,苏湘鄂,王晓梅,龙源.旋转恒定磁场对类风湿关节炎大鼠血清铁的影响.现代生物医学进展,2008,(12)
    [12]Bonnarens F, Einhorn T. Production of a standard closed fracture in laboratory animal bone. Orthop Res, 1984,2(1):97-101
    [13]Park SH, O'connor K, Sung R, et al. Comparison of healing process in open osteotomy model and closed fracture model. Orthop Trauma, 1999,13(2):114-120
    [14]Senger DR, Purification and NH2-terminal amino acid sequence of guinea pig tumor-secreted vascular permeability factor. Cancer Res, 1990,50:1774-1778
    [15]Ferraranh W. Pituitary follicular cells secrete a novel heparin-binding grows factor specific for vascular endothelial cells. Biochem Biophys Res Common, 1989, 161:851-858
    [16]Kim B-S, Chen J, Talia Weinstein, et al. VEGF Expression in Hypoxia and Hyperglycemia: Reciprocal Effect on Branching Angiogenesis in Epithelial-Endothelial Co-Cultures. Am Soc Nephrol 2002,13 (20)27-36
    [17]Keramaris, Calorigm, Nikolaouvs, et al. Fracture vascularity and bone healing: a systematic review of the role of VEGF. Injury, 2008,39,45-57
    [18]Sipola, Nelok, Hautala T, et al. Endostatin inhibits VEGF-A induced osteoclastic bone resorption in vitro. BMC Musculoskelet Disord,2006,7(56)
    [19]Kaigler D, Wang Z, Horger K, et al. VEGF scaffolds enhance angiogenesis and bone regeneration in irradiated osseous defects. Bone Miner Res, 2006,21(5):735-744
    [20]Samee M, Kasugai S, Kondo H, et al. Bone morphogenetic protein-2 (BMP-2) and vascular endothelial growth factor (VEGF) transfection to human periosteal cells enhances osteoblast differentiation and bone formation. Pharmacol Sci,2008,108(1):18-31
    [21]Peng H. VEGF improves, whereas sFltl inhibits, BMP2-induced bone formation and bone healing through modulation of angiogenesis. Bone Miner Res, 2005,20(11):17-27
    [22]Fu X, Cuevas P, Gimenez-galleggo G, et al. Acidic fibroblast growth factor reduces renal morphologic and functional indicators of injury caused by ischemia and reperfusion Wound Repair Regen, 1996,4(2):297-303
    [23]Morosini P, Taccaliti A, Montiron R, et al. TGF-beta 1 immunohistochemistry in goiter: comparison of patients with recurrence or no recurrence. Thyroid, 1996,6(5):417-422
    [24]章斌;黄盛东.酸性成纤维细胞生长因子的浓度对基促血管内皮细胞增殖影响的实验研究[J].实用医学杂志,2002,(10)
    [25]Srinivasan M, Jewell S D. Evaluation of TGF-alpha and EGFR expression in oral leukoplakia and oral submucous fibrosis by quantitative immunohistochemistry. Oncology, 2001,61(4):84-92
    [26]Klingenberg O, Wiedocha A, Citores L, et al. Requirement of phosphatidylinositol 3-kinase activity for translocation of exogenous aFGF to the cytosol and nucleus. Biol Chem,2000,275(16):72-80
    [27]Miao X H, Wang C G, Hu B Q, et al. TGF-betal immunohistochemistry and promoter methylation in chronic renal failure rats treated with Uremic Clearance Granules. Folia Histochem Cytobiol,2010, 48(2):84-91
    [28]Yu K, Xu J, Liu Z, et al. Conditional inactivation of FGF receptor 2 reveals an essential role for FGF signaling in the regulation of osteoblast function and bone growth. Development, 2003,130(13):63-74
    [29]张立强.内皮细胞生长因子及碱性成纤维细胞生长因子对兔桡骨骨折愈合影响的比较.中国组织工程研究与临床康复,2008,(33)
    [30]Shimoaka T, Ogasawara T, Yonamine A, et al. Regulation of osteoblast, chondrocyte, and osteoclast functions by fibroblast growth factor (FGF)-18 in comparison with FGF-2 and FGF-10. Biol Chem,2002,277(9):493-500
    [31]Eclancher F, Perraud F, Faltin J, et al. Reactive astrogliosis after basic fibroblast growth factor (bFGF) injection in injured neonatal rat brain. Glia, 1990,3(6):502-509
    [32]Frenkei S R, Grande D A, Collins M, et al. Fibroblast growth factor in chick osteogenesis. Biomaterials,1990, 11(38-40)
    [33]Westermann R, Unsicker K. Basic fibroblast growth factor (bFGF) and rat C6 glioma cells: regulation of expression, absence of release, and response to exogenous bFGF. Glia, 1990, 3(6):510-521
    [34]Andreshak J L, Rabin S I, Patwardhan A G, et al. Tibial segmental defect repair: chondrogenesis and biomechanical strength modulated by basic fibroblast growth factor Anat Rec,1997,248(2):198-204
    [35]Pegorier S, Campbell G A, Kay A B, et al. Bone morphogenetic protein (BMP)-4 and BMP-7 regulate differentially transforming growth factor (TGF)-beta1 in normal human lung fibroblasts (NHLF). Respir Res, 2010,11(85)
    [36]Kawaguchi H, Jingushi S, et al. A local application of recombinant human fibroblast growth factor 2 for tibial shaft fractures:A randomized, placebo-controlled trial. Bone Miner Res,2010,25(12):35-43
    [37]Ssantos F R, Moyses R M, Montenegro F L, et al. IL-1beta, TNF-alpha, TGF-beta, and bFGF expression in bone biopsies before and after parathyroidectomy. Kidney Int, 2003, 63(3):899-907
    [38]Carev D, Saraga M. Involvement of FGF and BMP family proteins and VEGF in early human kidney development. Histol Histopathol, 2008, 23(7):53-62
    [39]Nielsen H M, Andreassen T, Ledet T, et al. Local injection of TGF-beta increases the strength of tibial fractures in the rat. Acta Orthop Scand, 1994,65(1):37-41
    [40]Grainger D J, Percival J, Chiano M, et al. The role of serum TGF-beta isoforms as potential markers of osteoporosis. Osteoporos Int, 1999, 9(5):398-404
    [41]Hoying J B, Ylin M, Diebold R, et al. Transforming growth factor betal enhances platelet aggregation through a non-transcriptional effect on the fibrinogen receptor. Biol Chem, 1999,274(43):08-13
    [42]Fong Y C, Tsai F J, et al. Osteoblast-derived TGF-beta1 stimulates IL-8 release through AP-1 and NF-kappaB in human cancer cells. Bone Miner Res, 2008,23(6):61-70
    [43]Janssens K, Janssens S, et al. Transforming growth factor-beta1 to the bone. Endocr Rev, 2005,26(6):743-747.
    [44]Coomes S M, Wilke C A, Moore T A, et al. Induction of TGF-beta 1, not regulatory T cells, impairs antiviral immunity in the lung following bone marrow transplant. Immunol, 2010,184(9):30-40
    [45]Clavin N W, Avraham T, Fernandez J, et al. TGF-beta1 is a negative regulator of lymphatic regeneration during wound repair. Am J Physiol Heart Circ Physiol, 2008,295(5):13-27
    [46]郑浩,黄婷婷,孔抗美.胰岛素样生长因子1基因转染成肌细胞促小鼠胫骨骨折愈合的作用.中国组织工程研究与临床康复,2009,24:37-42
    [47]Stefanidis K, Solomou E, Mouzakioti E, et al. Comparison of somatomedin-C (SMC/IGF-I), human placental lactogen and Doppler velocimetry between appropriate and small-for-gestational-age pregnancies. Clin Exp Obstet Gynecol, 1998,25(1-2):20-24
    [48]周晓中,董启榕,张健.大鼠股骨闭合骨折模型的制作.东南大学学报(医学版),2007,26(1):60~70
    [49]Niida S, Kondo T, Hiratsuka S, et al. VEGF receptor 1 signaling is essential for osteoclast development and bone marrow formation in colony-stimulating factor 1-deficient mice Proc Natl Acad Sci U S A,2005,102(39):16-21
    [50]沈建国,陈维善,王昌兴.恒磁场对sD大鼠深创面愈合的影响.中国骨伤,2009,05):371-400
    [51]潘云虎,李飞,陈江红.脉冲电磁场对糖尿病大鼠急性下肢缺血模型血管再生的作用.心脏杂志,2010,03):338-343
    [52]Homer J J, Anyanwu K, Ell S R, et al. Serum vascular endothelial growth factor in patients with head and neck squamous cell carcinoma. Clin Otolaryngol Allied Sci,1999,24(5): 426-430
    [53]王艳梅.人VEGF_(165)转基因组织工程软骨的实验研究,中国协和医科大学,2009[硕十毕业论文]
    [54]王艳梅,庄洪兴.人VEGF_(165)转基因组织工程软骨的实验研究.中国协和医科大学,2009
    [55]Steinbrech D S, Mehrara B J, Saadeh P B, et al. VEGF expression in an osteoblast-like cell line is regulated by a hypoxia response mechanism. Am J Physiol Cell Physiol, 2000, 278(4):853-860
    [56]Evensen L, Micklem D R,et al. Mural cell associated VEGF is required for organotypic vessel formation. PLoS One, 2009,4(6):5798
    [57]Muhlhauser J, Pili R, Merrill M J, et al. In vivo angiogenesis induced by recombinant adenovirus vectors coding either for secreted or nonsecreted forms of acidic fibroblast growth factor. Hum Gene Ther, 1995,6(11):457-465
    [58]Nie K, Henderson A. MAP kinase activation in cells exposed to a 60 Hz electromagnetic field. Cell Biochem,2003,90(6):197-206
    [59]Mansukhani A, Ambrosetti D, Holmes G, et al. Sox2 induction by FGF and FGFR2 activating mutations inhibits Wnt signaling and osteoblast differentiation. Cell Biol,2005, 168(7):65-76
    [60]Trivier E, Kurz D J, Hong Y, et al. Differential regulation of telomerase in endothelial cells by fibroblast growth factor-2 and vascular endothelial growth factor-a:association with replicative life span. Ann N Y Acad Sci, 2004, 10 (19) 111-115
    [61]Callaghan M J, Chang E I, Seiser N, et al. Pulsed electromagnetic fields accelerate normal and diabetic wound healing by increasing endogenous FGF-2 release. Plast Reconstr Surg, 2008,121(1):130-141
    [62]潘云虎.脉冲电磁场对糖尿病大鼠急性下肢缺血血管再生作用的实验研究:第四军医大学,2010
    [63]Kanazawa S, Fujiwara T, Matsuzaki S, et al. bFGF regulates P13-kinase-Racl-JNK pathway and promotes fibroblast migration in wound healing. PLoS One, 2010, 5(8): 22-28
    [64]Chikazu D, Hakenda Y, Ogata N, et al. Fibroblast growth factor (FGF)-2 directly stimulates mature osteoclast function through activation of FGF receptor 1 and MAP kinase. Biol Chem,2000,275(40):44-50
    [65]Grainger D J. TGF-beta and atherosclerosis in man. Cardiovasc Res, 2007, 74(2):213-22
    [66]Patil A S, Sable R B, Kothari R M. An update on transforming growth factor-beta (TGF-beta):sources, types, functions and clinical applicability for cartilage/bone healing. Cell Physiol, 2011,
    [67]贾军,边富杰,赵宝东.转化生长因子β在骨缺损修复过程中对骨痂内ALP和钙的影响.实用诊断与治疗杂志,2007,(03):176-177
    [68]Centrella M, Horowitz M C, Wozney J M, et al. Transforming growth factor-beta gene family members and bone. Endocr Rev, 1994,15(1):27-39
    [69]Centrella M, Mccarthy T L, Canalis E. Transforming growth factor-beta and remodeling of bone. Bone Joint Surg Am, 1991,73(9):418-428
    [70]Yeni Y N, Dong X N, Zhang B, et al. Cancellous bone properties and matrix content of TGF-beta2 and IGF-I in human tibia: a pilot study. Clin Orthop Relat Res, 2009, 467(12): 79-86
    [71]江新泉,刘洪爱,陈强TGF-β在糖尿病大鼠骨折愈合过程中的实验研究.泰山医学院学报,2010,31(5):323-325
    [72]同志超,杨镇,同志勤.骨髓间质干细胞体外定向诱导分化为软骨细胞的实验研究.中国骨伤,2008,05):362-364
    [73]Docagne F, Gabriel C, Lebeurrier N, et al. Spl and Smad transcription factors co-operate to mediate TGF-beta-dependent activation of amyloid-beta precursor protein gene transcription. Biochem J, 2004, 383(Pt 2):393-399
    [74]杨大鉴,黄定强,胥方元.人骨髓间充质干细胞全细胞膜上钙离子通道的电生理学特性.中国临床康复,2006,(25):7~9

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700