用户名: 密码: 验证码:
表达NDV、IBDV及FMDV基因的重组FPV载体活疫苗构建和实验免疫研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
新城疫(ND)是由新城疫病毒(NDV)引起的一种禽类动物的烈性传染病之一,给养禽业带来了巨大的经济损失。疫苗接种是特异性预防和控制ND的可靠和有效的手段。鸡传染性法氏囊病(Infectious Bursal Disease,IBD)又称甘波罗病,是由呼肠弧病毒引起的一种急性、高度传染性疾病。由于该病发病突然、病程短、死亡率高,且可引起鸡体免疫抑制,是危害当前养禽业的重要传染病。近年来,各地出现超强毒株(vvIBDV)及变异株,并能突破母源抗体的保护,给IBD的防制带来了巨大的困难。这两种病毒病常规灭活苗免疫原性低,弱毒疫苗存在易散毒、毒力返强等缺陷,因此,研究新型疫苗已经成为当前的热点。
     口蹄疫(Foot-and-Mouth disease,FMD)是由口蹄疫病毒(Foot-and-Mouthdisease virus,FMDV)引起偶蹄动物感染的烈性传染病之一。目前FMD呈世界范围流行趋势,其血清型有O、A、C、SAT1、SAT2、SAT3和Asia1型共7种。O型、Asia1型等FMD在我国周边国家或东南亚地区时有发生,对我国养殖业构成了严重的威胁。
     使用重组鸡痘病毒诱导鸡和哺乳动物细胞免疫应答抵抗外来抗原已经取得明显进步,鸡痘病毒的主要优势在于它允许插入较大量的外源基因。需要我们明确的是对于任何一种病毒表达哪些基因用作多价抗原。使用天然的鸡痘病毒启动子可能优化外源抗原的表达。也要对重组鸡痘病毒表达抗原(外源抗原或鸡痘病毒抗原)之间的竞争进行更多的认识,从而帮助构建有效预防多种病原体的多价重组体鸡痘病毒。联合免疫的深入研究有助于帮助我们认识进而选择不同疫苗形式(包括DNA、蛋白和传统的疫苗)的最佳组合。
     本实验以合成的痘病毒早晚期启动子PE/L及P7.5作为串联启动子的具有自主产权的鸡痘病毒转移载体为基础,选择NDV的F、HN基因,IBDV的VP0(VP243)、VP2基因,分别置于双向启动子下游,构建了双向表达的鸡痘病毒转移载体pMTB18-F-F、pMTB18-F-HN、pMTB18-F-VP0、pMTB18-VP0-VP2、pUTAL-F-VP2。应用脂质体转染法,将该重组鸡痘病毒中间转移载体与282E4株鸡痘病毒共转染鸡胚成纤维细胞(CEF),经BrdU连续三次加压筛选,挑斑纯化后传代,对鸡痘病毒重组体在体外分别以PCR、RT-PCR和IFA对外源基因的重组、转录和蛋白表达及其生物学活性进行了鉴定。PCR检测结果表明转移载体构建均正确,同时在转录水平上进一步证实了重组病毒可以稳定携带外源基因并正确转录。将重组鸡痘病毒rFPV-F-VP0、rFPV-F-F、rFPV-F-HN、rFPV-F-VP2以抗NDV血清作为一抗,rFPV-F-VP0、rFPV-VP0-VP2、rFPV-F-VP2以抗IBDV血清作为一抗分别进行间接免疫荧光和免疫酶检测,分别检测到了特异性荧光和褐色的痘斑。研究证明获得了5株重组鸡痘病毒rFPV,能够有效的表达外源蛋白,表达产物具有相应的生物学活性。
     以SPF鸡作为动物模型,对之前构建的5株重组鸡痘疫苗进行了免疫研究,通过体液与细胞免疫指标检测,对疫苗的免疫原性进行了评估。结果显示,所构建的重组鸡痘病毒rFPV均能刺激SPF鸡产生抗NDV或IBDV的特异性ELISA抗体,疫苗接种后第2周抗体水平开始逐渐提高,在第5-6周达到高峰,其抗体水平均高于对照组。对脾T淋巴细胞的增殖能力和血清中Th1类细胞因子(IFN-γ和IL-2)、Th2类细胞因子(IL-4和IL-10)进行了检测。研究表明,重组鸡痘疫苗使SPF鸡产生了特异性体液和细胞免疫应答。攻毒试验结果显示,用重组鸡痘病毒rFPV-F-HN能在一定程度上抵抗新城疫强毒的攻击;重组鸡痘病毒rFPV-F-VP2、rFPV-VP0-VP2免疫的SPF鸡能够明显降低分离株IBDV-JL01/2007对法氏囊组织的损伤程度。
     本实验室先后成功构建并筛选出FMDV vUTAL3CP1(O型)、vUTAL-P1-2A-3C-IL18(Asia1型)、 vUTA2-P1-2A-3C (Asia1型)、vUTA2-P1-2A-IL18(O型)重组鸡痘病毒疫苗, FMDVGS115/pPIC9K-VP1-2A-CTE(O型)、GS115/pPIC9K-VP1-2A-CTE(Asia1型)酵母重组表达蛋白,pVIRIL18P1(O型)和pVAXI-P1-2A-3C(Asia1型)核酸疫苗。上述疫苗经小鼠单独免疫试验,表明均具有良好的免疫原性,可以激发针对FMDV的特异性体液和细胞免疫应答。据此,本研究利用上述疫苗,采用prime-boost策略免疫FMDV敏感动物豚鼠,并对其诱导的特异性体液和细胞免疫水平进行了检测,以此确定最佳疫苗和免疫策略。结果显示,O型疫苗中,核酸苗pVIRIL18P1首免,重组鸡痘病毒疫苗加强免疫的体液和细胞效果最好,Asia1型以重组鸡痘苗vUTA2-P1-2A-3C-IL18细胞免疫效果突出。研究表明,在针对目标抗原的初次免疫反应中DNA免疫是最有效的,重组痘病毒可加强免疫。同时能依靠能痘病毒自身佐剂的活性增强免疫反应。
     以猪为动物模型,应用prime-boost策略,评价了O型苗pVIRIL18P1/vUTAL3CP1、 vUTAL3CP1/vUTAL3CP1, Asia1型苗pVAXI-P12A3C/vUTA2-P12A3CIL18、vUTA2-P12A3CIL18/vUTA2-P12A3CIL18几种联合免疫方案的特异性体液和细胞免疫应答水平。核酸苗(500μg/头)采用壳聚糖包裹,鸡痘苗(107PFU)加入佐剂QS-21后与冻干保护剂混合。对35日龄仔猪间隔28d进行两次免疫,应用O型和Asia1型口蹄疫间接ELISA、LPB-ELISA、VP1结构蛋白抗体ELISA(O型)、ELISPOT、T淋巴细胞增殖试验、细胞因子检测等试验方法,证实了候选DNA和鸡痘重组疫苗均能诱导特异性的免疫应答。核酸苗首免,重组鸡痘病毒疫苗加强免疫的体液和细胞效果最优。总之,本研究以新的载体构建和联合免疫研究思路,探讨了重组鸡痘病毒在鸡新城疫病毒、传染性法氏囊病病毒、口蹄疫病毒新型疫苗的设计和免疫策略,对基于双向启动子的重组核酸疫苗构建与实验免疫进行了深入研究,为有效禽类和哺乳动物重组疫苗的研制与临床前实验研究奠定了基础。
Newcastle disease virus (NDV) infection results in Newcastle disease (ND), ahighly epidemic and most costly disease, which greatly can threaten poultry. Vaccineinoculation is a safe and effective way to prevent NDV. Infectious bursal disease(IBD) caused by IBD virus is highly cute and contagious disease of chook. Recently,emerge of very-virulent IBDV (vvIBDV) and variant isolate bring out enormousdifficulties because of breaking through protection of parent antibody. Due to lowimmuogeniciy of inactivated vaccine and disperse and returning virus of live vaccine,current focus is development of promising vaccine.
     Foot and mouth disease (FMD), as a violently artiodactylous infection, iscaused by Foot and mouth disease virus (FMDV). At present, FMD is prevalent inthe world and the FMD virus exists in the form of seven different serotypes: O, A, C,Asia1, and South African Territors1(SAT1), SAT2and SAT3. Historically, FMDSerotype O and Asia1had been spread in part of China. Now it has serious threatthat still occasionally happen in the many countries around China and Southeast Asiahappen.
     Poxvirus, which permit large exogenous gene be inserted, displays obviousadvantage and distinct progress show that poxvirus can induce immune response ofchook and mammalian against invaded antigen. The selection of what genes can beused for antigen expressed in virus vectors need to be made a decision. A possibleoptimizing heterogenic expression route is to use natural poxvirus promoter. Inaddition, further knowledge for competition among expressed antigens inserted inpoxvirus will help construct multivalent rFPV to prevent various pathogens. We canselect various formatted vaccine containing DNA, protein and inactivated vaccinefollowing to going to investigate co-immunization.
     The aim to establish to fowl pox virus shuttle transfer plasmid pMTB18-F-F, pMTB18-F-HN, pMTB18-F-VP0, pMTB18-VP0-VP2and pUTAL-F-VP2, the fourgene, F and HN gene of NDV, VP0and VP2of IBDV, was be inserted downstreamof bi-directed promoter of reconstructive poxvirus transfer vector carrying linedpromoter PE/L and P7.5. Above recombinant cassettes were cotransfected with poxvirus282E4, respectively. After serial passage of positive recombinant virusconstruct, expression and biological activity of fusion protein was identified by PCR,RT-PCR and IFA. Exogenous transcription of these construct virus was constantlydetermined by PCR. Indirect immunofluorescence and immune enzymes detection ofrFPV-F-VP0, rFPV-F-F, rFPV-F-HN and rFPV-F-VP2were carried out by usingserum of anti-NDV as the first antibody. Correspondingly, the serum of anti-IBDVwas used for the same detection of rFPV-F-VP0, rFPV-VP0-VP2and rFPV-F-VP2.Five rFPV can effectively express and product has promising biological activity.
     In present study, this five recombinant poxvirus vaccine was investigated byhumoral immunity and cellular immunity index detection and assessed on vaccineimmunogenicity. These results show that our constructed poxvirus rFPV inducedSPF chicken producing special ELISA antibody against NDV or IBDV. Antibodylevel increased following to the second week and reach the peak at the five-six weekafter vaccine inoculation. The data of antibody level is higher compared with thecontrol group. In the test of multiplication capacity of T lymphocyte of spleen andTh1-like cytokine (IFN-γ and IL-2) and Th2-like cytokine (IL-4and IL-10), therFPV can induce SPF chicken to produce special immune response. The challengeexperiment showed that rFPV-F-HN could partially prevent SPF chicken againstNDV and SPF chicken could reduce damage degree of IBDV-JL01/2007.
     In our lab, we successively construct FMDV vUTAL3CP1(O serotypev),UTAL-P1-2A-3C-IL18(Asia-I serotype), vUTA2-P1-2A-3C (Asia-Ⅰserotype) andvUTA2-P1-2A-IL18(O serotype) foxvirus vaccines and FMDVGS115/pPIC9K-VP1-2A-CTE (O serotype). GS115/pPIC9K-VP1-2A-CTE (Asia-Iserotype) recombinant protein expressed in yeast and nucleic acid vaccinepVIRIL18P1(O serotype) and pVAXI-P1-2A-3C (Asia-I serotype). Above vaccinecould induce special humoral and cellular immunity of FMDV in mice and hadefficient immunogenicity. Accordingly, we immunize guinea pig and detected level of humoral and cellular response level by using prime-boost strategy in this study.These results showed that the best effect is to employ the protocol of nucleic acidvaccine pVIRIL18P1as the first immunization and recombinant poxvirus as boostimmunization. The obvious cellular effect can be found in the test of immunizationof recombinant vUTA2-P1-2A-3C-IL18. in our experiment, DNA vaccine extendedits most effective response in the first immunization and recombinant poxvirus canbe used to boost immunization. At the same time, we found that poxvirus couldincrease immune response by self-adjvant activity.
     We evaluated humoral and cellular response by combined immunization withseveral vaccine O serotype vaccine pVIRIL18P1/vUTAL3CP1and vUTAL3CP1/vUTAL3CP1, Asia-I serotype vaccine pVAXI-P12A3C/vUTA2-P12A3CIL18andvUTA2-P12A3CIL18/vUTA2-P12A3CIL18in animal model of pig. Nucleic acidvaccine(500μg/portion) was coated with chitosan and poxvirus vaccine(107PFU)added adjuvant QS-21made a mixture with freeze-drying protective agent. Both thedifferent vaccine were used for two inoculation of28days interval in35days piglet.Subsequently, we confirm their good immune response by serial detection containingindirect ELISA, LPB-ELISA, ELISPOT, T lymphopoiesis and cytokine detection.The further investigation confirmed the immune protocol is best by DNA vaccine asfirst immunization and recombinant poxvirus boost immunization. In conclusion, weprobed into novel vaccine design and immune strategy aiming to NDV, IBDV andFMDV based on reconstructed vector and co-immunization in present study. Inaddition, recombinant DNA vaccine carrying bi-directed promoter and immune testwere as deep research objects. These studies provide good foundation ofdevelopment of recombinant vaccine and of pre-clinical experiment for poultry andmammalian.
引文
[1] Moss B. Genetically engineered poxviruses for recombinant gene expression,vaccination and safety. Proc [J]. Natl Acad.Sci.USA,1996,93(21):11341–11348.
    [2] Rappuoli R. From Pasteur to genomics: progress and challenges in infectiousdiseases [J]. Nat.Med,2004,10(11):1177–1185.
    [3] Pulendran B. Modulating vaccine responses with dendritic cells and Toll-likereceptors [J]. Immunol.Rev,2004,199:227–250.
    [4] Doeuk DC, Kwong PD, Nabel GJ. The rational design of an AIDS vaccine[J]. Cell1,2005,24:677–681.
    [5] Moss B. Poxviridae and their replication Fields BN, Kea DM (Eds), RavenPress, Ltd.Good introduction to the poxvirus family [J]. NY, USA.
    [6] Smith SA, Kotwal GJ. Immune responses to poxvirus infections in variousanimals [J]. Crit. Rev. Microbiol,2002,28(3):149–185.
    [7] Boulanger D, Smith T, Skinner M. Morphogenesis and release of fowlpoxvirus [J]. J. Gen. Virol,2000,81(3):675–687.
    [8] Fenner F. Adventures with poxviruses of vertebrates [J]. FEMS Microbiol.Rev,2000,24(2):123–133.
    [9] Afonso CL, Tulman ER, Delhon G et al. Genomeofcrocodilepoxvirus [J].J.Virol,2006,80(10):4978–4991.
    [10] Boulanger D, Green P, Jones B et al. Identification and characterisation ofthree immunodominant structural proteins of fowlpox virus [J]. J.Virol,2002,76(19):9844–9855.
    [11] Afonso CL, Tulman ER, Lu Z et al. The genome of fowlpox virus Firstfull-length genome sequence of fowlpox virus (FPV).[J]. J.Virol.,2000,74(8):3815–3831.
    [12] Seet BT, Johnston JB, Brunetti CR et al. Review of the wide range ofimmune evasion strategies employed by poxviruses and immune evasion [J].Ann. Rev. Immunol,2003,21:377–423.
    [13] Taylor J, Weinburg R, Languet B et al. First description of a recombinantFPV vaccine vector Recombinant fowlpox virus inducing protectiveimmunity in non-avian species [J]. Vaccine,1988,6(6):497–503.
    [14] Singh P, Schnitzlein WM, Tripathy DN. Reticuloendotheliosis virussequences within the genomes of field strains of fowlpox virus displayvariability [J]. J. Virol,2003,77(10):5855–5862.
    [15] Singh P, Kim T-J, Tripathy DN. Re-emerging fowlpox: evaluation of isolatesfrom vaccinated flocks [J]. Avian Pathol,2000,29:449–455.
    [16] Hertig C, Coupar BE, Gould AR et al. Field and vaccine strains of fowlpoxvirus carry integrated sequences from the avian retrovirus,reticuloendotheliosis virus [J]. Virology,1997,235(2):367–376.
    [17] Laidlaw SM, Skinner MA. Comparison of the genome sequence of FP9, anattenuated, tissue culture-adapted European strain of fowlpox virus, withthose of virulent American and European viruses [J]. J. Gen.Virol,2004,85(2):305–322.
    [18] Webster DP, Dunachie S, McConkey S,et al. Safety of recombinant fowlpoxstrain FP9and modified vaccinia virus Ankara vaccines against liver-stage P.falciparum malaria in non-immune volunteers [J]. Vaccine,2006,24(15):3026–3034.
    [19] Skinner MA, Laidlaw SM, Eldaghayes I, et al. Fowlpox virus as arecombinant vaccine vector for use in mammals and poultry. Expert Rev [J].Vaccines,2005,4(1):63–76.
    [20] Brown M, Davies DH, Skinner MA, et al. Antigen gene transfer to culturedhuman dendritic cells using recombinant avipoxvirus vectors [J]. CancerGene Ther,1999,6(3):238–245.
    [21] McFadden G. Key review of poxvirus tropism and host-range genes. Nat.Rev [J]. Microbiol,2005,3(3):201–213.
    [22] Kwak H, Horig H, Kaufman HL. Poxviruses as vectors for cancerimmunotherapy [J]. Curr. Opin. Drug Discov. Develop,2003,6(2):161–168.
    [23] Somogyi P, Fraser J, Skinner MA. Fowlpox virus host range restriction: geneexpression, DNA replication and morphogenesis in nonpermissivemammalian cells [J]. Virology,1993,197(1):439–444.
    [24] Chahroudi A, Chavan R, Kozyr N, et al. Vaccinia virus tropism for primaryhematolymphoid cells is determined by restricted expression of a uniquevirus receptor [J]. J. Virol,2005,79(16):10397–10407.
    [25] Schneider-Schaulies J. Cellular receptors for viruses: links to tropism andpathogenesis [J]. J. Gen. Virol,2000,81(6):1413–1429.
    [26] Johnston JB, McFadden G. Poxvirus immunomodulatory strategies: currentperspectives [J]. J. Virol,2003,77(11):6093–6100.
    [27] Earnshaw WC, Martins LM, Kaufmann SH. Mammalian caspases: structure,activation, substrates, and functions during apoptosis [J]. Ann. Rev.Biochem,1999,68:383–424.
    [28] Thornberry NA, Bull HG, Calaycay JR et al. A novel heterodimeric cysteineprotease is required for interleukin-1β processing in monocytes [J].Nature,1992,356(6372):768–774.
    [29] Zhou Q, Snipas S, Orth K et al. Target protease specificity of the viral serpincram [J]. J. Biol. Chem,1997,272(12):7797–7800.
    [30] Turner PC, Moyer RW. Control of apoptosis by poxviruses [J]. Semin.Virol,1998,8(6):453–469.
    [31] Alcami A, Symons J, Khanna A et al. Poxviruses: capturing cytokines andchemokines [J]. Semin. Virol,1998,8(5):419–427.
    [32] Puehler F, Schwartz H, Waidners B et al. An interferon-γ binding protein ofnovel structure encoded by the fowlpox virus [J]. J. Biol.Chem,2003278(9):6905–6911.
    [33] Mossman K, Upton C, Buller RML et al. Specis specificity of ectromeliavirus and vaccinia virus interferon-γ binding proteins [J].Virology,1995,208(2):762–769.
    [34] Gherardi MM, Ramirez JC, Esteban M. IL-12and IL-18act in synergy toclear vaccinia virus infection: involvement of innate and adaptivecomponents of the immune system [J]. J. Gen. Virol,2003,84(8):1961–1972.
    [35] Shtrichman R, Samuel CE. The role of γ interferon in antimicrobialimmunity [J]. Curr. Opin. Microbiol,2001,4(3):251–259.
    [36] Wang F, Ma Y, Barrett JW et al. Disruption of erk-dependent type Iinterferon induction breaks the myxoma virus species barrier [J]. Nat.Immunol,2004,5(12):1266–1274.
    [37] Zinkernagel RM, Hengartner H. On immunity against infections andvaccines: credo2004. Scand [J]. J. Immunol,2004,60(1–2):9–13.
    [38] Hutchings CL, Gilbert SC, Hill AV et al. Novel protein and poxvirus-basedvaccine combinations for simultaneous induction of humoral andcell-mediated immunity [J]. J. Immunol,2005,175(1):599–606.
    [39] Ramshaw IA, Ramsay AJ. The prime–boost strategy: exciting prospects forimproved vaccination [J]. Immunol. Today,2000,21(4):163–165.
    [40] Polo JM, Dubensky TW Jr. Virus-based vectors for human vaccineapplications [J]. Drug Discov. Today,2002,7(13):719–727.
    [41] Smith CL, Mirza F, Pasquetto V et al. Immunodominance ofpoxviral-specific CTL in a human trial of recombinant-modified vacciniaAnkara [J]. J. Immunol,2005,175(12):8431–8437.
    [42] Harrington LE, Most R Rv, Whitton JL et al. Recombinant vacciniavirus-induced T-cell immunity: quantitation of the response to the virusvector and the foreign epitope [J]. J. Virol,2002,76(7):3329–3337.
    [43] Ockenhouse CF, Sun PF, Lanar DE et al. Phase I/IIa safety, immunogenicity,and efficacy trial of NYVAC-PF7, a pox-vectored, multiantigen, multistagevaccine candidate for Plasmodium falciparum malaria [J]. J. Infect.Dis,1998,177(6):1664–1673.
    [44] Drexler I, Staib C, Kastenmuller W et al. Identification of vaccinia virusepitope-specific HLA-a*0201-restricted T cells and comparative analysis ofsmallpox vaccines [J]. Proc. Natl Acad. Sci. USA,2003,100(1):217–222.
    [45] Tscharke DC, Karupiah G, Zhou J et al. Identification of poxvirus CD8+Tcell determinants to enable rational design and characterization of smallpoxvaccines [J]. J. Exp. Med,2005,201(1):95–104.
    [46] Oseroff C, Kos F, Bui HH et al. HLA class I-restricted responses to vacciniarecognize a broad array of proteins mainly involved in virulence and viralgene regulation [J]. Proc. Natl Acad. Sci. USA,2005,102(39):13980–13985.
    [47] Slifka MK. The future of smallpox vaccination: is MVA the key?[J]. Med.Immunol,2005,4(1):2.
    [48] Souza AP, Haut L, Reyes-Sandoval A et al. Recombinant viruses as vaccinesagainst viral diseases. Braz [J]. J. Med. Biol. Res.38(4):509–522.
    [49] Paoletti E. Applications of pox virus vectors to vaccination: an update. Proc[J]. Natl Acad. Sci. USA,1996,93(21):11349–11353.
    [50] Coupar BEH, Teo T, Boyle DB. Restriction endonuclease mapping of thefowlpox virus genome [J]. Virology,1990,179(1):159–167.
    [51] Robinson HL, Montefiori DC, Johnson RP et al. Neutralizingantibody-independent containment of immunodeficiency virus challenges byDNA priming and recombinant pox virus booster immunizations [J]. Nat.Med,1999,5(5):526–534.
    [52] Kent SJ, Dale CJ, Ranasinghe C et al. Mucosally-administered human-simianimmunodeficiency virus DNA and fowlpoxvirus-based recombinant vaccinesreduce acute phase viral replication in macaques following vaginal challengewith CCR5-tropic SHIVSF162P3[J]. Vaccine,2005,23(42):5009–5021.
    [53] Letvin NL. Progress toward an HIV vaccine [J]. Ann. Rev.Med,2005,56:213–223.
    [54] Vazquez Blomquist D, Green P, Laidlaw SM et al. Induction of a strongHIV-specific CD8+T cell response in mice using a fowlpox virus vectorexpressing an HIV-1multi-CTL-epitope polypeptide [J]. ViralImmunol,2002,15(2):337–356.
    [55] Dale CJ, Zhao A, Jones SL et al. Induction of HIV-1-specific T-helperresponses and type1cytokine secretion following therapeutic vaccination ofmacaques with a recombinant fowlpoxvirus co-expressing interferon-γ [J]. J.Med. Primatol,2000,29(3–4):240–247.
    [56] Dale CJ, De Rose R, Stratov I et al. Efficacy of DNA and fowlpox viruspriming boosting vaccines for simian/human immunodeficiency virus [J]. J.Virol,2004,78(24):13819–13828.
    [57] Kent SJ Zhao A, Best SJ et al. Enhanced T-cell immunogenicity andprotective efficacy of a human immunodeficiency virus type1vaccineregimen consisting of consecutive priming with DNA and boosting withrecombinant fowlpox virus [J]. J. Virol,1998,72(12):10180–10188.
    [58] Moorthy VS, Imoukhuede EB, Keating S et al. Phase1evaluation of3highlyimmunogenic prime–boost regimens, including a12-month reboostingvaccination, for malaria vaccination in Gambian men [J]. J. Infect.Dis,2004,189(12):2213–2219.
    [59] Webster DP, Dunachie S, Vuola JM et al. Enhanced T cell-mediatedprotection against malaria in human challenges by using the recombinantpoxviruses FP9and modified vaccinia virus Ankara [J]. Proc. Natl Acad. Sci.USA,2005,102(13):4836–4841.
    [60] Yang S, Hodge JW, Grosenbach DW et al. Vaccines with enhancedcostimulation maintain high avidity memory CTL [J]. J.Immunol,2005,175(6):3715–3723.
    [61] Marshall JL, Gulley JL, Arlen PM et al. Phase I study of sequentialvaccinations with fowlpox-CEA(6D)-TRICOM alone and sequentially withvaccinia-CEA(6D)-TRICOM, with and without granulocyte-macrophagecolony-stimulating factor, in patients with carcinoembryonicantigen-expressing carcinomas [J]. J. Clin. Oncol,2005,23(4):720–731.
    [62] Dipaola R, Plante M, Kaufman H et al. A Phase I trial of pox PSA vaccines(PROSTVAC(r)-VF) with B7–1, ICAM-1, and LFA-3co-stimulatorymolecules (TRICOMtrade mark) in patients with prostate cancer [J]. J. Transl.Med,2006,4:1.
    [63] Kaufman HL, Wang W, Manola J et al. Phase II randomized study of vaccinetreatment of advanced prostate cancer (E7897): a trial of the Easterncooperative oncology group [J]. J. Clin. Oncol,2004,22(11):2122–2132.
    [64] Carroll MW, Moss B. Poxviruses as expression vectors [J]. Curr. Opin.Biotechnol,1997,8(5):573–577.
    [65] Taylor J, Paoletti E. Fowlpox virus as a vector in non-avian species [J].Vaccine,1988,6(6):466–468.
    [66] Bembridge GP, Lopez JA, Cook R et al. Recombinant vaccinia viruscoexpressing the F protein of respiratory syncytial virus (RSV) andinterleukin-4(IL-4) does not inhibit the development of RSV-specificmemory cytotoxic T lymphocytes, whereas priming is diminished in thepresence of high levels of IL-2or γ interferon [J]. J.Virol,1998,72(5):4080–4087.
    [67] Zhu M, Terasawa H, Gulley J et al. Enhanced activation of human T cells viaavipox vector-mediated hyperexpression of a triad of costimulatorymolecules in human dendritic cells [J]. Cancer Res,2001,61(9):3725–3734.
    [68] Triozzi PL, Aldrich W, Allen KO et al. Antitumor activity of the intratumoralinjection of fowlpox vectors expressing a triad of costimulatory moleculesand granulocyte/macrophage colony stimulating factor in mesothelioma. Int.[J]. J. Cancer,2005,113(3):406–414.
    [69] Grosenbach DW, Barrientos JC, Schlom J et al. Synergy of vaccine strategiesto amplify antigen-sepcific immune responses and antitumour effects [J].Cancer Res,2001,61(11):4497–4505.
    [70] Hodge JW, Sabzevari H, Yafal AG et al. A triad of costimulatory moleculessynergize to amplify T-cell activation [J]. Cancer Res,1999,59(22):5800–5807.
    [71] Hodge JW, Rad AN, Grosenbach DW et al. Enhanced activation of T cells bydendritic cells engineered to hyperexpress a triad of costimulatory molecules[J]. J. Natl Cancer Inst,2000,92(15):1228–1239.
    [72] Marshall E. Drug trials. Violent reaction to monoclonal antibody therapyremains a mystery [J]. Science,2006,311(5768):1688–1689.
    [73] Evans EJ, Esnouf RM, Manso-Sancho R et al. Crystal structure of a solubleCD28-FAb complex. Nat [J]. Immunol,2005,6(3):271–279.
    [74] Hopkin M. Can super-antibody drugs be tamed?[J]. Nature,2006,440:855–856.
    [75] Constant SL, Bottomly K. Induction of Th1and Th2CD4+T cell responses:the alternative approaches [J]. Ann. Rev. Immunol,1997,15:297–322.
    [76] Reali E, Canter D, Zeytin H et al. Comparative studies of avipox-GM-CSFversus recombinant GM-CSF protein as immune adjuvants with differentvaccine platforms [J]. Vaccine,2005,23(22):2909–2921.
    [77] Dale CJ, De Rose R, Wilson KM et al. Evaluation in macaques of HIV-1DNA vaccines containing primate CpG motifs and fowlpoxvirus vaccinesco-expressing IFN-γ or IL-12[J]. Vaccine,2004,23(2):188–197.
    [78] Jackson RJ, Ramsay AJ, Christensen CD et al. Expression of mouseinterleukin-4by a recombinant ectromelia virus suppresses cytolyticlymphocyte responses and overcomes genetic resistance to mousepox [J]. J.Virol,2001,75(3):1205–1210.
    [79] Mullbacher A, Lobigs M. Creation of killer poxvirus could have beenpredicted [J]. J. Virol,2001,75(18):8353–8355.
    [80] Aung S, Graham B. IL-4diminishes perforin-mediated and increases fasligand-mediated cytotoxicity in vivo [J]. J. Immunol,2000,164(7):3487–3493.
    [81] Estcourt MJ, Ramsay AJ, Brooks A et al. Prime–boost immunisationgenerates a high frequency, high-avidity CD8+cytotoxic T lymphocytepopulation [J]. Int. Immunol.14(1):31–37.
    [82] Anderson RJ, Hannan CM, Gilbert SC et al. Enhanced CD8+T cell immuneresponses and protection elicited against Plasmodium berghei malaria byprime boost immunization regimens using a novel attenuated fowlpox virus[J]. J. Immunol,2004,172(5):3094–3100.
    [83] Janeway CA, Jr. Approaching the asymptote? Evolution and revolution inimmunology [J]. Cold Spring Harb. Symp. Quant. Biol,1989,54(1):1–13.
    [84] Pulendran B, Ahmed R. Translating innate immunity into immunologicalmemory: implications for vaccine development [J].Cell,2006,124(4):849–863.
    [85] Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity[J]. Cell,2006,124(4):783–801(2006).
    [86] Barton GM, Medzhitov R. Toll-like receptor signaling pathways [J].Science,2003,300(5625):1524–1525.
    [87] Germain RN. An innately interesting decade of research in immunology [J].Nat. Med,2004,10(12):1307–1320.
    [88] Napolitani G, Rinaldi A, Bertoni F et al. Selected Toll-like receptor agonistcombinations synergistically trigger a T helper type1-polarizing program indendritic cells [J]. Nat.Immunol,2005,6(8):769–776.
    [89] Wille-Reece U, Flynn BJ, Lore K et al. HIV gag protein conjugated to aToll-like receptor7/8agonist improves the magnitude and quality of Th1andCD8+T cell responses in nonhuman primates [J]. Proc. Natl Acad. Sci.USA,2005,102(42):15190–15194.
    [90] Wille-Reece U, Flynn BJ, Lore K et al. Toll-like receptor agonists influence themagnitude and quality of memory T cell responses after prime–boostimmunization in nonhuman primates [J]. J. Exp. Med,2006,203(5):1249–1258.
    [91] Bowie A, Kiss-Toth E, Symons JA et al. A46R and A52R from vacciniavirus are antagonists of host IL-1and Toll-like receptor signaling [J]. Proc.Natl Acad. Sci. USA,2000,97(18):10162–10167.
    [92] Harte MT, Haga IR, Maloney G et al. The poxvirus protein A52R targetsToll-like receptor signaling complexes to suppress host defense [J]. J. Exp.Med,2003,197(3):343–351.
    [93] Pincus S, Tartaglia J, Paoletti E. Poxvirus-based vectors as vaccinecandidates [J]. Biologicals,1995,23(2):159–164.
    [94] Lanzavecchia A. From antigen presentation to T-cell activation.[J]. Res.Immunol,1998,149(7–8):626.
    [95] Heath WR, Carbone FR. Cross-presentation, dendritic cells, tolerance andimmunity [J]. Ann.Rev.Immunol,2001,19:47–64.
    [96] Ploegh HL. Immunology. Nothing 'gainst time's scythe can make defense [J].Science,2004,304(5675):1262–1263.
    [97] Heath WR, Belz GT, Behrens GM et al. Cross-presentation, dendritic cellsubsets, and the generation of immunity to cellular antigens [J]. Immunol.Rev,2004,199:9–26.
    [98] Neijssen J, Herberts C, Drijfhout JW et al. Cross-presentation by intercellularpeptide transfer through gap junctions [J]. Nature,2005,434(7029):83–88.
    [99] Heath WR, Carbone FR. Coupling and cross-presentation [J].Nature,2005,434(7029):27–28.
    [100] Zinkernagel RM. On cross-priming of MHC class I-specific CTL: rule orexception Eur [J]. J.Immunol,2002,32(9):2385–2392.
    [101] Hickman-Miller HD, Yewdell JW. Youth has its privileges: Maturationinhibits DC cross-priming [J]. Nat. Immunol,2006,7(2):125–126.
    [102] Wilson NS, Behrens GM, Lundie RJ et al. Systemic activation of dendritic cellsby Toll-like receptor ligand sormalaria infection impair scross-presentation andantiviralimmunity [J]. Nat.Immunol,2006,7(2),165–172.
    [103] Sigal LJ, Crotty S, Andino R et al. Cytotoxic T-cell immunity tovirus-infected non-haematopoietic cells requires presentation of exogenousantigen [J]. Nature,1999,398(6722):77–80.
    [104] Shen X, Wong SB, Buck CB et al. Direct priming and cross-primingcontribute differentially to the induction of CD8+CTL following exposure tovaccinia virus via different routes [J]. J. Immunol,2002,169(8):4222–4229.
    [105] Norbury CC, Malide D, Gibbs JS et al. Visualizing priming of virus-specificCD8+T cells by infected dendritic cells in vivo [J]. Nat.Immunol,2002,3(3):265–271.
    [106] Truckenmiller ME, Norbury CC. Viral vectors for inducing CD8+T cellresponses [J]. Expert Opin. Biol. Ther,2004,4(6):861–868.
    [107] Yewdell JW, Haeryfar SM. Understanding presentation of viral antigens toCD8+T cells in vivo: the key to rational vaccine design [J]. Ann. Rev.Immunol,2005,23:651–682.
    [108] Panicali D and Paoletti E. Construction of poxviruses as cloning vectors:Insertion of the thymidine kinase gene from herpes simplex virus into theDNA of infectious vaccinia vims [J].Proc. Natl Acad. Sci. USA,1982,79:4927-4931.
    [109] Mackett M, Smith G L and Moss B. Vaccinia virus: A selectableeukaryotic cloning and expression vector [J]. Proc. Natl Acad. Sci.USA,1982,79:7415-7419.
    [110] Boyle, D. B. and Radford, A. J. Vectors for recombinant vaccine delivery. InAnimal Parasite Control Utilizing Biotechnology, W. K. Yong (ed.). CRCPress, Boca Raton, pp:1992,25-47.
    [111] Esposito, J. J. and Murphy, F. A. Infectious recombinant vectored virusvaccines [J].Adv. Vet. Sci. Comp. Med,1989,33:195-247.
    [112] Piccini, A and Paoletti, E. Vaccinia: Virus, vector, vaccine[J].Adv.Virus.Res,1988,34:43-64.
    [113] Boyle, D. B. and Coupar, B. E. H. Construction of recombinant fowlpoxviruses as vectors for poultry vaccines [J].Virus Res,1988,10:343-356.
    [114] Boursnell, M. E. G., Green, P. F., Campbell, J. I. A. et al. Insertion of thefusion gene from Newcastle disease vims into a nonessential region in theterminal repeats of fowlpox vims and demonstration of protective immunityinduced by the recombinant [J].J.Gen. Virol,1990,71:621-628.
    [115] Spehner, D, Drillien, R. and Lecocq, J-P. Constmction of fowlpox vimsvectors with intergenic insertions: Expression of the P-galactosidase gene andthe measles vims fusion protein [J].Virol,1990,64:527-533.
    [116] Taylor, J. Weinberg, R., Languet, B. et al. Recombinant fowlpox vimsinducing protective immunity in non-avian species [J].Vaccine,1988,6:497-503.
    [117] Boyle, D. B. Quantitative assessment of poxvirus promoters in fowlpox andvaccinia vims recombinants [J].Virus Genes,1992,6:281-290.
    [118] Boursnell, M. E. G. Avipoxvims vectors. In Recombinant Poxviruses, M. M.Binns and G. L. Smith (eds).CRC Press, Boca Raton,1992,pp:269-283.
    [119] Stuart, J. C.1989. Acute infectious bursal disease in poultry [letter]. Vet. Rec.125:281.
    [120] Bayliss, C. D. Peters, R. W. Cook, J. K. A. et al. A recombinant fowlpoxvirus that expresses the VP2antigen of infectious bursal disease virus inducesprotection against mortality caused by the vims [J].Arch.Virol,1991,120:193-205.
    [121] Heine, H-G. and Boyle, D. B. Infectious bursal disease vims structuralprotein VP2expressed by a fowlpox vims recombinant confers protectionagainst disease in chickens [J].Arch.Virol,(in press).1993.
    [122] Tomley, F. M., Mockett, A. P. A., Boursnell, M. E. G. et al. Expression ofthe infectious bronchitis vims spike protein by recombinant vaccinia virusand induction of neutralizing antibodies in vaccinated mice [J].Gen.Virol,1987,68:2291-2298.
    [123] Ogawa, R. Yanagida, N. Saeki, S. et al. Recombinant fowlpox virusesinducing protective immunity against Newcastle disease and fowlpox viruses[J].Vaccine,1990,8:486-490.
    [124] Boursnell, M. E. G. Green, P. F. Samson, A. C. R. et al. A recombinantfowlpox virus expressing the hemagglutinin-neuraminidase gene ofNewcastle disease vims (NDV) protects chickens against challenge by NDV[J].Virology,1990,178:297-300.
    [125] Taylor, J. Edbauer, C, Rey-Senelongne, A. et al. Newcastle disease virusfusion protein expressed in a fowlpox vims recombinant confers protection inchickens [J].Virol,1990,64:1441-1450.
    [126] Edbauer, C, Weinberg, R. Taylor, J. et al. Protection of chickens with arecombinant fowlpox vims expressing the Newcastle disease vimshemagglutinin-neuraminidase gene [J].Virology,1990,179:901-904.
    [127] Letellier, C. Burny, A. and Meulemans, G. Constmction of a pigeonpox virusrecombinant: Expression of the Newcastle disease vims (NDV) fusionglycoprotein and protection of chickens against NDV challenge[J].Arch.Virol,1991,118:43-56.
    [128] Iritani, Y. Aoyama, S. Takigami, S. et al. Antibody response to Newcastledisease virus (NDV) of recombinant fowlpox vims (FPV) expressing ahemagglutinnin-neuraminidase of NDV into chickens in the presence ofantibody to NDV and FPV [J].Avian Dis,1991,35:659-661.
    [129] Taylor, J. Weinberg, R. Kawaoka, Y. et al. Protective immunity against avianinfluenza induced by a fowlpox virus recombinant [J].Vaccine,1988,6:504-508.
    [130] Webster, R. G. Kawaoka, Y. Taylor, J. et al. Efficacy of nucleoprotein and134haemagglutinin antigens expressed in fowlpox virus as vaccine for influenzain chickens [J].Vaccine,1991,9:303-308.
    [131] Tripathy, D. N. and Schnitzlein, W. M. Expression of avian influenza virushaemagglutinin by recombinant fowlpox virus [J].Avian Dis,1991,35:186-191.
    [132] Beard, C. W. Schnitzlein, W. M. and Tripathy, D. N. Protection of chickensagainst highly pathogenic avian influenza virus (H5N2) by recombinantfowlpox viruses [J].Avian Dis,1991,35:356-359.
    [133] Beard, C. W. Schnitzlein, W. M. and Tripathy, D. N. Effect of route ofadministration on the efficacy of a recombinant fowlpox virus against H5N2avian influenza [J].Avian Dis,1992,36:1052-1055.
    [134] Andrew, M. E. Coupar, B. E. H. Boyle, D. B. et al. The roles of influenzavirus haemagglutinin and nucleoprotein in protection: Analysis usingvaccinia virus recombinants [J].Scand. J. Immunol,1987,25:221-228.
    [135] Andrew, M. E. A. and Coupar, B. E. H. Efficacy of influenza haemagglutininand nucleoprotein as protective antigens against influenza virus infection inmice [J].Scand.J. Immunol,1988,28:81-85.
    [136] Stitz, L., Schmitz, C, Binder, D. et al. Characterization and immunologicalproperties of influenza A virus nucleoprotein (NP): Cell associated NPisolated from infected cells or viral NP expressed by vaccinia recombinantvirus do not confer protection [J].J.Gen. Virol,1990,71:1169-1179.
    [137] Nazerian, K. Lee, L. F. Yanagida, N. et al. Protection against Marek's diseaseby a fowlpox virus recombinant expressing the glycoprotein B of Marek'sdisease virus [J].J. Virol,1992,66:1409-1413.
    [138] Johnson, M. P. Meitin, C. A. Bender, B. S. et al. Passive immune seruminhibits antibody response to recombinant vaccinia virus. In Vaccines88:New Chemical and Cenetic Approaches to Vaccination: Prevention of AIDSand Other Viral, Bacterial and Parasitic Diseases. H. Ginsberg, F. Brown, R.A. Lerner et al.(eds). Cold Spring Harbor Laboratory, NewYork,1988,pp:189-192.
    [139] Murphy, B. R. Olmsted, R. A. Collins, P. L et al. Passive transfer ofrespiratory syncytial virus (RSV) antiserum suppresses the immune responseto the RSV fusion (F) and large (G) glycoproteins expressed by recombinantvaccinia viruses [J].Virol,1989,62:3907-3910.
    [140] Murphy, B. R. Collins, P. L. Lawrence, L. et al. Immunosuppression of theantibody response to respiratory syncytial virus (RSV) by pre-existing serumantibodies: Partial prevention by topical infection of the respiratory tract withvaccinia virus-RSV recombinants [J].J.Gen.Virol,1898,70:2185-2190.
    [141] Xiang, Z. Q. and Ertl, H. C. J. Transfer of maternal antibodies results ininhibition of specific immune responses in the offspring [J].VirusRes,1992,24:297.
    [142] Taylor, J. and Paoletti, E. Fowlpox virus as a vector for non-avian species[J].Vaccine,1988,6:466-468.
    [143] Taylor, J. Weinberg, R. Languet, B. et al. Recombinant fowlpox virusinducing protective immunity in non-avian species [J].Vaccine,1988,6:497-503.
    [144] Taylor, J. Trimarchi, C, Weinberg, R. et al. Efficacy studies on acanarypoxrabies recombinant virus [J].Vaccine,1991,9:190-193.
    [145] Cadoz, M. Strady, A., Meignier, B. et al. Immunisation of man withcanarypox virus expressing rabies glycoprotein [J].Lancet,1992,339:1429-1432.
    [146] Wild, F. Giraudon, P. Spehner, D. et al. Fowlpox virus recombinant encodingthe measles virus fusion protein: protection of mice against fatal measlesencephalitis [J]. Vaccine,1990,8:441-442.
    [147] Tartaglia J, Pincus S, Paoletti E. Poxvirus-based vectors as vaccinecandidates[J]. Crit. Rev. Immunol,1990,10(1):13–30.
    [148] van Regenmortel MHV, Fauquet CM, Bishop DHL et al. Virus Taxonomy:The Classification and Nomenclature of Viruses. The Seventh Report of theInternational Committee on Taxonomy of Viruses[J]. Academic Press, CA,USA,2000.
    [149] Bolte AL, Meurer J, Kaleta EF. Avian host spectrum of avipoxviruses[J]. Av.Path,1999,28:415–432.
    [150] Doyle TM. Immunisation of fowls against fowlpox by means of pigeon poxvirus[J]. Comparative Pathol,1930,43:40–55.
    [151] Boulanger D, Green P, Jones B et al. Identification and characterization ofthree immunodominant structural proteins of fowlpox virus[J].Virol,2002,76(19):9844–9855.
    [152] Afonso CL, Tulman ER, Lu Z et al. The genome of fowlpox virus[J].Virol,2000,74(8):3815–3831.
    [153] Laidlaw SM, Skinner MA. Comparison of the genome sequence of FP9, anattenuated, tissue culture-adapted European fowlpox virus, with those ofvirulent American and European viruses[J]. Gen. Virol,2004,85:305–322.
    [154] Boulanger D, Smith T, Skinner MA. Morphogenesis and release of fowlpoxvirus[J]. Gen. Virol,2000,81:675–687.
    [155] Meiser A, Sancho C, Krijnse Locker J. Plasma membrane budding as analternative release mechanism of the extracellular enveloped form of vacciniavirus from HeLa cells[J]. Virol,2003,77(18):9931–9942.
    [156] Smith GL, Law M. The exit of vaccinia virus from infected cells[J]. VirusRes,2004,106(2):189–197.
    [157] Boulanger D, Green P, Smith T, Czerny CP, Skinner MA. The131-amino-acid repeat region of the essential39-kilodalton core protein offowlpox virus FP9, equivalent to vaccinia virus A4L protein, is nonessentialand highly immunogenic[J]. Virol,1998,72(1):170–179.
    [158] Mayr A, Mahnel H. Charakterisierung eines vom Rhinozeros isoliertenHühnerpockenvirus[J]. Arch. Ges. Virusforsch,1970,31:51–60.
    [159] Nelson JB. The behaviour of pox viruses in the respiratory tract. IV. Thenasal instillation of fowlpox virus in chickens and in mice[J]. Exp.Med,1941,74:203–213.
    [160] Baxby D, Paoletti E. Potential use of nonreplicating vectors as recombinantvaccines[J]. Vaccine,1992,10(1):8–9.
    [161] Somogyi P, Frazier J, Skinner MA. Fowlpox virus host range restriction:gene expression, DNA replication, and morphogenesis in nonpermissivemammalian cells[J]. Virology,1993,197(1):439–444.
    [162] Mackett M, Smith GL, Moss B. General method for production and selectionof infectious vaccinia virus recombinants expressing foreign genes[J].Virol,1984,49(3):857–864.
    [163] Binns MM, Avery R. Developing novel vaccines[J]. PoultryInternatl,1986,28(8):12–14.
    [164] Binns MM, Boursnell MEG, Tomley FM et al. Prospects for a novelgenetically engineered vaccine against infectious bronchitis[J]. Israeli J. Vet.Med,1986,42:124–127.
    [165] Boyle DB, Coupar BE. Construction of recombinant fowlpox viruses asvectors for poultry vaccines[J]. Virus Res,1988,10(4):343–356.
    [166] Taylor J, Weinberg R, Kawaoka Y, Webster RG, Paoletti E. Protectiveimmunity against avian influenza induced by a fowlpox virus recombinant[J].Vaccine,1988,6(6):504–508.
    [167] Beard CW, Schnitzlein WM, Tripathy DN. Protection of chickens againsthighly pathogenic avian influenza virus (H5N2) by recombinant fowlpoxviruses[J]. Avian Dis,1991,35(2):356–359.
    [168] Taylor J, Weinberg R, Languet B, Desmettre P, Paoletti E. Recombinantfowlpox virus inducing protective immunity in nonavian species[J].Vaccine,1988,6(6):497–503.
    [169] Taylor J, Trimarchi C, Weinberg R et al. Efficacy studies on acanarypox-rabies recombinant virus[J]. Vaccine,1991,9(3):190–193.
    [170] Moorthy VS, Imoukhuede EB, Keating S et al. Phase I evaluation of threehighly immunogenic prime–boost regimens, including a12-month reboostingvaccination, for malaria vaccination in Gambian men[J]. Infect.Dis,2004,189(12):2213–2219.
    [171] Beaudette FR. Twenty years of progress in immunization against virusdiseases of birds[J]. Am. Vet. Med. Assoc,1949,115:234–244.
    [172] Hertig C, Coupar BE, Gould AR, Boyle DB. Field and vaccine strains offowlpox virus carry integrated sequences from the avian retrovirus,reticuloendotheliosis virus[J]. Virology,1997,235(2):367–376.
    [173] Mayr A. Verhalten von hühner-, taubenund kanarienpockenviren im. kükennach intraven ser impfung. Zentralblatt für Bakteriologie, Parasitenkunde,Infectionskrankheiten und Hygiene,1960,179(2):149–159.
    [174] Mayr A, Malicki K. Attenuierung von virulentem Hühnerpockenvirus inZellkulturen und Eigenschaften des attenuierten Virus[J]. Zbl. Vet. Med.B,1966,B13(1):1–13.
    [175] Kumar S, Boyle DB. A poxvirus bidirectional promoter element withearly/late and late functions[J]. Virology,1966,179(1):151–158.
    [176] Srinivasan V, Schnitzlein WM, Tripathy DN. A consideration of previouslyuncharacterized fowlpox virus unidirectional and bidirectional late promotersfor inclusion in homologous recombinant vaccines[J]. AvianDis,2003,47(2):286–295.
    [177] Zantinge JL, Krell PJ, Derbyshire JB, Nagy E. Partial transcriptionalmapping of the fowlpox virus genome and analysis of the EcoRI Lfragment[J]. Gen. Virol,1996,77(4):603–614.
    [178] Qingzhong Y, Barrett T, Brown TD et al. Protection against turkeyrhinotracheitis pneumovirus (TRTV) induced by a fowlpox virus recombinantexpressing the TRTV fusion glycoprotein (F)[J]. Vaccine,1994,12(6):569–573.
    [179] Amano H, Morikawa S, Shimizu H et al. Identification of the canarypoxvirus thymidine kinase gene and insertion of foreign genes[J].Virology,1999,256(2):280–290.
    [180] Letellier C. Role of the TK+phenotype in the stability of pigeonpox virusrecombinant. Arch[J]. Virol,1993,131(3–4):431–439.
    [181] Scheiflinger F, Falkner FG, Dorner F. Role of the fowlpox virus thymidinekinase gene for the growth of FPV recombinants in cell culture[J]. Arch.Virol,1997,142:2421–2431.
    [182] Kent SJ, Zhao A, Dale CJ et al. A recombinant avipoxvirus HIV-1vaccineexpressing interferon-γ is safe and immunogenic in macaques[J].Vaccine,2000,18(21):2250–2256.
    [183] Boursnell ME, Green PF, Campbell JI et al. Insertion of the fusion gene fromNewcastle disease virus into a nonessential region in the terminal repeats offowlpox virus and demonstration of protective immunity induced by therecombinant[J]. Gen. Virol,1990,71(3):621–628.
    [184] Campbell JIA, Binns MM, Tomley FM, Boursnell MEG. Tandem repeatedsequences within the terminal region of the fowlpox virus genome[J]. Gen.Virol,1989,70:145–154.
    [185] Ogawa R, Calvert JG, Yanagida N, Nazerian K. Insertional inactivation of afowlpox virus homologue of the vaccinia virus F12L gene inhibits the releaseof enveloped virions[J]. Gen. Virol,1993,74(1):55–64.
    [186] Laidlaw SM, Anwar MA, Thomas W et al. Fowlpox virus encodesnonessential homologs of cellular α-SNAP, PC-1, and an orphan humanhomolog of a secreted nematode protein[J]. Virol,1998,72(8):6742–6751.
    [187] Binns MM, Britton BS, Mason C, Boursnell MEG. Analysis of the fowlpoxvirus genome region corresponding to the vaccinia virus D6to A1region:location of, and variation in, nonessential genes in poxviruses[J]. Gen.Virol,1990,71:2873–2881.
    [188] Srinivasan V, Schnitzlein WM, Tripathy DN. Fowlpox virus encodes a novelDNA repair enzyme, CPD-photolyase, that restores infectivity of UVlight-damaged virus[J]. Virol,2001,75(4):1681–1688.
    [189] Singh P, Schnitzlein WM, Tripathy DN. Reticuloendotheliosis virussequences within the genomes of field strains of fowlpox virus displayvariability[J]. Virol,2003,77(10):5855–5862.
    [190] Domi A, Moss B. Cloning the vaccinia virus genome as a bacterial artificialchromosome in Escherichia coli and recovery of infectious virus inmammalian cells[J]. Proc. Natl Acad. Sci. USA,2002,99(19):12415–12420.
    [191] Scheiflinger F, Dorner F, Falkner FG. Construction of chimeric vacciniaviruses by molecular cloning and packaging[J]. Proc. Natl Acad. Sci.USA,1992,89(21):9977–9981.
    [192] Taracha EL, Bishop R, Musoke AJ, Hill AV, Gilbert SC. Heterologouspriming–boosting immunization of cattle with Mycobacterium tuberculosis85A induces antigen-specific T-cell responses[J]. Infect. Immun,2003,71(12):6906–6914.
    [193] Falkner FG, Moss B. Transient dominant selection of recombinant vacciniaviruses[J]. Virol,1990,64(6):3108–3111.
    [194] Yamaguchi T, Kaplan SL, Wakenell P, Schat KA. Transactivation of latentMarek’s disease herpesvirus genes in QT35, a quail fibroblast cell line, byherpesvirus of turkeys[J]. Virol,2000,74(21):10176–10186.
    [195] Li X, Scaht KA. Quail cell lines supporting replication of Marek’s diseasevirus serotype1and2and herpesvirus of turkeys[J]. Avian Dis,2004,10:4803–4812.
    [196] Cardona CJ, Nazerian K, Reed WM, Silva RF. Characterization of arecombinant fowlpox virus expressing the native hexon of hemorrhagicenteritis virus[J]. Virus Genes,2001,22(3):353–361.
    [197] Bayliss CD, Peters RW, Cook JK et al. A recombinant fowlpox virus thatexpresses the VP2antigen of infectious bursal disease virus inducesprotection against mortality caused by the virus[J]. Arch.Virol,1991,120(3–4):193–205.
    [198] Yoshida S, Fujisawa A, Tsuzaki Y, Saitoh S. Identification and expression ofa Mycoplasma gallisepticum surface antigen recognized by a monoclonalantibody capable of inhibiting both growth and metabolism[J]. Infect.Immun,2000,68(6):3186–3192.
    [199]殷震,刘景华.动物病毒学[M].北京:科学出版社,1997,479-499.
    [200] Boursnell ME, Green PF, Samson AC et al. A recombinant fowlpox virusexpressing the hemagglutinin-neuraminidase gene of Newcastle disease virus(NDV) protects chickens against challenge by NDV[J]. Virology,1990,178(1):297–300.
    [201] Edbauer C, Weinberg R, Taylor J et al. Protection of chickens with arecombinant fowlpox virus expressing the Newcastle disease virushemagglutininneuraminidase gene[J]. Virology,1990,179(2):901–904.
    [202] Taylor J, Edbauer C, Rey-Senelonge A et al. Newcastle disease virus fusionprotein expressed in a fowlpox virus recombinant confers protection inchickens[J]. Virol,1990,64(4):1441–1450.
    [203] Swayne DE, Garcia M, Beck JR, Kinney N, Suarez DL. Protection againstdiverse highly pathogenic H5avian influenza viruses in chickens immunizedwith a recombinant fowlpox vaccine containing an H5avian influenzahemagglutinin gene insert[J]. Vaccine,2000,18(11–12):1088–1095.
    [204] Webster RG, Kawaoka Y, Taylor J, Weinberg R, Paoletti E. Efficacy ofnucleoprotein and haemagglutinin antigens expressed in fowlpox virus asvaccine for influenza in chickens[J]. Vaccin,1991,9(5):303–308.
    [205] Senne DA. Avian influenza in the western hemisphere including the PacificIslands and Australia[J]. Avian Dis,2003,47(Suppl.3):798–805.
    [206] Calvert JG, Nazerian K, Witter RL, Yanagida N. Fowlpox virusrecombinants expressing the envelope glycoprotein of an avianreticuloendotheliosis retrovirus induce neutralizing antibodies and reduceviremia in chickens[J]. Virol,1993,67(6):3069–3076.
    [207] Wang X, Schnitzlein WM, Tripathy DN, Girshick T, Khan MI. Constructionand immunogenicity studies of recombinant fowlpox virus containing the S1gene of Massachusetts41strain of infectious bronchitis virus[J]. AvianDis,2002,46(4):831–838.
    [208] Tomley FM, Mockett AP, Boursnell ME et al. Expression of the infectiousbronchitis virus spike protein by recombinant vaccinia virus and induction ofneutralizing antibodies in vaccinated mice[J]. Gen. Virol,1987,68(9):2291–2298.
    [209] Swayne DE, Beck JR, Kinney N. Failure of a recombinant fowlpox virusvaccine containing an avian influenza hemagglutinin gene to provideconsistent protection against influenza in chickens preimmunized with afowlpox vaccine[J]. Avian Dis,2000,44(1):132–137.
    [210] Taylor J, Christensen L, Gettig R et al. Efficacy of a recombinantfowlpox-based Newcastle disease virus vaccine candidate against velogenicand respiratory challenge[J]. Avian Dis,1996,40(1):173–180.
    [211] Singh P, Kim TJ, Tripathy DN. Reemerging fowlpox: evaluation of isolatesfrom vaccinated flocks[J]. Avian Pathol,2000,29:449–455.
    [212] Singh P, Kim TJ, Tripathy DN. Identification and characterization offowlpox virus strains using monoclonal antibodies[J]. Vet. Diagn.Invest,2003,15(1):50–54.
    [213] Shaw I, Davison TF. Protection from IBDV-induced bursal damage by arecombinant fowlpox vaccine, fpIBD1, is dependent on the titre of challengevirus and chicken genotype[J]. Vaccine,2000,18(28):3230–3241.
    [214] Lee LF, Bacon LD, Yoshida S et al. The efficacy of recombinant fowlpoxvaccine protection against Marek’s disease: its dependence on chicken lineand B haplotype[J]. Avian Dis,2004,48(1):129–137.
    [215] Deuter A, Southee DJ, Mockett AP. Fowlpox virus: pathogenicity andvaccination of dayold chickens via the aerosol route[J]. Res. VetSci,1991,50(3),362–364.
    [216] Ariyoshi R, Takase K, Matsuura Y et al. Vaccination against fowlpox virusvia drinking water[J]. Vet. Med. Sci,2003,65(10):1127–1130.
    [217] Beard CW, Schnitzlein WM, Tripathy DN. Effect of route of administrationon the efficacy of a recombinant fowlpox virus against H5N2avianinfluenza[J]. Avian Dis,1992,36(4):1052–1055.
    [218] Boyle DB, Heine HG. Influence of dose and route of inoculation onresponses of chickens to recombinant fowlpox virus vaccines[J]. Vet.Microbiol,1994,41(1–2):173–181.
    [219] Sharma JM, Zhang Y, Jensen D, Rautenschlein S, Yeh HY. Field trial incommercial broilers with a multivalent in ovo vaccine comprising a mixtureof live viral vaccines against Marek’s disease, infectious bursal disease,Newcastle disease, and fowlpox[J]. Avian Dis,2002,46(3):613–622.
    [220] Karaca K, Sharma JM, Winslow BJ et al. Recombinant fowlpox virusescoexpressingchicken Type I IFN and Newcastle disease virus HN and Fgenes: influence of IFN on protective efficacy and humoral responses ofchickens following in ovo or posthatch administration of recombinantviruses[J]. Vaccine,1998,16(16):1496–1503.
    [221] Rautenschlein S, Sharma JM, Winslow BJ et al. Embryo vaccination of turkeysagainst Newcastle disease infection with recombinant fowlpox virus constructscontaining interferons as adjuvants[J]. Vaccine,1999,18(5–6):426–433.
    [222] Tsukamoto K, Sato T, Saito S et al. Dualviral vector approach induced strongand long-lasting protective immunity against very virulent infectious bursaldisease virus[J]. Virology,2000,269(2):257–267.
    [223] Wild F, Giraudon P, Spehner D, Drillien R, Lecocq JP. Fowlpox virusrecombinant encoding the measles virus fusion protein: protection of miceagainst fatal measles encephalitis[J]. Vaccine,1990,8(5):441–442.
    [224] Kent SJ, Zhao A, Best SJ et al. Enhanced T-cell immunogenicity andprotective efficacy of a human immunodeficiency virus Type1vaccineregimen consisting of consecutive priming with DNA and boosting withrecombinant fowlpox virus[J]. Virol,1998,72(12):10180–10188.
    [225] Jenkins S, Gritz L, Fedor CH et al. Formation of lentivirus particles bymammalian cells infected with recombinant fowlpox virus[J]. AIDS Res.Hum Retroviruses,1991,7(12):991–998.
    [226] Radaelli A, Gimelli M, Cremonesi C, Scarpini C, De Giuli Morghen C.Humoral and cell-mediated immunity in rabbits immunized with livenonreplicating avipox recombinants expressing the HIV-1SF2env gene[J].Vaccine,1994,12(12):1110–1117.
    [227] Robinson HL, Montefiori DC, Johnson RP et al. Neutralizingantibody-independent containment of immunodeficiency virus challenges byDNA priming and recombinant pox virus booster immunizations[J]. NatureMed,1999,5(5):526–534.
    [228] Vazquez Blomquist D, Green P, Laidlaw SM et al. Induction of a strongHIVspecific CD8+T-cell response in mice using a fowlpox virus vectorexpressing an HIV-1multi-CTL-epitope polypeptide[J]. ViralImmunol,2002,15(2):337–356.
    [229] Vazquez-Blomquist D, Iglesias E, Gonzalez-Horta EE, Duarte CA. The HIV-1chimeric protein CR3expressed by poxviral vectors induces a diverseCD8+T-cell response in mice and is antigenic for PBMCs from HIV+patients[J]. Vaccine,2003,22(2):145–155.
    [230] Dale CJ, De Rose R, Stratov I et al. Efficacy of DNA and fowlpox viruspriming/boosting vaccines for simian/human immunodeficiency virus[J].Virol,2004,78(24):13819–13828.
    [231] Hodge JW, Grosenbach DW, Aarts WM, Poole DJ, Schlom J. Vaccinetherapy of established tumors in the absence of autoimmunity[J]. Clin.Cancer Res,2003,9(5):1837–1849.
    [232] Rosenberg SA, Yang JC, Schwartzentruber DJ et al. Recombinant fowlpoxviruses encoding the anchor-modified gp100melanoma antigen can generateantitumor immune responses in patients with metastatic melanoma[J]. Clin.Cancer Res,2003,9(8):2973–2980.
    [233] Triozzi PL, Aldrich W, Allen KO et al. Antitumor activity of the intratumoralinjection of fowlpox vectors expressing a triad of costimulatory moleculesand granulocyte/macrophage colony stimulating factor in mesothelioma[J].Int. J. Cancer,2004.
    [234] Anderson RJ, Hannan CM, Gilbert SC et al. Enhanced CD8+T-cell immuneresponses and protection elicited against Plasmodium berghei malaria byprime–boost immunization regimens using a novel attenuated fowlpoxvirus[J]. Immunol,2004,172(5):3094–3100.
    [235] Prieur E, Gilbert SC, Schneider J et al. A Plasmodium falciparum candidatevaccine based on a six-antigen polyprotein encoded by recombinantpoxviruses[J]. Proc. Natl Acad. Sci. USA,2004,101(1):290–295.
    [236] Vordermeier HM, Rhodes SG, Dean G et al. Cellular immune responsesinduced in cattle by heterologous prime–boost vaccination using recombinantviruses and bacille Calmette–Guerin[J]. Immunology,2004,112(3):461–470.
    [237] Mehdy Elahi S, Bergeron J, Nagy E et al. Induction of humoral and cellularimmune responses in mice by a recombinant fowlpox virus expressing the E2protein of bovine viral diarrhea virus. FEMS Microbiol[J]. Lett,1999,171(2):107–114.
    [238] Gaddum RM, Cook RS, Furze JM, Ellis SA, Taylor G. Recognition ofbovine respiratory syncytial virus proteins by bovine CD8+T-lymphocytes[J]. Immunology,2003,108(2):220–229.
    [239] Ramsay AJ, Kent SJ, Strugnell RA et al. Genetic vaccination strategies forenhanced cellular, humoral and mucosal immunity[J]. Immunol.Rev,1999,171:27–44.
    [240] Andrew ME, Coupar BE. Biological effects of recombinant vacciniavirus-expressed interleukin-4[J]. Cytokine,1992,4(4):281–286.
    [241] Sharma DP, Ramsay AJ, Maguire DJ, Rolph MS, Ramshaw IA. Interleukin-4mediates downregulation of antiviral cytokine expression and cytotoxicT-lymphocyte responses and exacerbates vaccinia virus infection in vivo[J]. J.Virol,1996,70(10):7103–7107.
    [242] Bembridge GP, Lopez JA, Cook R, Melero JA, Taylor G. Recombinantvaccinia virus coexpressing the F protein of respiratory syncytial virus (RSV) andinterleukin-4(IL-4) does not inhibit the development of RSV-specific memorycytotoxic T-lymphocytes, whereas priming is diminished in the presence of highlevels of IL-2or interferon-γ[J]. Virol,1998,72(5):4080–4087.
    [243] Jackson RJ, Ramsay AJ, Christensen CD et al. Expression of mouseinterleukin-4by a recombinant ectromelia virus suppresses cytolyticlymphocyte responses and overcomes genetic resistance to mousepox[J].Virol,2001,75(3):1205–1210.
    [244] Leong KH, Ramsay AJ, Boyle DB, Ramshaw IA. Selective induction ofimmune responses by cytokines coexpressed in recombinant fowlpox virus[J].Virol,1994,68(12):8125–8130.
    [245] Grosenbach DW, Barrientos JC, Schlom J, Hodge JW. Synergy of vaccinestrategies to amplify antigen-specific immune responses and antitumoreffects[J]. Cancer Res,2001,61(11):4497–4505.
    [246] Hanke T, Blanchard TJ, Schneider J et al. Immunogenicities of intravenousand intramuscular administrations of modified vaccinia virus Ankara-basedmulti-CTL epitope vaccine for human immunodeficiency virus Type1inmice[J]. Gen. Virol,1998,79(1):83–90.
    [247] Brown M, Zhang Y, Dermine S et al. Dendritic cells infected withrecombinant fowlpox virus vectors are potent and longacting stimulators oftransgene-specific class I restricted T-lymphocyte activity[J]. GeneTher,2000,7(19):1680–1689.
    [248] Brown M, Davies DH, Skinner MA et al. Antigen gene transfer to culturedhuman dendritic cells using recombinant avipoxvirus vectors[J]. Cancer GeneTher,1999,6(3):238–245.
    [249] Drillien R, Spehner D, Hanau D. Modified vaccinia virus Ankara induces moderateactivation of human dendritic cells[J]. Gen. Virol,2004,85(8):2167–2175.
    [250] Moore KM, Davis JR, Sato T, Yasuda A. Reticuloendotheliosis virus (REV)longterminal repeats incorporated in the genomes of commercial fowlpoxvirus vaccines and pigeon poxviruses without indication of the presence ofinfectious REV[J]. Avian Dis,2000,44(4):827–841.
    [251] Jones D, Isfort R, Witter R, Kost R, Kung HJ. Retroviral insertions into aherpesvirus are clustered at the junctions of the short repeat and short uniquesequences[J]. Proc. Natl Acad. Sci. USA,1993,90(9):3855–3859.
    [252] Isfort R, Jones D, Kost R, Witter R, Kung HJ. Retrovirus insertion intoherpesvirus in vitro and in vivo[J]. Proc. Natl Acad. Sci.USA,1992,89(3):991–995.
    [253] Isfort RJ, Qian Z, Jones D et al. Integration of multiple chicken retrovirusesinto multiple chicken herpesviruses: herpesviral gD as a common target ofintegration[J]. Virology,1994,203(1):125–133.
    [254] Tulman ER, Afonso CL, Lu Z et al. The genome of canarypox virus[J].Virol,2004,78(1):353–366.
    [255] Kim TJ, Tripathy DN. Reticuloendotheliosis virus integration in thefowlpoxvirus genome: not a recent event[J]. Avian Dis,2001,45(3):663–669.
    [256] Fang ZY, Limbach K, Tartaglia J et al. Expression of vaccinia E3L and K3Lgenes by a novel recombinant canarypox HIV vaccine vector enhances HIV-1pseudovirion production and inhibits apoptosis in human cells[J].Virology,2001,291(2):272–284.
    [257] Cheers C, Janas M, Ramsay A, Ramshaw I. Use of recombinant viruses todeliver cytokines influencing the course of experimental bacterial infection[J].Immunol. Cell Biol,1999,77(4):324–330.
    [258] Puehler F, Schwarz H, Waidner B et al. An interferon-γ-binding protein ofnovel structure encoded by the fowlpox virus[J]. Biol. Chem,2003,278(9):6905–6911.
    [259] Pollitt EC. Fowlpox virus and interferon. PhD Thesis[J]. Department ofMicrobiology. University of Leicester, UK,1997.
    [260] Franchini G, Gurunathan S, Baglyos L, Plotkin S, Tartaglia J. Poxvirus-basedvaccine candidates for HIV: two decades of experience with special emphasison canarypox vectors[J]. Expert Rev, Vaccines3(Suppl.4),2004:S75–S88.
    [261] Luschow D, Hoffmann T, Hafez HM. Differentiation of avian poxvirusstrains on the basis of nucleotide sequences of4b gene fragment[J]. AvianDis,2004,48(3):453–462.
    [262] Sainova IV, Kril AI, Simeonov KB, Popova TP, Ivanov IG. Investigation ofthe morphology of cell clones, derived from the mammalian EBTr cell lineand their susceptibility to vaccine avian poxvirus strains FK andDessau[J].Virol. Meth,2005,124(1–2):37–40.
    [263] Karaca K, Sharma J M, Winslow B J, et al.Recombinant fowlpox virusescoexp ressing chicken type I IFN and Newcastle disease virus HN and Fgenes: influence of IFN on protective efficacy and humoral responses ofchickens following in ovo or post-hatch adm inistration of recombinantviruses[J].Vaccine,1998,16(16):1496-1503.
    [264] Shaw I, Davison T F. Protection from IBDV-induced bursaldamage by arecombinant fowlpox vaccine, fp IBD1, is dependent on the titre of challengevirus and chicken geno type [J].Vaccine,2000,18(28):3230-3241.
    [265]刘毅,金宁一,古长庆,等.IBDV VP2/VP243基因DNA疫苗表达质粒的构建与表达[J].中国兽医学报,2000,20(4):321-323.
    [266]王兴龙,金宁一,丁壮,等.新城疫病毒F基因在新型杆状病毒表达系统中的表达及重组病毒的免疫原性[J].中国兽医学报,2001,21(6):533-535.
    [267]郭志儒,金宁一,王兴龙,等.鸡痘病毒282E4株表达载体的构建及新城疫病毒F蛋白的表达[J].中国兽医学报,2000,20(2):423-428.
    [268]萨姆布鲁克J,拉萨尔DW.分子克隆实验指南[M].黄培堂,王嘉玺,朱厚础等,等译.3版.北京:科学出版社,2002:45-50.
    [269]刘存霞.共表达IBDV VP0、VP2基因的重组鸡痘病毒构建及实验免疫研究[D].大庆:黑龙江八一农垦大学,2009.
    [270] Parks RJ., Krell PJ., Derbyshire JB., et al. Studies of fowlpox virusrecombination in the generantion of recombinant vaccines[J]. Virus Res.1994,32(3):283-297.
    [271]朱爱华,彭大新,吴艳涛,等.鸡痘病毒载体强启动子的构建和筛选[J].扬州大学学报,1999,2(2):25-28.
    [272]彭大新,刘秀梵,吴艳涛,等.鸡痘病毒载体非必需片段优化及强启动子的筛选[J].农业生物技术学报,2000,8(2):129-132.
    [273]费恩阁,李德昌,丁壮.动物疫病学[M].北京:中国农业出版社,2004.176.
    [274]霍晓伟.亚洲1型口蹄疫核酸疫苗与重组鸡痘疫苗的构建及实验免疫研究[D].长春:吉林大学,2008.
    [275] Vallée H., Carré H. Sur la pluralite du virus aphteux[J]. C R Hebd Acad SciParis,1922, ro.174, s.1498-1500.
    [276] Mayr GA, O'Donnell, Chinsangaram J, et al. Immune responses andprotection against foot-and-mouth disease virus (FMDV) challenge in swinevaccinated with adenovirus-FMDV constructs[J]. Vaccine.2001,19(15-16):2152-2162.
    [277] Ma Mingxiao, Jin Ningyi, Shen Guoshun, et al.Immune responses of swineinoculated with a recombinant fowlpox virus co-expressing P12A and3C ofFMDV and swine IL-18[J].Vet Immunol Immunopathol,2008,121(1-2):1-7.
    [278] Zheng Min, Jin NingYi, Zhang Hongyong, et al. Construction andimmunogenicity of a recombinant fowlpox virus containing the capsid and3Cprotease coding regions of foot-and-mouth disease virus[J]. J Virol Methods.2006,136(1-2):230-237.
    [279]袭莹.Asia I型、O型口蹄疫复合多表位重组酵母菌的构建与实验免疫[D].大庆:黑龙江八一农垦大学,2010.
    [280]郑敏.口蹄疫病毒多基因的克隆、表达及基因工程疫苗实验免疫研究[D].长春:吉林大学,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700