用户名: 密码: 验证码:
在线社交网络上谣言传播关键问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
谣言传播是一个社会生活中的常见现象。在互联网时代,由于在线社交网络这种新型媒体大量出现,人们的表达方式越来越自由,人们传播信息的代价越来越小。这也导致在虚拟的社会网络上传播的信息中有很多是未经证实的传闻,也就是谣言。很多谣言对社会稳定的危害是非常大的,因此研究在线社交网络中的谣言传播特点,掌握其传播规律,从而进行有效的免疫和控制,是一个非常值得关注的问题。
     复杂网络上的传播动力学问题是复杂网络研究的一个重要分支,在过去的20年中,复杂网络中的流行病传播、计算机病毒传播以及谣言传播等方向都有很多重要的研究成果。本文围绕着在新型的在线社交网络中谣言传播的特点和规律来展开研究。研究的内容主要涉及:(1)在线社交网络中谣言传播的特点与传统谣言传播模型的特点相比有哪些不同,如何用新的方法来划分在线社交网络中人群的种类,用复杂网络研究的方法来研究在线社交网络中人们的谣言传播动力学行为。(2)社会加强现象是现实的谣言传播中的常见现象,在新型在线社交网络上这个现象尤其突出,传统的谣言传播模型并没有对这个现象进行描述,如何在新的传播模型中对该现象进行定义和描述。(3)移动互联网络的兴起,让移动社交网络成为新的研究热点,在移动社交网络中,人们的谣言传播行为和社会加强效应有哪些新的特点,如何用实验来进行仿真。
     本文的研究内容和主要创新点如下:
     (1)在线社交网络中,人群应该重新进行划分,人们的谣言传播动力学行为应该重新定义。本文作者提出了CSR(Credulous-Spreader-Rationals)模型,将人群重新划分为轻信者、传播者和理性人三类,并且重新定义了三者的传播行为,使之更符合社交网络中的谣言传播特点。并用平均场理论对动力学行为进行了理论的分析和推导。数值仿真实验表明,CSR模型在小世界网络中的传播效果比传统模型要好。
     (2)社会加强效应在近期很多学者都进行了研究,为了进一步对社会加强效应进行深入研究,本文提出了双向社会加强的概念,并且给出了数学模型。并用多主体仿真平台对考虑了社会加强效应的CSR模型进行了多主体仿真研究。实验表明,考虑了社会加强效应的模型比传统模型传播更快,范围更广。
     (3)移动社交网络中的谣言传播有很多新的特点。本文在考虑了移动社交网络传播特点的基础上对CSR模型进行了改进,并对人群的传播动力学行为进行了重新的定义和描述且做了理论上的分析和推理。在接受概率的数学模型中,增加考虑了个人接受阈值对谣言传播的影响。多主体仿真实验的结果表明,新的模型在匀质网络中的传播速度比CSR模型和传统模型更快,传播范围更广。但是在异质网络中,3者传播的效果并没有明显的区别。同时,仿真实验表明模型具有初值敏感性的特点。
Rumor spreading is a common phenomenon in social life. In information age, because of the popularity of a new kind of media---the online social networks, people express their opinions more freely, and the cost of rumor spreading in online social networks becomes lower, which leads to much false information, known as rumor, spreading in online social networks. Rumor spreading always comes with upset feelings and threatens social stability. Therefore, it's extremely important to study the characteristics of rumor spreading in online social networks so as to prevent and control it effectively.
     The dynamic of information spreading on complex networks is an important branch of complex networks study. In the past twenty years, there have been many significant achievements in epidemics, computer virus propagation and rumor spreading. This study focuses on the characteristics of rumor spreading in online social networks, the main content includes:(1)what are the differences between the characteristics of rumor spreading in online social networks and the characteristics of conventional rumor spreading pattern, how to divide people in online social networks in a new way, and to study people's behavior in online social networks with the method of complex networks study.(2)social reinforcement is a common and apparent phenomenon in rumor spreading, which hasn't been explained in conventional rumor spreading pattern, so the paper will define and describe the phenomenon in the new rumor spreading pattern.(3) the study of mobile social networks becomes a hot topic because of the popularity of mobile online networks, so the paper studies the new characteristics of rumor spreading behavior, and how to study in simulation experiment.
     The main contributions are as follows:
     1) In this research, a new rumor spreading model for rumor propagation in online social networks, Credulous-Spreader-Rationals(CSR) model, is developed. Analytically, a mean field theory is worked out by considering the influence of network topological structure. Under certain conditions, rumor spreads faster in CSR model than other rumor spreading models in online social networks.
     2) Classic rumor spreading model overlooked the social reinforcement influence. But this influence always exists in real society or online social networks. Recently, researchers started to take this influence into account. There is a clearly distinguished feature between "social reinforcement" in this study and the rest of papers. We assume social reinforcement contains positive and negative aspects, namely, if the Credulous doesn't accept the rumor when he meets Spreader, acceptant probability will be increased as positive social reinforcement, it will be easier for him to accept the rumor at next time. However, if the Credulous meets Rationals after spreading process starts, the rumor acceptant probability of this Credulous will be declined because of the negative social reinforcement effects. In CSR model, negative and positive social reinforcements are considered in the acceptant probability model.
     3) In this paper present, we propose an improved CSR model for rumor spreading in Mobile social networks.The dynamic equation of rumor spreading is modified to be suitable for user's habit in Mobile social networks. In the acceptant probability model, negative and positive social reinforcements are considered. Furthermore, the people's Accepting threshold for rumor accepting is taken into account. Analytically, a mean field theory is worked out by considering the influence of network topological structure as homogeneous. Under certain conditions, rumor spreads faster and wider in new model than CSR rumor spreading model in homogeneous networks. Meanwhile, the Multi-agent simulation results indicate that the information spreading process is sensitive dependent on initial conditions.
引文
[1]何大韧,刘宗华,汪秉宏.复杂系统与复杂网络.2009.高等教育出版社.
    [2]戴汝为.开展“系统复杂性”研究任重而道远.复杂系统与复杂性科学,2004,1(3):1-3.
    [3]周涛,柏文洁,汪秉宏等.复杂网络研究概述.Physics,2005,34(01):0-.
    [4]Ugander J, Karrer B, Backstrom L, Marlow C. The anatomy of the Facebook social graph. [OL]. available:https://www.facebook.com, November 21,2011.
    [5]Watts D.J, Strogatz S.H. Collective dynamics of 'small-world' networks. Nature,1998:393-440.
    [6]Barabasi A.L, and Albert R. Emergence of scaling in random networks. Science,1999, 286(5439):509-512.
    [7]Centola D. The spread of behavior in an online social network experiment. Science,2010, 329(5996):1194-1197.
    [8]Moore C, Newman M E J. Epidemics and percolation in small-world networks. Physical Review E,2000,61(5):5678-5682.
    [9]Newman M E J. Forrest S, Balthrop J. Email networks and the spread of computer viruses. Physical Review E,2002,66(3):035101.
    [10]Sudbury A. The proportion of the population never hearing a rumor. Journal of applied probability.1985,22(2):443-446.
    [11]Zanette D H. Critical behavior of propagation on small-world networks. Physical Review E, 2001,64(5):050901.
    [12]Zhou J, Liu Z H, Li B W. Influence of network structure on rumor propagation. Physics Letters A,2007,368 (6):458-463.
    [13]Y.Moreno, R.Pastor-Satorras and A.Vespignani. Epidemic outbreaks in complex heterogeneous networks. Euro. phys. J. B,26 (2002) 521.
    [14]Y. Moreno, J. B. Gomez and A. F. Pacheco. Epidemic incidence in correlated complex. networks. Phys. Rev. E,68 (2003) 035103.
    [15]潘灶烽,汪小帆,李翔.可变聚类系数无标度网络上的谣言传播仿真研究,《系统仿真学报》,18(2006)2346.
    [16]Lu L Y, Chen D B, Zhou T. Small world yields the most effective information spreading. New Journal of Physics,2011,13:123005.
    [17]林宗涵.热力学与统计物理学,2007,北京大学出版社.
    [18]李如生.非平衡态热力学和耗散结构,1986,北京:清华大学出版社.
    [19]哈肯.协同学讲座,1987,陕西科技出版社.
    [20]哈肯.协同学、理论与应用,1990,中国科技出版社.
    [21]汪小帆,李翔,陈关荣.复杂网络理论及其应用.2006.清华大学出版社.
    [22]Newman M E J, Watts D j. Renormalization group analysis of the small-world network model.Phys.Lett.A,1999,263:341-346.
    [23]P. P. Zhang, K. Chen, Y. He, T. Zhou, B. B. Su, Y. Jin, H. Chang, Y-P. Zhou, L-C. Sun, B-H. Wang, D-R. He. Model and empirical study on some collaboration networks. Physica A,360 (2006) 599.
    [24]H. Chang, B. B. Su, Y. P. Zhou, and D. R. He. Assortativity and act degree distribution of some collaboration networks, Physica A,2007,383(2):687-702.
    [25]M. E. J. Newman. Scientific Collaboration Networks:I. Network construction and fundamental results, Phys. Rev. E 64 (2001) 016131.
    [26]A.L. Barabasi, H. Jeong, Z. Neda, E. Ravasz, A. Schubert, T. Vicsek. Evolution of the social network of scientific collaborations. Physica A,2002,311,590-614.
    [27]T. Zhou, J. Ren, M. Medo, and Y. C. Zhang. Bipartite network projection and personal recommendation, Phys. Rev,2007, E76,046115.
    [28]P. L. Krapivsky, S. Redner and F. Leyvraz. Connectivity of growing random networks. Phys. Rev. Lett,85 (2000) 4629-4632.
    [29]Liu Z, Lai Y C, Ye N. Statistical properties and attack tolerance of growing networks with algebraic preferential attachment. Phys Rev E,2002,66:036112.
    [30]T. Zhou, B. H. Wang, Y. D. Jin, D. R. He, P. P. Zhang, Y. He, B. B. Su, K. Chen, Z. Z. Zhang, and J. G. Liu. "Modeling collaboration networks based on nonlinear preferential attachment",Int. J. Mod. Phys. C 18,297-314 (2007).
    [31]X.Li and G.R,Chen. A local-world evolving network model, Physica A:Statistical Mechanics and Its Applications,328(1-2), October 2003, pp 274-286.
    [32]X. Li, Y.Y. Jin and G. Chen. Complexity and synchronization of the world trade web. Physica A,2003,328, pp.287-296.
    [33]S. Maslov and K. Sneppen. Specificity and stability in topology of protein networks. Science, 2002,296 (5569):910-913.
    [34]V.M.Eguiluz, G.Cecchi, D.R.Chialvo, M.Baliki and A.V.Apkarian. Scale-free brain functional networks, e-print cond-mat/0309092.
    [35]B. J. Kim. Performance of networks of artificial neurons:The role of clustering[J]. Phys. Rev. E,2004,69(2004) 045101.
    [36]P. Holme and B. J. Kim. Growing scale-free networks with tunable clustering. Phys. Rev. E,65 (2002) 026107.
    [37]S.N.Dorogovtsev, J.F.F. Mendes and A.N. Samukin, Giant strongly connected component of directed networks. Phys. Rev. E,63 (2001) 062101.
    [38]R. Albert and A.-L. Barabasi. Statistical mechanics of complex networks. Rev. Mod. Phys., 74 (2002) 47.
    [39]S.Boccaletti, V. Latora, Y. Moreno, M. Chavez and D.U. Hwang. Complex networks: Structure and dynamics. Phys. Rep.,424 (2006) 175.
    [40]F. Liljeros, C. R. Edling, L. A. Amaral, H. E. Stanley and Y. Aberg. The web of human sexual contacts. Nature,411 (2001) 907.
    [41]N. M. Ferguson, M. J. Keeling, W. J. Edmunds, R. Gani, B. T. Grenfell, B. M. Anderson and S. Leach, Planning for smallpox out-breaks. Nature,425 (2003) 681.
    [42]D. A. Cummings, R. A. Irizarry, N. E. Huang, T. P. Endy, A. Nisalak, K. Ungchusak and D. S. Burke. Department of Geography and Environmental Engineering. Nature,427 (2004) 344.
    [43]L. Stone, R. Olinky and A. Huppert. Seasonal dynamics of recurrent epidemics. Nature,446 (2007)533.
    [44]V. M. Eguiluz and Klemm K. Epidemic threshold in structured scale-Free networks. Phys. Rev. Lett.,89 (2002) 108701.
    [45]M. E. J. Newman. The structure and function of complex networks. Phys. Rev. Lett,89 (2002) 208701.
    [46]M. E. J. Newman. Spread of epidemic disease on networks. Phys. Rev. E,66 (2002) 016128.
    [47]A. Barrat, M. Barthelemy and A. Vespignani. Weighted evolving vetworks:coupling. topology and weight dynamics. Phys. Rev. Lett.,92 (2004) 228701.
    [48]A.Barrat, M. Barthelemy and A. Vespignani. Modeling the evolution of weighted networks. Phys. Rev. E,70 (2004) 066149.
    [49]Y. Moreno, M. Nekovee and A. Vespignani. Rumor-like information dissemination in complex computer networks. Phys. Rev. E,69 (2004) 055101.
    [50]T. Zhou. Efficient routing on scale-free networks, Int. J. Mod. Phys. B 21:4071-4075 (2007).
    [51]P. Crepey, F. P. Alvarez and M. Barthelemy. Epidemic variability in complex networks. Phys. Rev. E,73 (2006) 046131.
    [52]A. Vazquez. Polynomial growth in age-dependent branching processes with diverging reproductive number. Phys. Rev. Lett.,96 (2006) 038702.
    [53]T. Zhou, J. Liu, W. Bai, G. Chen and B. Wang. Behaviors of susceptible-infected epidemics on scale-free networks with identical infectivity. Phys. Rev. E,74 (2006) 056109.
    [54]A. Grabowski and R. A. Kosinski. Epidemic spreading in a hierarchical social network. Phys. Rev. E,70 (2004) 031908.
    [55]B. Wang, H. W. Tang, Z. L. Xiu, C. H. Guo, and T. Zhou. Optimization of network structure to random failures. Physica A,368:607-614(2006).
    [56]M. Kuperman and G. Abramson. In spite of substantial differences in the respective dynamical rules. Phys. Rev. Lett.,86 (2001) 2909.
    [57]T. Zhou, P. L. Zhou, B.H. Wang, ZiNan Tang and J. Liu. Modeling stock market based on genetic cellular automata, Int. J. Mod. Phys. B,18,2697-2702 (2004)
    [58]Pastor-Satorras R, Vespignani A. Epidemic dynamics and endemic states in complex networks. Physical Review E,2001,63(6) 066117.
    [59]R. Pastor-Satorras and A.Vespignani. In handbook of graphs and networks:from the genome to the Internet, ed. by S. Bornholdt and H. G. Schuster,2002, Berlin:Wiley-VCH, pp. 113-132.
    [60]Anderson R M,May R M. Infectious diseases in humans. Oxford:Oxford University Press,1992.
    [61]R.Pastor-Satorras and A.Vespignani. Immunization of complex networks. Phys.Rev.E,2001,65:036134.
    [62]Cohen R, Havlin S, Ben-Avraham D. Efficient immunization strategies for computer networks. Eur.Phys.J.B,2004,38:269-276.
    [63]Staniford S, Paxson V, Weaver N. How to own the Internet in your spare time. Proceedings of the 11th USENIX Security Symposium, August 2002,149-167.
    [64]Serazzi G, Zanero S. Computer virus propagation models.2003. Available on URL:http://www.elet.polimi.it/upload/zanero/papers/zanero-serazzi-virus.pdf.
    [65]Zou C C, Towsley D, Gong W B. Email virus propagation modeling and analysis. Technical Report TR-CSE-03-04, University of Massachusettes, Amherst 2003.
    [66]Balthrop J,Forrest S, Newman M E J, Willamson M M. Technological networks and the spread of computer viruses. Science,2004,304:527-529.
    [67]Albert R, Barabasi A L. Statistical mechanics of complex networks. Reviews of modern physics,2002,74(1):47-97.
    [68]Boccaletti S, Latora V, Moreno Y, Chavez M, Hwang D U. Complex networks:structure and dynamics. Physics reports,2006,424(4-5),175-308.
    [69]Newman M E J. The structure and function of complex networks. SIAM review,2003, 45(2):167-256.
    [70]Moreno Y, Nekovee M, Pacheco A F. Dynamics of rumor spreading in complex networks. Physical Review E,2004,69(6):066130.
    [71]Newman M E J. Assortative mixing in networks. Physical Review Letters,2002, 89(20):208701.
    [72]M.E.J.Newman. Clustering and preferential attachment in growing networks. Phys. Rev. E,64(2001)025102.
    [73]孔飞力.叫魂:1768年中国妖术大恐慌,1999,上海三联书店.
    [74]洛厄里德弗勒.大众传播效果研究的里程碑,2004,中国人民大学出版社.
    [75]Knapp,R. Spring. A psychology of rumor.The Public Opinion Quarterly.1944.
    [76]Allport G W, Postman L. The psychology of rumor. Oxford, England:Henry Holt.1947.
    [77]卡斯特.网络社会的崛起,2001,社会科学文献出版社.
    [78]桑斯坦.谣言,2010,中信出版社.
    [79]阿伦森.社会性动物,2001,新华出版社.
    [80]H Wang, L Deng, F Xie, H Xu, J H Han. A new rumor propagation model on SNS structure. 2012 IEEE International Conference on Granular Computing, HangZhou, China,2012.
    [81]何大韧,刘宗华,汪秉宏.复杂网络演进的一些统计物理学方法及其背景.力学进展,2008,38(6):692-701.
    [82]潘灶烽,汪小帆,李翔.可变聚类系数无标度网络上的谣言传播仿真研究,《系统仿真学报》,18(2006)2346.
    [83]刘常昱,胡晓峰,司光亚,罗批.基于小世界网络的舆论传播模型,《系统仿真学报》,18(2006)3608.
    [84]刘常昱,胡晓峰,司光亚,罗批.舆论涌现模型研究,《复杂系统与复杂性科学》,2007年第1期,24-27页.
    [85]刘常昱,胡晓峰,罗批,司光亚.基于不对称影响函数的舆论涌现模型,《系统仿真学报》,20(2008)990.
    [86]Dodds P S, Watts D J. Universal behavior in a generalized model of contagion. Phys.Rev.Lett. 2004,92:218701.
    [87]Chaib-DraaB, et al. Trends in distributed artifieial inielligence. Artificial Inielligence Review, 1992,6(1):35-66.
    [88]Ramos C. An architecture and anegotiation Protoeol for the dynamics cheduling of manufacturing systems. In IEEE Int Conf on Robotics and Antomation.1994.USA.
    [89]Jennings N, et al. Transforming standalone expert systems into a community of cooperating agents[J]. Engineering Applications of Artificial Intelligence,1993,6:317-317.
    [90]Balabanovic.M, Shoham. Y and Yun.Y. An adaptive agent for automated web browsing. Stanford University, working paper,1997.
    [91]Oh H, Thomas.R.J. A diffusion-model-based supply-side offer agent. Power Systems, IEEE Transactions on,2006,21(4):1729-1735.
    [92]于同洋.网络环境下信息扩散的多智能体仿真研究.博士学位论文.2010.
    [93]Luo Jun-Zhou, Wu Wen-Jia,Yang Ming. Mobile Internet:terminal devices, networks and services. Chinese Journal of Computers,2011,34(11):2029-2051.
    [94]WangYu Xiang, Qiao Xiu Quan, Li Xiao Feng, Meng Luo Ming. Research on context awareness mobile SNS services election mechanism. Chinese Journal of Computers,2010, 33 (11):2126:2135.
    [95]H. Ebel, L.I. Mielsch, S. Bornholdt. Scale-free topology of e-mail networks, Phys. Rev. E 66 (2002)035103.
    [96]J.P. Eckmann, E. Moses, D. Sergi. Entropy of dialogues creates coherent structures in e-mail traffic, PNAS 101 (2004) 14333.
    [97]R. Smith. Instant messaging as a scale-free network, arXiv:cond-mat/0206378.
    [98]F. Wang, Y. Moreno, Y. Sun. The structure of peer-to-peer social networks, Phys. Rev. E 73 (2006)036123.
    [99]K.I. Goh, Y.H. Eom, H. Jeong, B. Kahng, D. Kim. Structure and evolution of online social relationships:Heterogeneity in unrestricted discussions, Phys. Rev. E 73 (2006) 066123.
    [100]J. Zhang, M. S. Ackerman, L. A. Adamic. Expertise networks in online communities: structure and algorithms, Proc.16th Intl. Conf. WWW, pp.221-230, ACM Press, New York, 2007.
    [101]S. Golder, D. Wilkinson, B. Huberman. Rhythms of social interaction:messaging within a massive online network, Proc.3rd Commun. Technol. Conf., pp.41-66, Springer,2007.
    [102]R. I. M. Dunbar. Coevolution of neocortical size, group size and language in humans, Behavioral and Brain Sciences,16 (1993) 681.
    [103]Y. Y. Ahn, S. Han, H. Kwak, S. Moon, H. Jeong. Analysis of topological characteristics of huge online social networking services, Proc.16th Intl. Conf. WWW, pp.835-844, ACM Press, New York,2007.
    [104]K. Yuta, N. Ono, Y. Fujiwara. A gap in the community-size distribution of a large-scale social networking site, arXiv:physics/0701168.
    [105]A. Mislove, M. Marcon, K. P. Gummadi, P. Druschel, B. Bhattacharjee. Measurement and analysis of online social networks, Proc.7th ACM SIGCOMM Conf., pp.29-42, ACM Press, New York,2007.
    [106]E. Spertus, M. Sahami, O. Buyukkokten. Evaluating similarity measures:a large-scale study in the orkut social network, Proc.11st ACM SIGKDD, pp.678-684, ACM Press, New York,2005.
    [107]G. Csanyi, B. Szendri. Structure of a large social network, Phys. Rev. E 69 (2004) 036131.
    [108]F. Fu, X. Chen, L. Liu, L. Wang. Social dilemmas in an online social network:the structure and evolution of cooperation, Phys. Lett. A 371 (2007) 58.
    [109]王辉,韩江洪,邓林,程克勤.基于移动社交网络的谣言传播动力学研究.物理学报,2013,62(11):11505-1-11505-12

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700