用户名: 密码: 验证码:
人破骨细胞刺激因子的结构生物学研究及普通变形杆菌的LAD初步晶体学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
(Ⅰ)破骨细胞是负责骨吸收的主要细胞。它的分化和成熟需要M-CSF(macrophage colony stimulating factor)和RANKL(receptor activator ofnuclear factor kappaB ligand)介导的信号通路网络。酪氨酸激酶Src,它参与了M-CSF和RANKL介导的信号网络,对破骨细胞的功能的发挥有重要作用。破骨细胞刺激因子(OSF)是由一个短的富含脯氨酸区域,一个SH3结构域和ankyrinrepeats组成的胞内蛋白,它可以间接地刺激破骨细胞的形成和活化。OSF在鼠中的同源蛋白SH3P2可以结合Cbl上的一段proline rich的区域并形成OSF-Cbl-Src的三蛋白复合物,说明它参与了Src和Cbl介导的信号通路。
     我们克隆、表达并纯化了人的OSF蛋白,并进行了晶体生长,在同一条件下获得了两种空间群的晶体,并解出了它们的结构。第一种晶型我们用多波长反常散射的方法解出了它的2.57(?)的晶体结构,它属于P2_12_12_1空间群,晶胞参数为a=48.06 (?),b=56.86 (?)和c=170.12 (?),最后修正的R因子和Rfree因子分别为21.0%和28.4%。第二种晶型的结构使用分子置换法解得了1.95(?)得结构,它属于P1空间群,晶胞参数为a=28.31(?),b=57.94 (?),c=60.48 (?),α=61.75°,β=76.53°,γ=90.08°,最后修正的R因子和Rfree因子分别为17.8%和23.8%。在最后的模型中,两种晶型都含有SH3结构域和ankyrin repeats结构域,只是结构域之间的相对位置有变化。这是第一个报道的具有SH3-ANKs这样的结构域排布顺序的结构。我们发现OSF-SH3结构域尾部的配体结合区(螺旋区域)明显与其它的SH3结构域不同,暗示它与proline rich配体之间的相互作用很可能需要构象的改变,并且这个构象的变化可能是受到后面的ankyrin repeats结构域的调控的。
     (Ⅱ)来源于普通变形杆菌的L-氨基酸脱氨酶(LAD)可以催化多种L-氨基酸脱氨。在LAD的序列中发现存在保守的FAD结合区域,所以LAD可能是属于L-氨基酸氧化酶(LAAO)。我们构建了LAD的全长和氨基端29个残基缺失的△N29LAD质粒,表达并纯化了这两种LAD,并进行了晶体生长。我们得到了得到了△N29LAD适合衍射的晶体。我们收集了△N29LAD的一套2.9 (?)的数据,并进行了初步晶体学分析。
(Ⅰ) Osteoclast is the main cell responsible for degradation of bone matrix. Its differentiation and activity requires M-CSF (macrophage colony stimulating factor) and RANKL (receptor activator of nuclear factor kappaB ligand) mediated pathways. Tyrosine protein kinase Src, involved in both M-CSF and RANKL mediated signal networks, is also found to be essential for osteoclast function. Osteoclast stimulating factor (OSF), composed of a short proline rich region, one SH3 domain and ankyrin repeats, is a intracellular protein produced by osteoclasts and shown to indirectly enhance osteoclast formation and activity. A mouse homolog of OSF called SH3P2 can bind proline-rich fragment of Cbl and form an OSF-Cbl-Src triple protein complex, suggesting OSF was involved in Src and Cbl mediated pathways.
     We cloned, expressed and purified the human OSF protein. Here, we present crystal structures of human OSF in two space groups grown from the same condition. Form I crystal structure is determined by multi-wavelength anomalous diffraction (MAD) at 2.57A resolution in space group P2_12_12_1 with cell parameters a=48.06 (?), b=56.86 (?) and c=l70.12 (?).The final R value and Rfree value are 21.0% and 28.4%, respectively. FormⅠcrystal structure is determined by molecular replacement at 1.95 (?) resolution in space group P1 with cell parameters a=28.31(?), b=57.94 (?), c=60.48(?),α=61.75°,β=76.53°,γ=90.08°.The final R value and Rfree value are 17.8% and 23.8%, respectively. Models in both crystal forms contain one SH3 domain and four ankyrin repeats, but the relative position of the two domains is different in two forms. It is the first reported protein structure of such a SH3-ANKs domain sequence. The peptide-binding groove of OSF-SH3 domain adopts a conformation different from other SH3 domains and probably needs a conformational switch for binding to its proline rich ligand. This different status of OSF-SH3 is possibly regulated by the C-terminal ankyrin repeats.
     (Ⅱ)L-amino acid deaminase(LAD)from Proteus vulgaris is an enzyme that cancatalyze L-type amino acids.Significant conserved motif is found in LAD identifiedas a FAD-binding domain and probably LAD is a L-amino acid oxidase.We cloned,expressed and purified the full length LAD and a N-terminal truncation form△N29LAD.Crystals of△N29LAD suitable for diffraction were obtained and a 2.9 (?)data set was Collected.Preliminary X-ray diffraction analysis was applied.
引文
1994. The CCP4 suite: programs for protein crystallography. Acta Crystallogr D Biol Crystallogr. 50, 760-3.
    Arai, F., Miyamoto, T., Ohneda, O., Inada, T., Sudo, T., Brasel, K., Miyata, T., Anderson,D.M., Suda, T., 1999. Commitment and differentiation of osteoclast precursor cells by the sequential expression of c-Fms and receptor activator of nuclear factor kappaB (RANK) receptors. J Exp Med. 190,1741 -54.
    Asagiri, M., Takayanagi, H., 2007. The molecular understanding of osteoclast differentiation.Bone. 40,251-264.
    Baron, R., Neff, L., Van, P., Nefussi, J., Vignery, A., 1986. Kinetic and cytochemical identification of osteoclast precursors and their differentiation into multinucleated osteoclasts. The American Journal of Pathology. 122,363-378.
    Baumgartner, R., Fernandez-Catalan, C, Winoto, A., Huber, R., Engh, R.A., Holak, T.A.,1998. Structure of human cyclin-dependent kinase inhibitor p19INK4d: comparison to known ankyrin-repeat-containing structures and implications for the dysfunction of tumor suppressor p16INK4a. Structure. 6, 1279-90.
    Bergamaschi, D., Samuels, Y., O'Neil, N.J., Trigiante, G., Crook, T., Hsieh, J.K., O'Connor,D.J., Zhong, S., Campargue, I., Tomlinson, M.L., Kuwabara, P.E., Lu, X., 2003.iASPP oncoprotein is a key inhibitor of p53 conserved from worm to human. Nat Genet. 33, 162-7.
    Bergamaschi, D., Samuels, Y., Jin, B., Duraisingham, S., Crook, T, Lu, X., 2004. ASPP1 and ASPP2: common activators of p53 family members. Mol Cell Biol. 24, 1341-50.
    Blair, H.C., Robinson, L.J., Zaidi, M., 2005. Osteoclast signalling pathways. Biochemical and Biophysical Research Communications. 328, 728-738.
    Boggon, T.J., Eck, M.J., 2004. Structure and regulation of Src family kinases. Oncogene. 23,7918-27.
    Boyle, W.J., Simonet, W.S., Lacey, D.L., 2003. Osteoclast differentiation and activation.Nature. 423, 337-342.
    Bruzzaniti, A., Neff, L., Sanjay, A., Home, W.C., De Camilli, P., Baron, R., 2005. Dynamin forms a Src kinase-sensitive complex with Cbl and regulates podosomes and osteoclast activity. Mol Biol Cell. 16, 3301-13.
    Bruzzaniti, A., Baron, R., 2006. Molecular regulation of osteoclast activity. Reviews in Endocrine & Metabolic Disorders. 7, 123-139.
    Chen, L., Wang, Y., Wells, D., Toh, D., Harold, H., Zhou, J., DiGiammarino, E., Meehan, E.J.,2006. Structure of the SH3 domain of human osteoclast-stimulating factor at atomic resolution. Acta Crystallogr Sect F Struct Biol Cryst Commun. 62, 844-8.
    Chiusaroli, R., Sanjay, A., Henriksen, K., Engsig, M.T., Home, W.C., Gu, H., Baron, R., 2003.Deletion of the gene encoding c-Cbl alters the ability of osteoclasts to migrate,delaying resorption and ossification of cartilage during the development of long bones. Dev Biol. 261,537-47.
    Choi, S.J., Reddy, S.V., Devlin, R.D., Menaa, C, Chung, H., Boyce, B.F., Roodman, G.D.,1999. Identification of human asparaginyl endopeptidase (legumain) as an inhibitor of osteoclast formation and bone resorption. J Biol Chem. 274, 27747-53.
    Coleman, R.E., Rubens, R.D., 1987. The clinical course of bone metastases from breast cancer. British Journal of Cancer 55, 61-66.
    Coleman, R.E., Seaman, J.J., 2001. The role of zoledronic acid in cancer: clinical studies in the treatment and prevention of bone metastases. Seminars in Oncology. 28,11-14.
    Dougall, W.C., Glaccum, M., Charrier, K., Rohrbach, K., Brasel, K.., De Smedt, T., Daro, E.,Smith, J., Tometsko, M.E., Maliszewski, C.R., Armstrong, A., Shen, V., Bain, S.,Cosman, D., Anderson, D., Morrissey, P.J., Peschon, J.J., Schuh, J., 1999. RANK is essential for osteoclast and lymph node development. GENES & DEVELOPMENT.13,2412-2424.
    Emsley, P., Cowtan, K., 2004. Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr. 60, 2126-32.
    Espanel, X., Sudol, M., 2001. Yes-associated protein and p53-binding protein-2 interact through their WW and SH3 domains. J Biol Chem. 276, 14514-23.
    Feng, S., Chen, J., Yu, H., Simon, J., Schreiber, S., 1994. Two binding orientations for peptides to the Src SH3 domain: development of a general model for SH3-ligand interactions. Science. 266, 1241-1247.
    Garcia, a., A.Senis Y., Antrobus, R., Hughes, C.E., Dwek, R.A., P.Watson, S., Zitzmann, N.,2006. A global proteomics approach identifies novel phosphorylated signaling proteins in GPVI-activated platelets: Involvement of G6f, a novel platelet Grb2-binding membrane adapter. Proteomis. 6, 5332-5343.
    Gorina, S., Pavletich, N.P., 1996. Structure of the p53 Tumor Suppressor Bound to the Ankyrin and SH3 Domains of 53BP2. Science. 274, 1001-1005.
    H. Kaspar Binz, A.K.A.P.M.G.G., 2006. Crystal structure of a consensus-designed ankyrin repeat protein: Implications for stability. Proteins: Structure, Function, and Bioinformatics. 65, 280-284.
    Han, J.H., Choi, S.J., Kurihara, N., Koide, M., Oba, Y., Roodman, G.D., 2001. Macrophage inflammatory protein-1 alpha is an osteoclastogenic factor in myeloma that is independent of receptor activator of nuclear factor kappaB ligand. Blood. 97,3349-53.
    Hofbauer, L.C., Lacey, D.L., Dunstan, C.R., Spelsberg, T.C., Riggs, B.L., Khosla, S., 1999.Interleukin-1beta and tumor necrosis factor-alpha, but not interleukin-6, stimulate osteoprotegerin ligand gene expression in human osteoblastic cells. Bone. 25, 255-9.
    Holm, L., Kaariainen, S., Rosenstrom, P., Schenkel, A., 2008. Searching protein structure databases with DaliLite v.3. Bioinformatics.
    Home, W.C., Neff, L., Chatterjee, D., Lomri, A., Levy, J.B., Baron, R., 1992. Osteoclasts express high levels of pp60c-src in association with intracellular membranes. J Cell Biol. 119, 1003-13.
    Home, W.C., Sanjay, A., Bruzzaniti, A., Baron, R., 2005. The role(s) of Src kinase and Cbl proteins in the regulation of osteoclast differentiation and function. Immunol Rev.208,106-25.
    Horwood, N.J., Elliott, J., Martin, T.J., Gillespie, M.T., 1998. Osteotropic agents regulate the expression of osteoclast differentiation factor and osteoprotegerin in osteoblastic stromal cells. Endocrinology. 139,4743-6.
    Joazeiro, C.A., Wing, S.S., Huang, H., Leverson, J.D., Hunter, T., Liu, Y.C., 1999. The tyrosine kinase negative regulator c-Cbl as a RING-type, E2-dependent ubiquitin-protein ligase. Science. 286,309-12.
    Jones, T.A., Zou, J.Y., Cowan, S.W., Kjeldgaard, M., 1991. Improved methods for building protein models in electron density maps and the location of errors in these models.Acta Crystallogr A. 47 (Pt 2), 110-9.
    Kamatari, Y.O., tomizawa, T., Koshiba, S., Inoue, M., Kigawa, T., Yokoyama, S., Solution Structure of the SH3 Domain of Human osteoclast stimulating factor 1 (OSTF1) To be Published.
    Kishan, K.V.R., Agrawal, V., 2005. SH3-like Fold Proteins are Structurally Conserved and Functionally divergent. Current Protein and Peptide science. 6, 143-150.
    Kobe, B., Kajava, A.V., 2000. When protein folding is simplified to protein coiling: the continuum of solenoid protein structures. Trends in Biochemical Sciences. 25, 509-515.
    Kohl, A., Binz, H.K., Forrer, P., Stumpp, M.T., Pluckthun, A., Grutter, M.G., 2003. Designed to be stable: Crystal structure of a consensus ankyrin repeat protein. Proc Natl Acad Sci U S A. 100,1700-1705.
    Kowanetz, K., Szymkiewicz, I., Haglund, K., Kowanetz, M., Husnjak, K., Taylor, J.D.,Soubeyran, P., Engstrom, U., Ladbury, J.E., Dikic, I., 2003. Identification of a Novel Proline-Arginine Motif Involved in CIN85-dependent Clustering of Cbl and Down-regulation of Epidermal Growth Factor Receptors. Journal of Biological Chemistry. 278,39735-39746.
    Kurihara, N., Menaa, C., Maeda, H., Haile, D.J., Reddy, S.V., 2001. Osteoclast-stimulating factor interacts with the spinal muscular atrophy gene product to stimulate osteoclast formation. Journal of Biological Chemistry. 276, 41035-9.
    Lakkakorpi, P.T., Nakamura, I., Young, M., Lipfert, L., Rodan, G.A., Duong, L.T., 2001.Abnormal localisation and hyperclustering of (alpha)(V)(beta)(3) integrins and associated proteins in Src-deficient or tyrphostin A9-treated osteoclasts. J Cell Sci.114, 149-160.
    Laskowski, R.A., MacArthur, M.W., Moss, D.S., Thornton, J.M., 1993. PROCHECK: a program to check the stereochemical quality of protein structures. Journal of Applied Crystallography. 26, 283-291.
    Lee, S.K., Lorenzo, J.A., 1999. Parathyroid hormone stimulates TRANCE and inhibits osteoprotegerin messenger ribonucleic acid expression in murine bone marrow cultures: correlation with osteoclast-like cell formation. Endocrinology. 140, 3552-61.
    Levkowitz, G., Waterman, H., Ettenberg, S.A., Katz, M., Tsygankov, A.Y., Alroy, I., Lavi, S.,Iwai, K., Reiss, Y., Ciechanover, A., Lipkowitz, S., Yarden, Y., 1999. Ubiquitin ligase activity and tyrosine phosphorylation underlie suppression of growth factor signaling by c-Cbl/Sli-1. Mol Cell. 4, 1029-40.
    Li, F., Chung, H., Reddy, S.V., Lu, G, Kurihara, N., Zhao, A.Z., Roodman, G.D., 2005. Annexin II stimulates RANKL expression through MAPK. J Bone Miner Res. 20,1161-7.
    Li, Y.-P., Chen, W., Liang, Y., Li, E., Stashenko, P., 1999. Atp6i-deficient mice exhibit severe osteopetrosis due to loss of osteoclast-mediated extracellular acidification. Nature Genetics. 23, 447-451.
    Lowell, C.A., Niwa, M., Soriano, P., Varmus, H.E., 1996. Deficiency of the Hck and Src tyrosine kinases results in extreme levels of extramedullary hematopoiesis. Blood. 87, 1780-92.
    Lux, S.E., John, K.M., Bennett, V., 1990a. Analysis of cDNA for human erythrocyte ankyrin indicates a repeated structure with homology to tissue-differentiation and cell-cycle control proteins. Nature. 344, 36-42.
    Lux, S.E., John, K.M., Bennett, V., 1990b. Analysis of cDNA for human erythrocyte ankyrin indicates a repeated structure with homology to tissue-differentiation and cell-cycle control proteins. Nature. 344, 36-42.
    Mayer, B.J., 2001. SH3 domains: complexity in moderation. Journal of Cell Science. 114,1253-1263.
    Menaa, C., Devlin, R.D., Reddy, S.V., Gazitt, Y., Choi, S.J., Roodman, G.D., 1999. Annexin II increases osteoclast formation by stimulating the proliferation of osteoclast precursors in human marrow cultures. J Clin Invest. 103, 1605-13.
    Miyazaki, T., Neff, L., Tanaka, S., Home, W.C., Baron, R., 2003. Regulation of cytochrome c oxidase activity by c-Src in osteoclasts. J Cell Biol. 160,709-18.
    Miyazaki, TV, Sanjay, A., Neff, L., Tanaka, S., Home, W.C., Baron, R., 2004. Src Kinase Activity Is Essential for Osteoclast Function. Journal of Biological Chemistry. 279,17660-17666.
    Mongiovi, A.M., R.Romano, P., Panni, S., Mendoza, M., T.Wong, W., Musacchio, A.,Cesareni, G., Fiore, P.P.D., 1999. A novel peptide-SH3 interaction. The EMBO Journal. 18,5300-5309.
    Mosavi, L.K., Minor, D.L., Jr., Peng, Z.Y., 2002. Consensus-derived structural determinants of the ankyrin repeat motif. Proc Natl Acad Sci U S A. 99, 16029-34.
    Mosavi, L.K., Cammett, T.J., Desrosiers, D.C., Peng, Z.-y., 2004. The ankyrin repeat as molecular architecture for protein recognition. Protein Science. 13, 1435-1448.
    Murshudov, G.N., Vagin, A.A., Dodson, E.J., 1997. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr D Biol Crystallogr. 53, 240-55.
    Musacchio, A., 2002. How SH3 domains recognize proline. Advances in Protein Chemistry.61,211-268.
    Nesbitt, S.A., Horton, M.A., 1997. Trafficking of Matrix Collagens Through Bone-Resorbing Osteoclasts. Science. 276,266-269.
    Odgren, P.R., Kim, N., MacKay, C.A., Mason-Savas, A., Choi, Y., Marks, S.C., Jr., 2003. The role of RANKL (TRANCE/TNFSF11), a tumor necrosis factor family member, in skeletal development: effects of gene knockout and transgenic rescue. Connect Tissue Res. 44 Suppl 1,264-71.
    Otwinowski, Z., W, M., 1997. Processing of X-ray Diffraction Data Collected in Oscillation Mode Methods in Enzymology. 276, 307-326.
    Oursler, M.T., 1994. Osteoclast synthesis, secretion and activation of latent transforming growth factor beta. The Journal of Bone and Mineral Research. 9, 443-452.
    PACIFICI, R., 1996. Estrogen, cytokines, and Pathogenesis of Postmenopausal Osteoporosis.Journal of Bone & Mineral Research. 11, 1043-1051.
    Parsons, S.J., Parsons, J.T., 2004. Src family kinases, key regulators of signal transduction.Oncogene. 23, 7906-9.
    Potterton, E., Briggs, P., Turkenburg, M., Dodson, E., 2003. A graphical user interface to the CCP4 program suite. Acta Crystallogr D Biol Crystallogr. 59, 1131-7.
    Reddy, S., Devlin, R., Menaa, C., Nishimura, R., Choi, S.J., Dallas, M., Yoneda, T, Roodman,G.D., 1998. Isolation and characterization of a cDNA clone encoding a novel peptide (OSF) that enhances osteoclast formation and bone resorption. J Cell Physioi. 177,636-45.
    Reddy, S.V., Takahashi, S., Dallas, M., Williams, R.E., Neckers, L., Roodman, G.D., 1994.IL-6 antisense deoxyoligonucleotides inhibit bone resorption by giant cells from human giant cell tumors of bone. The Journal of Bone and Mineral Research 11,1602-1607.
    Robinson, R.A., Lu, X., Jones, E.Y., Siebold, C, 2008. Biochemical and structural studies of ASPP proteins reveal differential binding to p53, p63, and p73. Structure. 16, 259-68.
    Roodman, G.D., 1996. Advances in bone biology: the osteoclast. Endocrine Reviews. 17,308-332.
    Roodman, G.D., 1999. Cell biology of the osteoclast. Experimental Hematology. 27,1229-1241.
    Roodman, G.D., 2001. Biology of Osteoclast Activation in Cancer. Journal of clinical oncology. 19,3562-3571.
    Roodman, G.D., 2004. Mechanisms of Bone Metastasis, the New England Journal of Medcine.350,1655-1664.
    Roodman, G.D., 2006. Regulation of osteoclast differentiation. Ann N Y Acad Sci. 1068,100-9.
    Roodman, G.D., Dougall, W.C., 2008. RANK ligand as a therapeutic target for bone metastases and multiple myeloma. Cancer Treat Rev. 34, 92-101.
    Ross, F.P., Teitelbaum, S.L., 2005. alphavbeta3 and macrophage colony-stimulating factor:partners in osteoclast biology. Immunol Rev. 208, 88-105.
    Rossmann, M.G., van Beek, C.G., 1999. Data processing. Acta Crystallogr D Biol Crystallogr.55,1631-40.
    Salo, J., Metsikko, K., Palokangas, H., Lehenkari, P., Vaananen, H.K., 1996. Bone-resorbing osteoclasts reveal a dynamic division of basal plasma membrane into two different domains. J Cell Sci. 109 (Pt 2), 301-7.
    Salo, J., Lehenkari, P., Mulari, M., Metsikko, K., Vaananen, H.K., 1997. Removal of osteoclast bone resorption products by transcytosis. Science. 276, 270-3.
    Samuels-Lev, Y., O'Connor, D.J., Bergamaschi, D., Trigiante, G, Hsieh, J.K., Zhong, S.,Campargue, I., Naumovski, L., Crook, T., Lu, X., 2001. ASPP proteins specifically stimulate the apoptotic function of p53. Mol Cell. 8, 781-94.
    Sanjay, A., Home, W.C., Baron, R., 2001a. The Cbl family: ubiquitin ligases regulating signaling by tyrosine kinases. Sci STKE. 2001, PE40.
    Sanjay, A., Houghton, A., Neff, L., DiDomenico, E., Bardelay, C, Antoine, E., Levy, J., Gailit,J., Bowtell, D., Home, W.C., Baron, R., 2001b. Cbl associates with Pyk2 and Src to regulate Src kinase activity, alpha(v)beta(3) integrin-mediated signaling, cell adhesion,and osteoclast motility. J Cell Biol. 152,181-95.
    Sanjay, A., Miyazaki, T., Itzstein, C., Purev, E., Home, W.C., Baron, R., 2006. Identification and functional characterization of an Src homology domain 3 domain-binding site on Cbl. FEBS J. 273, 5442-56.
    Schaub, R., Dupont, B., Roodman, G.D., Leach, R.J., Reddy, S.V., 2000. Assignment of OSTF1 to human chromosome bands 12q24.1-->q24.2 by in situ hybridization.Cytogenet Cell Genet. 88, 87-8.
    Schlessinger, J., 2000. New roles for Src kinases in control of cell survival and angiogenesis.Cell. 100,293-6.
    Sedgwick, S.G., Smerdon, S.J., 1999. The ankyrin repeat: a diversity of interactions on a common structural framework. Trends in Biochemical Sciences. 24,311-316.
    Sparks, A.B., Hoffman, N.G., McConnell, S.J., Fowlkes, D.M., Kay, B.K., 1996. Cloning of ligand targets: systematic isolation of SH3 domain-containing proteins. Nat Biotechnol. 14,741-4.
    Stein, P.L., Vogel, H., Soriano, P., 1994. Combined deficiencies of Src, Fyn, and Yes tyrosine kinases in mutant mice. Genes Dev. 8, 1999-2007.
    Suda, T., Takahashi, N., Udagawa, N., Jimi, E., Gillespie, M.T., Martin, T.J., 1999.Modulation of osteoclast differentiation and function by the new members of the tumor necrosis factor receptor and ligand families. Endocr Rev. 20, 345-57.
    Sullivan, A., Lu, X., 2007. ASPP: a new family of oncogenes and tumour suppressor genes.Br J Cancer. 96, 196-200.
    Szymkiewicz, I, Destaing, O., Jurdic, P., Dikic, I., 2004. SH3P2 in complex with Cbl and Src.FEBS Lett. 565,33-8.
    Takahashi, S., Reddy, S.V., Chirgwin, J.M., Devlin, R., Haipek, C, Anderson, J., Roodman,G.D., 1994. Cloning and identification of Annexin II as an autocrine/paracrine factor that increases osteoclast formation and bone resorption. Journal of Biological Chemistry. 269.
    Tanaka, S., Amling, M., Neff, L., Peyman, A., Uhlmann, E., Levy, J.B., Baron, R., 1996.c-Cb1 is downstream of c-Src in a signalling pathway necessary for bone resorption.Nature. 383, 528-31.
    
    Teitelbaum, S.L., 2000. Bone resorption by osteoclasts. Science. 289, 1504-8.
    Terwilliger, T.C., Berendzen, J., 1999. Automated MAD and MIR structure solution. Acta Crystallogr D Biol Crystallogr. 55, 849-61.
    Terwilliger, T.C., 2000. Maximum-likelihood density modification. Acta Crystallogr D Biol Crystallogr. 56, 965-72.
    Theill, L.E., Boyle, W.J., Penninger, J.M., 2002. RANK-L and RANK: T cells, bone loss, and mammalian evolution. Annu Rev Immunol. 20, 795-823.
    Thien, C.B., Langdon, W.Y., 2001. Cbl: many adaptations to regulate protein tyrosine kinases.Nat Rev Mol Cell Biol. 2,294-307.
    Thomas, S.M., Brugge, J.S., 1997. Cellular functions regulated by Src family kinases. Annu Rev Cell Dev Biol. 13,513-609.
    Thornton, J.K., Dalgleish, C., Venables, J.P., Sergeant, K.A., Ehrmann, I.E., Lu, X., Saunders,P.T., Elliott, D.J., 2006. The tumour-suppressor protein ASPP1 is nuclear in human germ cells and can modulate ratios of CD44 exon V5 spliced isoforms in vivo.Oncogene. 25,3104-12.
    Tsygankov, A.Y., Teckchandani, A.M., Feshchenko, E.A., Swaminathan, G., 2001. Beyond the RING: CBL proteins as multivalent adapters. Oncogene. 20, 6382-402.
    Vaananen, H.K., Laitala-Leinonen, T., 2008. Osteoclast lineage and function. Arch Biochem Biophys.473,132-8.
    Vagin, A., Teplyakov, A., 1997. MOLREP: an Automated Program for Molecular Replacement. Journal of Applied Crystallography. 30, 1022-1025.
    Vaguine, A.A., Richelle, J., Wodak, S.J., 1999. SFCHECK: a unified set of procedures for evaluating the quality of macromolecular structure-factor data and their agreement with the atomic model. Acta Crystallogr D Biol Crystallogr. 55, 191-205.
    Walker, R.G., Willingham, A.T., Zuker, C.S., 2000. A Drosophila Mechanosensory Transduction Channel. Science. 287,2229-2234.
    Wallace, A.C., Laskowski, R.A., Thornton, J.M., 1995. LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions. Protein Eng. 8, 127-34.
    Wong, B.R., Besser, D., Kim, N., Arron, J.R., Vologodskaia, M., Hanafusa, H., Choi, Y, 1999.TRANCE, a TNF family member, activates Akt/PKB through a signaling complex involving TRAF6 and c-Src. Mol Cell. 4, 1041-9.
    Yang, J.P., Hori, M., Sanda, T., Okamoto, T., 1999. Identification of a novel inhibitor of nuclear factor-kappaB, RelA-associated inhibitor. J Biol Chem. 274,15662-70.
    Yeung, Y.G., Wang, Y., Einstein, D.B., Lee, P.S., Stanley, E.R., 1998. Colony-stimulating factor-1 stimulates the formation of multimeric cytosolic complexes of signaling proteins and cytoskeletal components in macrophages. J Biol Chem. 273, 17128-37.
    Yokouchi, M., Kondo, T., Houghton, A., Bartkiewicz, M., Home, W.C., Zhang, H., Yoshimura,A., Baron, R., 1999. Ligand-induced ubiquitination of the epidermal growth factor receptor involves the interaction of the c-Cbl RING finger and UbcH7. J Biol Chem.274,31707-12.
    Young, P.J., Day, P.M., Zhou, J., Androphy, E.J., Morris, G.E., Lorson, C.L., 2002. A direct interaction between the survival motor neuron protein and p53 and its relationship to spinal muscular atrophy. J Biol Chem. 277,2852-9.
    Zhang, B., Peng, Z., 2000. A minimum folding unit in the ankyrin repeat protein p16(INK4). J Mol Biol. 299, 1121-32.
    Ali, S.A., Stoeva, S., Abbasi, A., Alam, J.M., Kayed, R., Faigle, M., Neumeister, B., Voelter,W., 2000. Isolation, structural, and functional characterization of an apoptosis-inducing L-amino acid oxidase from leaf-nosed viper (Eristocophis macmahoni) snake venom. Arch Biochem Biophys. 384,216-26.
    
    Apweiler, R., Attwood, T.K., Bairoch, A., Bateman, A., Birney, E., Biswas, M., Bucher, P.,Cerutti, L., Corpet, R, Craning, M.D., Durbin, R., Falquet, L., Fleischmann, W.,Gouzy, J., Hermjakob, H., Hulo, N., Jonassen, I., Kahn, D., Kanapin, A.,Karavidopoulou, Y, Lopez, R., Marx, B., Mulder, N.J., Oinn, T.M., Pagni, M.,Servant, R, Sigrist, C.J., Zdobnov, E.M., 2001. The InterPro database, an integrated documentation resource for protein families, domains and functional sites. Nucleic Acids Res. 29, 37-40.
    
    Faust, A., Niefind, K., Hummel, W., Schomburg, D., 2007. The structure of a bacterial L-amino acid oxidase from Rhodococcus opacus gives new evidence for the hydride mechanism for dehydrogenation. J Mol Biol. 367, 234-48.
    
    Li, Z.Y., Yu, T.F., Lian, E.C., 1994. Purification and characterization of L-amino acid oxidase from king cobra (Ophiophagus hannah) venom and its effects on human platelet aggregation. Toxicon. 32,1349-58.
    
    Moustafa, I.M., Foster, S., Lyubimov, A.Y., Vrielink, A., 2006. Crystal structure of LAAO from Calloselasma rhodostoma with an L-phenylalanine substrate: insights into structure and mechanism. J Mol Biol. 364, 991-1002.
    
    Pawelek, P.D., Cheah, J., Coulombe, R., Macheroux, P., Ghisla, S., Vrielink, A., 2000. The structure of L-amino acid oxidase reveals the substrate trajectory into an enantiomerically conserved active site. EMBO J. 19, 4204-15.
    
    Sakurai, Y., Takatsuka, H., Yoshioka, A., Matsui, T., Suzuki, M., Titani, K., Fujimura, Y., 2001.Inhibition of human platelet aggregation by L-amino acid oxidase purified from Naja naja kaouthia venom. Toxicon. 39,1827-33.
    
    Souza, D.H., Eugenio, L.M., Fletcher, J.E., Jiang, M.S., Garratt, R.C., Oliva, G.,Selistre-de-Araujo, H.S., 1999. Isolation and structural characterization of a cytotoxic L-amino acid oxidase from Agkistrodon contortrix laticinctus snake venom:preliminary crystallographic data. Arch Biochem Biophys. 368,285-90.
    Takahashi, E., Ito, K., Yoshimoto, T., 1999. Cloning of L-amino acid deaminase gene from Proteus vulgaris. Biosci Biotechnol Biochem. 63,2244-7.
    
    Xiao, X.D., Marzluf, G.A., 1993. Amino-acid substitutions in the zinc finger of NIT2, the nitrogen regulatory protein of Neurospora crassa, alter promoter element recognition.Curr Genet. 24,212-8.
    
    Zhang, H., Teng, M., Niu, L., Wang, Y, Liu, Q., Huang, Q., Hao, Q., Dong, Y., Liu, P., 2004a.Purification, partial characterization, crystallization and structural determination of AHP-LAAO, a novel L-amino-acid oxidase with cell apoptosis-inducing activity from Agkistrodon halys pallas venom. Acta Crystallogr D Biol Crystallogr. 60, 974-7.
    
    Zhang, H., Yang, Q., Sun, M., Teng, M., Niu, L., 2004b. Hydrogen peroxide produced by two amino acid oxidases mediates antibacterial actions. J Microbiol. 42, 336-9.
    
    Zhang, Y.J., Wang, J.H., Lee, W.H., Wang, Q., Liu, H., Zheng, Y.T., Zhang, Y., 2003.Molecular characterization of Trimeresurus stejnegeri venom L-amino acid oxidase with potential anti-HIV activity. Biochem Biophys Res Commun. 309, 598-604.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700