用户名: 密码: 验证码:
偶氮苯类光响应聚合物的设计、合成与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
1937年S. Hartley发现光照射偶氮苯可以获得一种黄色的物质,偶氮苯分子特殊的顺反异构现象逐渐被人们所认知、了解,偶氮苯类材料显示出优异的光致顺反异构可逆性,在众多光响应材料中受到更广泛的关注。偶氮苯类化合物在光刺激下,能够可逆地发生顺反异构,可以导致材料在物性,例如颜色、尺寸、形状、极性、折射率和溶解性等方面的变化。研究发现反式构象和顺式构象在相互转换过程中会有0.9nm的尺寸变化,这种大的尺寸变化使偶氮苯类材料薄膜在受到光刺激下会发生局部分子运动,导致宏观的质量迁移。基于这种质量迁移理论,1995年P. Rochon和D. Y. Kim两个小组提出了偶氮苯类材料应用于表面浮雕光栅方面的可能性,近二十年来相关研究备受关注。虽然利用偶氮苯类材料实现光响应图案化的制备研究取得不断进步,但是获得实际应用还需克服很多问题。首先是机理的问题,质量迁移理论普遍适用于偶氮苯类光响应材料,但是具体的迁移过程以及迁移方式,人们还是没有一个肯定得答案,此类材料光响应图案化的机理仍然没有被认清;其次,图案稳定性还存在很大问题,偶氮苯类材料形成的表面图案化,其热稳定性取决于材料本身的玻璃态转变温度,目前采用的材料(例如侧链型偶氮苯聚合物)的玻璃态转变温度普遍不高,而且图案化后微结构的耐酸、碱、有机溶剂的能力也有待提高。
     本论文针对偶氮苯类材料在光响应方面存在的问题,根据实验观察提出了表面浮雕光栅形成的机理模型,尝试采用电化学沉积的方法制备交联结构薄膜解决稳定性问题,重点开展以下三方面研究:
     1.发展偶氮苯类材料在表面浮雕光栅上的应用并探索其形成机理。我们设计并合成了共轭主链中含有偶氮苯基团的聚合物,以共轭聚合物制备光响应图案化为重点,并对其形成的表面浮雕光栅进行仔细分析,建立偶氮苯类分子质量迁移模型,提出确切的质量迁移机理,为后续此类工作的展开提供依据。
     2.探索偶氮苯类材料形成稳定的表面浮雕光栅的方法。我们设计并合成一种以光响应基团为中心,以高电化学活性的咔唑基团为侧链端基的有机小分子,通过电化学沉积的方法获得具有光响应性质、表面平整、高度交联的电聚合薄膜。由于这种薄膜的交联度非常高,其激光加工形成光栅的稳定性比一般旋涂薄膜高很多。此种在电化学沉积薄膜上激光加工微结构的方法有望被应用于纳米压印技术上,简化其模板制作过程,丰富模板的多样性,同时为纳米结构在光电器件上的应用提供可能。
     3.探索偶氮苯类材料在分子捕捉方面的可行性,我们设计并合成八官能度的含偶氮苯基团的电化学沉积前体,并且通过电沉积方法制备了表面平整、交联度高的三维孔结构的电聚合薄膜,并且这种全刚性的薄膜仍具有光辐照顺反异构的性质,通过顺反异构改变薄膜中孔直径的大小,起到开关作用以捕捉有机小分子,从而实现了分子牢笼的设想。
In1937, S. Hartley first found that the collar of azobenzene could change fromorange red to yellow when azobenzen was irradiated by one special light. Since then,the different conformations of azobenzene, the cis-configuration and trans-configuration are gradually understood and cognized. The excellent isomerization ofthe two configuration of azobenzene is a subject of widespread concern. Till nowsome soft materials with photo-response moiety are chosen to construct artificialmuscles because they possess such necessary properties as good mechanicalflexibility, high corrosion resistance, and high molecular orders. Up to now, severaltypes of photo-response polymers have been developed as organic actuator materials,including polymer gel, movement of free-standing solid films, photo-inducedexpansion, shape memory polymers, and liquid-crystal polymer (LCPs). In the lastfive decades, regarded as well-known photo-response actuators, azobenzene and itsderivatives have been extensively investigated due to their photo-induced geometricisomerization. This kind of compounds possesses some special properties in theprocess of reversible photo-isomerization between cis-configuration and trans-configuration, reflected in their size, shape, polarity, refractive index, conductivity,solubility and so on. The isomerization of cis-trans configuration can induce masstransfer which can be roughly classified into three levels as illustrate. At themolecular level light generates trans-cis-trans isomerization which depletes thechromophore concentration in the direction of polarization, at the domain level thepolar chromophore movement reorients polar domains and at the mass level the light produces macroscopic movement of polymer the can be used to inscribe surface orbulk patterns. Based the mass transfer theory, photo-response molecules andpolymers with azobenzene moiety was first introduced to the field of micro-/nano-fabrication in1995by Rochon and Natansohn. Lots of literatures were reportedabout photo-induced surface patterning using azo-polymer.
     Although many related work in the preparation of photo-induced surfacepatterning using materials with azobenzene moiety were reported, some problemsstill exist as follows to be solved. The first problem is the issue of the formationmechanism of the photo-induced SRG. Generally, mass transfer theory is applicableto the azobenzene photoresponsive material, but the precise migration process andmigration patterns still don‘t have a certain answer to explain by now. It means thatthe exact mechanism of photo-induced SRG with azo-polymers is still notrecognized, which seriously hinders its deeper research and application in industry.The second problem is the issue of stability of photo-induced SRG. The thermalstability of the photo-induced surface patterning using azo-polymer is totallydepended by the glass transition temperature (Tg) of the material itself. And at thesame time, the Tg of most of azo-polymer are widely concerned not high enough, sothe stability of the photo-induced patterning is not good enough. Besides the thermalstability, general acid, alkali, and organic solvent can also destroy pattern indeed,which seriously affects the application foreground of photoresponsive materials withazobenzene moiety.
     Based on the current problems about photoresponsive materials with azobenzenemoiety, herein, our thesis research is focus on the following three aspects:
     1. Develop a kind of novel azobenzene materials used in photo-induced pattern andexplore its mechanism. We design and synthesize a conjugated polymer withazobenzene moiety in the main chain, named PFAzo. Then, the SRG pattern isformed on the surface of the PFAzo film by interfering laser beam irradiated.From the knowledge obtained, the mechanism of the photo-induced patternformation in the present system is first assumed by us as follows. After beingirradiated by interfering laser beam, the CP chains transform from a rigid-rodstructure of trans-configuration to a random coil of cis-configuration. This conformational change induces a large local stress which drives the polymerchain to transfer from light irradiation part to dark part. Based on this process,thus the highly contrast surface pattern is formed.
     2. Explore a novel method to obtain stable photo-induced pattern by azobenzenematerial. We design and synthesize an electrochemical deposition (ED) precursornamed as DFCzAzo, which contains both electroactive carbazole groups andphoto-controlled azobenzene moiety. The polymerization reaction occurs amongthe radical cations with deposition of the cross-linked polymer film onto theelectrode. The highly cross-linked network results to the excellent stability of thephoto-induced nano-structures. We believe that the present photo-controlledsystem will provide a novel concept for creation of steadily cross-linked ED filmand will play an important role in many potential applications, such as the designof novel optical devices, and micro-/nano-scale sculpture.
     3. Investigate the feasibility of conjugated microporous polymers (CMPs)containing azobenzene moiety in terms of molecule capture. We design andsynthesize a novel ED precursor named as DTCzAzo, which contains both eightfunctionality electroactive carbazole groups and photo-responsive azobenzenemoiety. A highly cross-linked three-dimensional pore structure of the polymericfilm is produced by the electrochemical deposition method. And the film still hasa rigid isomerization property just as the polymer spinning coated film. Thediameter of pore structure changes in the process of the trans-to-cisisomerization, to capture organic molecules with the suitable molecules size.Then we achieve the target of fabricating a molecular cage.
引文
[1] AMENDOLA V, SAUVAGE J, Molecular Machines and Motors [M].Springer,2001.
    [2] GUST D, MOORE T, MOORE A, Mimicking Photosynthetic Solar EnergyTransduction [J]. Accounts of Chemical Research,2001,34(1):40-48.
    [3] NAKANO A, YAMAZAKI T, NISHIMURA Y, et al. Three‐DimensionallyArranged Windmill and Grid Porphyrin Arrays by AgI‐Promoted Meso–Meso Block Oligomerization [J]. Chemistry-A European Journal,2000,6(17):3254-3271.
    [4] FUJIWARA T, HARADA J, OGAWA K, Solid-State ThermochromismStudied by Variable-Temperature Diffuse Reflectance Spectroscopy. A NewPerspective on The Chromism of Salicylideneanilines [J]. The Journal ofPhysical Chemistry B,2004,108(13):4035-4038.
    [5] INADA T, UCHIDA S, YOKOYAMA Y, Perfect on/off Switching ofEmission of Fluorescence by Photochromic Reaction of A Binaphthol-Condensed Fulgide Derivative [J]. Chemistry letters,1997,1997(4):321-322.
    [6] TSIVGOULIS G, LEHN J, Photoswitched and FunctionalizedOligothiophenes: Synthesis and Photochemical and ElectrochemicalProperties [J]. Chemistry-a European Journal,1996,2(11):1399-1406.
    [7] ZHOU Y, ZHANG D, ZHANG Y, et al. Tuning the CD Spectrum andOptical Rotation Value of A New Binaphthalene Molecule with TwoSpiropyran Units: Mimicking the Function of A Molecular―AND‖LogicGate and A New Chiral Molecular Switch [J]. The Journal of organicchemistry,2005,70(16):6164-6170.
    [8] GARCíA-AMORóS J, VELASCO D, Recent Advances TowardsAzobenzene-Based Light-Driven Real-Time Information-TransmittingMaterials [J]. Beilstein journal of organic chemistry,2012,8(1):1003-1017.
    [9] PIERACCINI S, MASIERO S, SPADA G, et al. A New Axially-ChiralPhotochemical Switch [J]. Chemical Communications,2003(5):598-599.
    [10] BEER G, NIEDERALT C, GRIMME S, et al. Redox Switches withChiroptical Signal Expression Based on Binaphthyl Boron DipyrrometheneConjugates [J]. Angewandte Chemie International Edition,2000,39(18):3252-3255.
    [11] HAN M, GAO L, Lü Y, et al. Ruthenium (II) Complex of Hbopip:Synthesis, Characterization, PH-Induced Luminescence―Off-On-Off‖Switch, and Avid Binding to DNA [J]. The Journal of Physical Chemistry B,2006,110(5):2364-2371.
    [12] BADJIC J, RONCONI C, STODDART J, et al. Operating MolecularElevators [J]. Journal of the American Chemical Society,2006,128(5):1489-1499.
    [13] SHIRAISHI Y, TOKITOH Y, NISHIMURA G, et al. A Molecular Switchwith PH-Controlled Absolutely Switchable Dual-Mode Fluorescence [J].Organic Letters,2005,7(13):2611-2614.
    [14] BOUAS-LAURENT H, DüRR H, Organic Photochromism (IUPACtechnical report)[J]. Pure and Applied Chemistry,2001,73(4):639-665.
    [15] RAYMO F, TOMASULO M, Optical Processing with PhotochromicSwitches [J]. Chemistry-A European Journal,2006,12(12):3186-3193.
    [16] VAN DER VEEN G, PRINS W, Photomechanical Energy Conversion in APolymer Membrane [J]. Nature Phys. Sci.1972,230,70.
    [17] ATHANASSIOU A, KALYVA M, LAKIOTAKI K, et al. All-OpticalReversible Actuation of Photochromic-Polymer Microsystems [J]. Adv.Mater.2005,17,988.
    [18] LENDLEIN A, JIANG H, JNGER O, et al. Light-induced Shape-MemoryPolymers [J]. Nature2005,434,879.
    [19] YU Y, NAKANO M, SHISHIDO A, et al. Effect of Cross-linking Density onPhotoinduced Bending Behavior of Oriented Liquid-Crystalline NetworkFilms Containing Azobenzene [J]. Chem.Mater.2004,16,1637.
    [20] IKEDA T, TSUTSUMI O, Optical Switching and Image Storage by Meansof Azobenzene Liquid-Crystal Films [J]. Science1995,268,1873.
    [21] TSUTSUMI O, KITSUNAI T, KANAZAWA A, et al. Photochemical PhaseTransition Behavior of Polymer Azobenzene Liquid Crystals with Electron-Donating and-Accepting Substituents at the4,4-Positions [J]Macromolecules1998,31,355.
    [22] KWASNIEWSKI S, Effect of Thermal Motions on the Structure and UV2Visible Electronic Spectra of Stilbene and Model Oligomers of Poly (p2Phenylene Vinylene)[J]. Phys. Chem. A2003,107,5168-5180.
    [23] FREDERICK D, Excited State Properties of Donor-Acceptor Substitutedtrans-Stilbenes [J]. Phys. Chem. A2000,104,8146-8153.
    [24] GREGORY A, WILLIAMS D, STILBENE A, Critical Commentary andSome New Calculations on Its Structure and Isomerization [J]. The Journal ofPhysical Chemistry1979,83(20),2652-2662.
    [25] ORLANDI G, PALMIERI P, POGGI G, An ab initio Study of the cis-transPhotoisomerization of Stilbene [J]. Journal of the American ChemicalSociety1979,101(13):3492-3497.
    [26] NEGRI, F, ORLANDI, G, ZERBETTO, F, Theoretical Analysis of TheForce Field of The Lowest Excited Singlet State of Trans-Stilbene [J]. TheJournal of Physical Chemistry1989,93(13),5124-5128.
    [27] STACHELEK T, MCCLAIN W, DRUCKER R, Detection and Assignmentof The―Phantom‖Photochemical Singlet of Trans-Stilbene by Two-PhotonExcitation [J]. Chem. Phys.1977,66,4540.
    [28] HOHLNEICHER G, Experimental Determination of the Low Lying ExcitedA-States of Trans-Stilbene [J]. Photochem.1984,27,215.
    [29] BURROW P, JORDAN, K, Electron Transmission Study of the TemporaryNegative Ion States of Selected Benzenoid and Conjugated AromaticHydrocarbons [J]. Chem. Phys.1987,86,9.
    [30] GEHRTZ M, BMUCHLE C, VOITLAENDER J, Photochromic Forms of6-nitroindolinospiropymn. Emission Spectroscopic and ODMR Investigation[J] J. Am. Chem. Soc.1982,104(8):2094-2101.
    [31] LENOBLE C, BECKER R, Photophysics, Photochemistry, Kinetics, andMechanism of The Photochromism of6'-Nitroindolinospiropyran [J]. TheJournal of Physical Chemistry,1986,90(1):62-65.
    [32] BRASLAVSKY S, HOLZWARTH A, SCHAFFNER K, SolutionConformations, Photophysics, and Photochemistry of Bile Pigments;Bilirubin and Biliverdin, Dimethyl Esters and Related Linear Tetrapyrroles[J]. Angewandte Chemie International Edition in English,1983,22(9):656-674.
    [33] BOHNE C, FAN M, LI Z, et al. Photochromic Processes in Spiro (1,3,3-trimethylindolo-2,2′-naphth [1,2-b]-1,4-oxazine) Studied Using Two-laserTwo-colour Techniques [J]. Journal of the Chemical Society, ChemicalCommunications,1990(7):571-572.
    [34] BOHNE C, FAN M, LI Z, et al. Laser Photolysis Studies of PhotochromicProcesses in Spirooxazines: Solvent Effects on Photomerocyanine Behavior[J]. Journal of Photochemistry and Photobiology A: Chemistry,1992,66(1):79-90.
    [35] ZHANG X, JIN S, MING Y, et al. Substituent Effect on Photochromism ofIndolinospirooxazines [J]. Journal of Photochemistry and Photobiology A:Chemistry,1994,80(1):221-225.
    [36] STOBBE H, Chem. Ber.1907,37:2232-2236.
    [37] SANTIAGO A, BECKER R, Photochromic Fulgides. Spectroscopy andMechanism of Photoreactions [J]. Journal of the American Chemical Society,1968,90(14):3654-3658.
    [38] YOKOYAMA Y, TANAKA T, YAMANE T, Synthesis and PhotochromicBehavior of5-Substituted Indolylfulgides [J]. Chem. Lett.1991,7:1125-1128.
    [39] IRIE M, MOHRI M, Thermally Irreversible Photochromic Systems.Reversible Photocyclization of Diarylethene Derivatives [J]. The Journal ofOrganic Chemistry,1988,53(4):803-808.
    [40] IRIE M, UCHIDA T, TSOZUKI H, Photochromism of Single CrystallineDiarylethenes [J]. Chem. Lett.1995,8:899-900.
    [41] IRIE S, IRIE M, Radiation-Induced Coloration of PhotochromicDithienylethene Derivatives in Polymer Matrices [J]. Bulletin of theChemical Society of Japan,2000,73(10):2385-2388.
    [42] IRIE M, Diarylethenes for Memories and Switches [J]. Chemical Reviews,2000,100(5):1685-1716.
    [43] MATSUDA K, IRIE M, Diarylethene as A Photoswitching Unit [J]. Journalof Photochemistry and Photobiology C: Photochemistry Reviews,2004,5(2):169-182.
    [44] HAMMOND G, SALTIEL J, Photosensitized Cis-Trans Isomerization ofStilbenes [J]. Journal of the American Chemical Society1962,84(24):4983-4986.
    [45] SALTIEL J, Role of Phantom States in Cis-Trans Photoisomerization ofStilbenes [J]. Journal of the American Chemical Society1967,89(4):1036-1040.
    [46] WALDECK D, Photoisomerization Dynamics of Stilbenes [J]. ChemicalReviews1991,91(3):415-436.
    [47] MEIER H, The Photochemistry of Stilbenoid Compounds and Their Role inMaterial Technology [J]. Angew. Chem. Int. Edit.1992,31(4):1399-1420.
    [48] LIAO L, PANG Y, DING L, et al. Synthesis, Characterization andLuminescence of Poly[(M-Phenylenevinylene)-alt-(1,4-Dibutxy-2,5-Phenylenevinylene)] with different Content of Cis-And Trans-Olefins [J].Macromolecules2001,34(19):6756-6760.
    [49] LIAO L, DING L, KARASZ F, et al. Poly [(2-alkoxy-5-methyl-1,3-phenylene vinylene)-alt(phenylene vinylene)] Derivatives with DifferentContents of Cis-and Trans-Olefins: The Effect of The Olefin BondGeometry and Conjugation Length on Luminescence [J]. J. Polym. Sci. Pol.Chem.2004,42(2):303-316.
    [50] LIAO L, PANG Y, Synthesis and Characterization of Highly Blue-EmittingPoly(M-Phenylenevinylene) Derivative with Different Content of Cis-andTrans-Olefins [J]. Abstr. Pap. Am. Chem. S.2001,222(1):271-273.
    [51] LIAO L, PANG Y, DING L, et al. Poly[(2-alkyloxy-5-methyl-1,3-phenylene)-alt-(p-phenylenevinylene)]s with Different Trans/Cis-Olefin Content: TheirSynthesis and Luminescent Properties [J]. Abstr. Pap. Am. Chem. S.2002,223(2):10-15.
    [52] LIAO L, PANG Y, DING L, et al. Blue-emitting poly [(m-phenylenevinylene)-alt-(o-phenylene vinylene)] s: The Effect of Regioregularity on TheOptical Properties [J]. Journal of Polymer Science Part A: PolymerChemistry,2003,41(17):2650-2658.
    [53] LIAO L, PANG Y, Poly[(1,4-phenylenevinylene)-alt-(1,3-pheny lenevinylene)]s with Different Length of Side Chain: Their Synthesis and OpticalProperties [J]. Synthetic. Met.2004,144(3):271-277.
    [54] LIAO L, PANG Y, DING L, et al. Optical Properties of Poly[(1,4-phenylenevinylene)-alt-(1,3-phenylenevinylene)]s with cis-VinyleneStructure and Short Side Chain [J]. Thin Solid Films2005,479(1-2):249-253.
    [55] BANG C, SHISHIDO A, IKEDA T, Azobenzene Liquid‐CrystallinePolymer for Optical Switching of Grating Waveguide Couplers with a FlatSurface [J]. Macromolecular rapid communications,2007,28(9):1040-1044.
    [56] PUNTORIERO F, Ceroni P, Balzani V, et al. Photoswitchable DendriticHosts: A Dendrimer with Peripheral Azobenzene Groups [J]. Journal of theAmerican Chemical Society,2007,129(35):10714-10719.
    [57] PARKER R, GATES J, ROGERS H, et al. Using the PhotoinducedReversible Refractive-Index Change of An Azobenzene Co-Polymer toReconfigure An Optical Bragg Grating [J]. Journal of Materials Chemistry,2010,20(41):9118-9125.
    [58] FERRI V, ELBING M, PACE G, et al. Light‐Powered Electrical SwitchBased on Cargo-Lifting Azobenzene Monolayers [J]. Angewandte Chemie,2008,120(18):3455-3457.
    [59] WEN Y, YI W, MENG L, et al. Photochemical-controlled Switching Basedon Azobenzene Monolayer Modified Silicon (111) Surface [J]. The Journalof Physical Chemistry B,2005,109(30):14465-14468.
    [60] KAKIAGE K, YAMAMURA M, IDO E, et al. Reactivity of AlkoxysilylCompounds: Chemical Surface Modification of Nano-Porous AluminaMembrane Using Alkoxysilylazobenzenes [J]. Applied OrganometallicChemistry,2011,25(2):98-104.
    [61] BANGHART M, MOUROT A, FORTIN D, et al. Photochromic Blockers ofVoltage‐Gated Potassium Channels [J]. Angewandte Chemie InternationalEdition,2009,48(48):9097-9101.
    [62] KIM Y, PHILLIPS J, LIU H, et al. Using Photons to Manipulate EnzymeInhibition by An Azobenzene-Modified Nucleic Acid Probe [J]. Proceedingsof the National Academy of Sciences,2009,106(16):6489-6494.
    [63] WANG J, LIU H, HA C, Zinc-supported Azobenzene Derivative-BasedColorimetric Fluorescent Turn-On‘Sensing of Bovine Serum Albumin [J].Tetrahedron,2009,65(47):9686-9689.
    [64] BANGHART M, BORGES K, ISACOFF E, et al. Light-Activated IonChannels for Remote Control of Neuronal Firing [J]. Nature Neuroscience,2004,7(12):1381-1386.
    [65] NORIKANE Y, TAMAOKI N, Light-Driven Molecular Hinge: A NewMolecular Machine Showing A Light-Intensity-Dependent PhotoresponseThat Utilizes The Trans-Cis Isomerization of Azobenzene [J]. Organicletters,2004,6(15):2595-2598.
    [66] MURAKAMI H, KAWABUCHI A, KOTOO K, et al. A Light-DrivenMolecular Shuttle Based on A Rotaxane [J]. Journal of the AmericanChemical Society,1997,119(32):7605-7606.
    [67] MURAOKA T, KINBARA K, AIDA T, Mechanical Twisting of A Guest byA Photoresponsive Host [J]. Nature,2006,440(7083):512-515.
    [68] ITOH M, HARADA K, KAMEMARU S, et al. Holographic Recording onAzo-Benzene Functionalized Polymer Film [J]. Japanese journal of appliedphysics,2004,43(7S):4968.
    [69] VáRHEGYI P, KEREKES á, SAJTI S, et al. Saturation Effect inAzobenzene Polymers Used for Polarization Holography [J]. Applied PhysicsB,2003,76(4):397-402.
    [70] JIANG X, LI L, KUMAR J, et al. Unusual Polarization Dependent OpticalErasure of Surface Relief Gratings on Azobenzene Polymer Films [J].Applied Physics Letters,1998,72(20):2502-2504.
    [71] EVANGELIO E, SAIZ-POSEU J, MASPOCH D, et al. Synthesis, X‐rayStructure and Reactivity of a Sterically Protected Azobisphenol Ligand: Onthe Quest for New Multifunctional Active Ligands [J]. European Journal ofInorganic Chemistry,2008,2008(14):2278-2285.
    [72] SHINKAI S, NAKAJI T, NISHIDA Y, et al. Photoresponsive Crown Ethers.1. Cis-Trans Isomerism of Azobenzene as A Tool to Enforce ConformationalChanges of Crown Ethers and Polymers [J]. Journal of the AmericanChemical Society,1980,102(18):5860-5865.
    [73] LUBOCH E, WAGNER-WYSIECKA E, RZYMOWSKI T,4-Hexylresorcinol-derived Hydroxyazobenzocrown Ethers as Chromoionophores [J].Tetrahedron,2009,65(51):10671-10678.
    [74] LUBOCH E, WAGNER-WYSIECKA E, POLESKA-MUCHLADO Z, et al.Synthesis and Properties of Azobenzocrown Ethers with π-Electron Donor,Or π-Electron Donor and π-Electron Acceptor Group (S) on Benzene Ring(S)[J]. Tetrahedron,2005,61(45):10738-10747.
    [75] WENKER H, Indicator Properties of Dinitroaniline Azo Dyestuffs [J].Industrial&Engineering Chemistry Analytical Edition,1935,7(1):40-41.
    [76] ESCUDERO D, TRUPP S, BUSSEMER B, et al. Spectroscopic Properties ofAzobenzene-Based pH Indicator Dyes: A Quantum Chemical andExperimental Study [J]. Journal of Chemical Theory and Computation,2011,7(4):1062-1072.
    [77] SHI Y, LIU X, SHI P, et al. Characterization of Zinc-Binding Properties of ANovel Imidase From Pseudomonas Putida YZ-26[J]. Archives ofbiochemistry and biophysics,2010,494(1):1-6.
    [78] LONG M, TROTTER P, Vibrational Manifold Considerations for the MetalIndicator Dye2-(2-Pyridylazo)-1-Naphthol [J]. Applied Spectroscopy,1981,35(3):289-292.
    [79] HE T, CHENG Y, DU Y, et al. Z-scan Determination of Third-OrderNonlinear Optical Nonlinearity of Three Azobenzenes Doped Polymer Films[J]. Optics communications,2007,275(1):240-244.
    [80] HARTLEY G, The Cis-Form of Azobenzene [J]. Nature,1937,140:281.
    [81] FUJINO T, ARZHANTSEV S, TAHARA T, Femtosecond Time-ResolvedFluorescence Study of Photoisomerization of Trans-Azobenzene [J]. TheJournal of Physical Chemistry A,2001,105(35):8123-8129.
    [82] CHANG C, LU Y, WANG T, et al. Photoisomerization Dynamics ofAzobenzene in Solution with S1Excitation: A Femtosecond FluorescenceAnisotropy Study [J]. Journal of the American Chemical Society,2004,126(32):10109-10118.
    [83] BORTOLUS P, MONTI S, Cis-trans Photoisomerization of Azobenzene.Solvent and Triplet Donors Effects [J]. Journal of Physical Chemistry,1979,83(6):648-652.
    [84] WANG L, XU W, YI C, et al. Isomerization and Electronic Relaxation ofAzobenzene after Being Excited to Higher Electronic States [J]. Journal ofMolecular Graphics and Modelling,2009,27(7):792-796.
    [85] FISCHER E, FRANKEL M, WOLOVSKY R, Wavelength Dependence ofPhotoisomerization Equilibria in Azocompounds [J]. Journal of ChemicalPhysics,1955,23:1367-1372.
    [86] SIAMPIRINGUE N, GUYOT G, MONTI S, et al. The cis→transPhotoisomerization of Azobenzene: an Experimental Re-Examination [J].Journal of Photochemistry,1987,37(1):185-188.
    [87] GEGIOU D, MUSZKAT K, FISCHER E, Temperature Dependence ofPhotoisomerization. VI. Viscosity Effect [J]. Journal of the AmericanChemical Society,1968,90(1):12-18.
    [88] RAU H, Photoisomerization of Azobenzenes [M]. CRC Press: Boca Raton,FL,1990.
    [89] RAU H, LUEDDECKE E, On the Rotation-Inversion Controversy onPhotoisomerization of Azobenzenes. Experimental Proof of Inversion [J].Journal of the American Chemical Society,1982,104(6):1616-1620.
    [90] MALKIN S, FISCHER E, Temperature Dependence of Photoisomerization.Part II.1Quantum Yields of Cis-Trans Isomerizations in Azo-Compounds[J]. The Journal of Physical Chemistry,1962,66(12):2482-2486.
    [91] FISCHER E, Temperature Dependence of Photoisomerization Equilibria.Part I. Azobenzene and the Azonaphthalenes [J]. Journal of the AmericanChemical Society,1960,82(13):3249-3252.
    [92] ASANO T, YANO T, OKADA T, Mechanistic Study of Thermal ZEIsomerization of Azobenzenes by High-Pressure Kinetics [J]. Journal of theAmerican Chemical Society,1982,104(18):4900-4904.
    [93] ZHAO W, WU C, IWAMOTO M, Rate-equation Theory of AzobenzeneMonolayer Photoisomerization [J]. Chemical physics letters,1999,312(5):572-577.
    [94] HAMM P, OHLINE S, ZINTH W, Vibrational Cooling After UltrafastPhotoisomerization of Azobenzene Measured by Femtosecond InfraredSpectroscopy [J]. The Journal of chemical physics,1997,106(2):519-529.
    [95] LEDNEV I, YE T, MATOUSEK P, et al. Femtosecond Time-Resolved UV-Visible Absorption Spectroscopy of Trans-Azobenzene: Dependence onExcitation Wavelength [J]. Chemical physics letters,1998,290(1):68-74.
    [96] DYCK R, MCCLURE D, Ultraviolet Spectra of Stilbene, p‐MonohalogenStilbenes, and Azobenzene and the trans to cis Photoisomerization Process[J]. The Journal of Chemical Physics,2004,36(9):2326-2345.
    [97] FORBER C, KELUSKY E, BUNCE N, et al. Electronic Spectra of Cis-andTrans-Azobenzenes: Consequences of Ortho Substitution [J]. Journal of theAmerican Chemical Society,1985,107(21):5884-5890.
    [98] HOCHSTRASSER R, LOWER S, Polarization of the Spectra of CrystallineAzobenzene and Mixed Crystals of Azobenzene in Stilbene at77°and4.2°Kin the Region of the Lowest n→π*Transition [J]. The Journal of ChemicalPhysics,2004,36(12):3505-3506.
    [99] CUSATI T, GRANUCCI G, PERSICO M, et al. Oscillator Strength AndPolarization of The Forbidden N→π*Band of Trans-Azobenzene: AComputational Study [J]. The Journal of Chemical Physics,2008,128(19):194312.
    [100] CRECCA C, ROITBERG A, Theoretical Study of The IsomerizationMechanism of Azobenzene and Disubstituted Azobenzene Derivatives [J].The Journal of Physical Chemistry A,2006,110(26):8188-8203.
    [101] MAGEE J, SHAND JR W, EYRING H, Non-adiabatic Reactions. Rotationabout the Double Bond*[J]. Journal of the American Chemical Society,1941,63(3):677-688.
    [102] CURTIN D, GRUBBS E, MCCARTY C, Uncatalyzed syn-anti Isomerizationof Imines, Oxime Ethers, and Haloimines1[J]. Journal of the AmericanChemical Society,1966,88(12):2775-2786.
    [103] ICHIMURA K, SUZUKI Y, SEKI T, et al. Reversible Change in AlignmentMode of Nematic Liquid Crystals Regulated Photochemically by CommandSurfaces Modified with An Azobenzene Monolayer [J]. Langmuir,1988,4(5):1214-1216.
    [104] BLATTER K, SCHLUETER A, Ribbon-shaped structures via repetitiveDiels-Alder (DA) reaction. A polycatafusene [J]. Macromolecules,1989,22(8):3506-3508.
    [105] AOKI K, TAMAKI T, SEKI T, et al. Regulation of Alignment ofCyanobiphenyl Liquid Crystals by Azobenzene Molecular Films [J].Langmuir,1992,8(3):1014-1017.
    [106] ROCHON P, BISSONNETTE D, NATANSOHN A, et al. Azo Polymers forReversible Optical Storage. Ill. Effect of Film Thickness on Net PhaseRetardation and Writing Speed [J]. Applied optics,1993,32(35):7277-7280.
    [107] SAWODNY M, STUMPE J, KNOLL W, Photovolatilization of ThinPolysilane Films Detected by Surface-Plasmon Spectroscopy [J]. Journal ofApplied Physics,1991,69(4):1927-1935.
    [108] KNOBLOCH H, ORENDI H, BüCHEL M, et al. Command SurfaceControlled Liquid Crystalline Waveguide Structures as Optical InformationStorage [J]. Journal of Applied Physics,1994,76(12):8212-8214.
    [109] KNOBLOCH H, ORENDI H, BüCHEL M, et al. Photochromic CommandSurface Induced Switching of Liquid Crystal Optical Waveguide Structures[J]. Journal of Applied Physics,1995,77(2):481-487.
    [110] KNOBLOCH H, ORENDI H, STILLER B, et al. Command Surface InducedSwitching of the Optical Properties of Liquid Crystalline Thin FilmStructures [J]. Synthetic Metals,1996,81(2):297-300.
    [111] GABOR D, A New Microscopic Principle [J]. Nature,1948,161(4098):777-778.
    [112] PSALTIS D, BURR G, Holographic Data Storage [J]. Computer,1998,31(2):52-60.
    [113] HESSELINK L, ORLOV S, BASHAW M, Holographic Data StorageSystems [J]. Proceedings of the IEEE,2004,92(8):1231-1280.
    [114] MATHARU A, JEEVA S, RAMANUJAM P, Liquid Crystals forHolographic Optical Data Storage [J]. Chemical Society Reviews,2007,36(12):1868-1880.
    [115] TODOROV T, NIKOLOVA L, TOMOVA N, Polarization Holography.1: ANew High-Efficiency Organic Material with Reversible PhotoinducedBirefringence [J]. Applied optics,1984,23(23):4309-4312.
    [116] ONO H, KOWATARI N, KAWATSUKI N, Holographic Grating Generationin Thick Polymer Films Containing Azo Dye Molecules [J]. OpticalMaterials,2001,17(3):387-394.
    [117] ZHANG W, BIAN S, KIM S, High-efficiency Holographic Volume IndexGratings in DR1-Dye-Doped Poly(Methyl Methacrylate)[J]. Optics Letters,2002,27(13):1105-1107.
    [118] BIAN S, KUZYK M, Real-time Holographic Reflection Gratings in VolumeMedia of Azo-Dye-Doped Poly(Methyl Methacrylate)[J]. Optics letters,2002,27(20):1761-1763.
    [119] BIERINGER T, WUTTKE R, HAARER D, et al. Relaxation of HolographicGratings in Liquid-Crystalline Side Chain Polymers with Azo Chromophores[J]. Macromolecular Chemistry and Physics,1995,196(5):1375-1390.
    [120] BREINER T, KREGER K, HAGEN R, et al. Blends of Poly(Methacrylate)Block Copolymers with Photoaddressable Segments [J]. Macromolecules,2007,40(6):2100-2108.
    [121] H CKEL M, KADOR L, KROPP D, et al. Polymer Blends withAzobenzene-Containing Block Copolymers as Stable Rewritable VolumeHolographic Media [J]. Advanced Materials,2007,19(2):227-231.
    [122] H CKEL M, KADOR L, KROPP D, et al. Holographic Gratings in DiblockCopolymers with Azobenzene and Mesogenic Side Groups in ThePhotoaddressable Dispersed Phase [J]. Advanced Functional Materials,2005,15(10):1722-1727.
    [123] GIMENO S, FORCéN P, ORIOL L, et al. Photoinduced Optical Anisotropyin Azobenzene Methacrylate Block Copolymers: Influence of MolecularWeight and Irradiation Conditions [J]. European Polymer Journal,2009,45(1):262-271.
    [124] FORCéN P, ORIOL L, SáNCHEZ C, et al. Volume Holographic Storageand Multiplexing in Blends of PMMA and A Block MethacrylicAzopolymer, Using488nm Light Pulses in the Range of100ms to1s [J].European Polymer Journal,2008,44(1):72-78.
    [125] KIM D, TRIPATHY S, LI L, et al. Laser-induced Holographic Surface ReliefGratings on Nonlinear Optical Polymer Films [J]. Applied Physics Letters,1995,66(10):1166-1168.
    [126] ROCHON P, BATALLA E, NATANSOHN A, Optically Induced SurfaceGratings on Azoaromatic Polymer Films [J]. Applied Physics Letters,1995,66(2):136-138.
    [127] GAO J, HE Y, XU H, et al. Azobenzene-containing Supramolecular PolymerFilms for Laser-Induced Surface Relief Gratings [J]. Chemistry of Materials,2007,19(1):14-17.
    [128] UBUKATA T, SEKI T, ICHIMURA K, Surface Relief Gratings in Host-Guest Supramolecular Materials [J]. Advanced Materials,2000,12(22):1675-1678.
    [129] NATANSOHN A, ROCHON P, Photoinduced Motions in Azo-ContainingPolymers [J]. Chemical Reviews,2002,102(11):4139-4176.
    [130] LEFIN P, FIORINI C, NUNZI J, Anisotropy of the Photoinduced TranslationDiffusion of Azo-Dyes [J]. Optical Materials,1998,9(1):323-328.
    [131] ITOH M, HARADA K, MATSUDA H, et al. Photomodification of PolymerFilms: Azobenzene-Containing Polyurethanes [J]. Journal of Physics D:Applied Physics,1998,31(5):463.
    [132] JIANG X, LI L, KUMAR J, et al. Polarization Dependent Recordings ofSurface Relief Gratings on Azobenzene Containing Polymer Films [J].Applied Physics Letters,1996,68(19):2618-2620.
    [133] JIANG X, LI L, KUMAR J, et al. Unusual Polarization Dependent OpticalErasure of Surface Relief Gratings on Azobenzene Polymer Films [J].Applied Physics Letters,1998,72(20):2502-2504.
    [134] KIM D, LI L, JIANG X, et al. Polarized Laser Induced Holographic SurfaceRelief Gratings on Polymer Films [J]. Macromolecules,1995,28(26):8835-8839.
    [135] HO M, BARRETT C, PATERSON J, et al. Synthesis and Optical Propertiesof Poly {(4-nitrophenyl)-[3-[N-[2-(methacryloyloxy) ethyl]-carbazolyl]]diazene}[J]. Macromolecules,1996,29(13):4613-4618.
    [136] PETER K, Oxidative Coupling Polymerization of Primary AromaticDiamines [M]. Groningen, Wiskunde en Natuurwetenschappen,1966.
    [137] BRIQUET L, VERCAUTEREN D, ANDRé J, et al. On the Geometries andUV/Vis Spectra of Substituted Trans-Azobenzenes [J]. Chemical PhysicsLetters,2007,435(4):257-262.
    [138] BALASUBRAMANIAN S, KIM J, YU K, et al. Water Soluble, ConjugatedMain Chain Azo Polymer: Synthesis and Characterization [J].Macromolecular Rapid Communications,1996,17(12):853-857.
    [139] KIM B, YAMAMOTO T,[M]. Yokosuka, Nippon Kagakki Koen,1998.
    [140] IZUMI A, TERAGUCHI M, NOMURA R, et al. Synthesis of Poly (P-Phenylene)-Based Photoresponsive Conjugated Polymers HavingAzobenzene Units in The Main Chain [J]. Macromolecules,2000,33(15):5347-5352.
    [141] IZUMI A, TERAGUCHI M, NOMURA R, et al. Synthesis of ConjugatedPolymers with Azobenzene Moieties in The Main Chain [J]. Journal ofPolymer Science Part A: Polymer Chemistry,2000,38(7):1057-1063.
    [142] LETHEBY H, XXIX.—On the Production of A Blue Substance by TheElectrolysis of Sulphate of Aniline [J]. Journal of the Chemical Society,1862,15:161-163.
    [143] SHIRAKAWA H, LOUIS E, MACDIARMID A, et al. Synthesis ofElectrically Conducting Organic Polymers: Halogen Derivatives ofPolyacetylene(CH)x [J]. Journal of the Chemical Society, ChemicalCommunications,1977(16):578-580.
    [144] CHIANG C, FINCHER C, PARK Y, et al. Electrical Conductivity in DopedPolyacetylene [J]. Physical Review Letters,1977,39(17):1098-1101.
    [145] DIAZ A, KANAZAWA K, GARDINI G, Electrochemical Polymerization ofPyrrole [J]. Chemical Communications,1979(14):635-636.
    [146] SHI G, JIN S, XUE G, et al. A Conducting Polymer Film Stronger ThanAluminum [J]. Science,1995,267(5200):994-996.
    [147] SADKI S, SCHOTTLAND P, BRODIE N, et al. The Mechanisms of PyrroleElectropolymerization [J]. Chemical Society Reviews,2000,29(5):283-293.
    [148] HEYWANG G, JONAS F, Poly (alkylenedioxythiophene) s-New, veryStable Conducting Polymers [J]. Advanced Materials,1992,4(2):116-118.
    [149] JESTIN I, FRERE P, MERCIER N, et al. Synthesis and Characterization ofThe Electronic and Electrochemical Properties of ThienylenevinyleneOligomers with Multinanometer Dimensions [J]. Journal of the AmericanChemical Society,1998,120(32):8150-8.
    [150] HUCHET L, AKOUDAD S, RONCALI J, Electrosynthesis of HighlyElectroactive Tetrathiafulvalene-Derivatized Polythiophenes [J]. AdvancedMaterials,1998,10(7):541-5.
    [151] AKOUDAD S, RONCALI J, Electrogenerated Poly(thiophenes) withExtremely Narrow Bandgap and High Stability Under n-Doping Cycling [J].Chemical Communications,1998,19):2081-2.
    [152] RONCALI J, Electrogenerated Functional Conjugated Polymers as AdvancedElectrode Materials [J]. Journal of Materials Chemistry,1999,9(9):1875-93.
    [153] ELANDALOUSSI E H, FRERE P, RICHOMME P, et al. Effect of ChainExtension on The Electrochemical and Electronic Properties of Pi-Conjugated Soluble Thienylenevinylene Oligomers [J]. Journal of theAmerican Chemical Society,1997,119(44):10774-84.
    [154] LI M, ISHIHARA S, AKADA M, et al. Electrochemical-Coupling Layer-by-Layer (ECC-LbL) Assembly [J]. Journal of the American Chemical Society,2011,133(19):7348-51.
    [155] LI M, ISHIHARA S, JI Q, et al. Electrochemical Coupling Layer-by-layer(ECC-LbL) Assembly in Patterning Mode [J]. Chem Lett,2012,41(4):383-5.
    [156] ADVINCULA R C, BRITTAIN W J, CASTER K C, et al. Polymer brushes
    [M]. Wiley Online Library,2004.
    [157] DE LEON A C, PERNITES R, ADVINCULA R, SuperhydrophobicColloidally Textured Polythiophene Film as Superior Anticorrosion Coating[J]. ACS Applied Materials&Interfaces,2012,4(6):3169-76.
    [158] FRAU A, PARK Y, PERNITES R, et al. Nanocomposite p-n JunctionPolycarbazole CdSe/TiO2Thin Films on ITO via ElectrochemicalCrosslinking [J]. Macromolecular Materials and Engineering,2012,297(9):875-86.
    [159] SANTOS C M, MANGADLAO J, AHMED F, et al. GrapheneNanocomposite for Biomedical Applications: Fabrication, Antimicrobial andCytotoxic Investigations [J]. Nanotechnology,2012,23(39):
    [160][161] FELIPE M J, DUTTA P, PERNITES R, et al. ElectropolymerizedBioresistant Coatings of Oegylated Dendron Carbazoles: Design Parametersand Protein Resistance SPR Studies [J]. Polymer,2012,53(2):427-37.
    [161] RAVINDRANATH R, AJIKUMAR P K, BAHULAYAN S, et al. UltrathinConjugated Polymer Network Films of Carbazole Functionalized Poly(P-Phenylenes) Via Electropolymerization [J]. J Phys Chem B,2007,111(23):6336-43.
    [162] LI C, SHI G, Synthesis and Electrochemical Applications of The Compositesof Conducting Polymers and Chemically Converted Graphene [J].Electrochimica Acta,2011,56(28):10737-43.
    [163] LU G, LI C, SHI G, Synthesis and Characterization of3D Dendritic GoldNanostructures and Their Use as Substrates for Surface-Enhanced RamanScattering [J]. Chemistry of Materials,2007,19(14):3433-40.
    [164] WU Q, XU Y, YAO Z, et al. Supercapacitors Based on Flexible Graphene/Polyaniline Nanofiber Composite Films [J]. Acs Nano,2010,4(4):1963-70.
    [165] LIU A, LI C, BAI H, et al. Electrochemical Deposition of Polypyrrole/Sulfonated Graphene Composite Films [J]. Journal of Physical Chemistry C,2010,114(51):22783-9.
    [166] LI Y, HU Y, ZHAO Y, et al. An Electrochemical Avenue to Green-Luminescent Graphene Quantum Dots as Potential Electron-Acceptors forPhotovoltaics [J]. Advanced Materials,2011,23(6):776-779.
    [167] LI C, BAI H, SHI G, Conducting Polymer Nanomaterials: Electrosynthesisand Applications [J]. Chemical Society Reviews,2009,38(8):2397-409.
    [168] SUN Q, LI Y, PEI Q, Polymer Light-Emitting Electrochemical Cells forHigh-Efficiency Low-Voltage Electroluminescent Devices [J]. Journal ofDisplay Technology,2007,3(2):211-24.
    [169] LI Y, LIU Z, Electrochemical Quartz Crystal Microbalance Studies on TheTwo Reduction Processes of Conducting Polypyrrole Nitrate Films inAqueous Solutions [J]. Synthetic Metals,1998,94(1):131-3.
    [170] LI Y F, CAO Y, GAO J, et al. Electrochemical Properties of LuminescentPolymers and Polymer Light-Emitting Electrochemical Cells [J]. SyntheticMetals,1999,99(3):243-8.
    [171][172] LI Y, FAN Y, Doping Competition of Anions During TheElectropolymerization Of Pyrrole in Aqueous Solutions [J]. Synthetic Metals,1996,79(3):225-7.
    [172] LI Y, GAO J, WANG D, et al. Ac Impedance of Frozen Junction PolymerLight-Emitting Electrochemical Cells [J]. Synthetic Metals,1998,97(3):191-4.
    [173] YOKOMICHI Y, SEKI K, TADA S, et al. Molecular Design and Synthesisof Poly (Azoarylenes)[J]. Synthetic Metals,1995,69(1):577-578.
    [174] LéVESQUE I, LECLERC M, Novel Dual Photochromism in PolythiopheneDerivatives [J]. Macromolecules,1997,30(15):4347-4352.
    [175] ZAGORSKA M, KULSZEWICZ-BAJER I, PRON A, et al. Preparation andSpectroscopic and Spectroelectrochemical Characterization of Copolymers of3-Alkylthiophenes and Thiophene Functionalized with An Azo Chromophore[J]. Macromolecules,1998,31(26):9146-9153.
    [176] ZHAO X, WANG M, Synthesis and Photoresponsive Behavior ofAzobenzene-Functionalized Polythiophene Films [J]. European PolymerJournal,2006,42(2):247-253.
    [177] POZO-GONZALO C, POMPOSO J, RODRíGUEZ J, et al. Synthesis andElectrochemical Study of Narrow Band Gap Conducting Polymers Based on2,2‘-Dipyrroles Linked with Conjugated Aza-Spacers [J]. Synthetic Metals,2007,157(1):60-65.
    [178] ZOTTI G, ZECCHIN S, SCHIAVON G, et al. Synthesis andCharacterization of Polyazopyrrole. A Novel Narrow-Bandgap Polypyrrolewith Proton-Exchange Properties [J]. Synthetic Metals,1996,78(1):51-57.
    [179] CIHANER A, ALGI F, Electrochemical and Optical Properties of NewSoluble Dithienylpyrroles Based on Azo Dyes [J]. Electrochimica Acta,2009,54(6):1702-1709.
    [1] A. FICK, Phil. Mag.1855,10,30.
    [2] BATCHELOR G. K., An Introduction to Fluid Dynamics, Vol.3, CambridgeUniversity, New York, USA,1967, Ch.3.
    [3] LI M H, KELLER P, LI B, et al. Light-Driven Side-On Nematic ElastomerActuators [J]. Advanced Materials,2003,15(7-8):569-572.
    [4] IKEDA T, NAKANO M, YU Y, et al. Anisotropic Bending and UnbendingBehavior of Azobenzene Liquid-Crystalline Gels by Light Exposure [J].Advanced Materials,2003,15(3):201-205.
    [5] VAN DER VEEN G, PRINS W, Photomechanical Energy Conversion in aPolymer Membrane [J]. Nature,1971,230(11):70-72.
    [6] VAN DER VEEN G, PRINS W, Photoregulation of Polymer Conformationby Photochromic Moieties–I. Anionic Ligand to An Anionic Polymer [J].Photochemistry and Photobiology,1974,19(3):191-196.
    [7] ATHANASSIOU A, KALYVA M, LAKIOTAKI K, et al. All-OpticalReversible Actuation of Photochromic-Polymer Microsystems [J]. AdvancedMaterials,2005,17(8):988-992.
    [8] LENDLEIN A, JIANG H, JNGER O, et al. Light-induced Shape-MemoryPolymers [J]. Nature,2005,434(7035):879-882.
    [9] YU Y, NAKANO M, SHISHIDO A, et al. Effect of Cross-linking Density onPhotoinduced Bending Behavior of Oriented Liquid-Crystalline NetworkFilms Containing Azobenzene [J]. Chemistry of Materials,2004,16(9):1637-1643.
    [10] YU Y, NAKANO M, IKEDA T, Photoinduced Bending and UnbendingBehavior of Liquid-Crystalline Gels and Elastomers [J]. Pure and AppliedChemistry,2004,76(7):1467-1477.
    [11] IKEDA T, TSUTSUMI O, Optical Switching and Image Storage by Meansof Azobenzene Liquid-Crystal Films [J]. Science,1995,268(5219):1873-1875.
    [12] TSUTSUMI O, KITSUNAI T, KANAZAWA A, et al. Photochemical PhaseTransition Behavior of Polymer Azobenzene Liquid Crystals with Electron-Donating and-Accepting Substituents at the4,4-Positions [J]Macromolecules1998,31,355.
    [13] NATANSOHN A, ROCHON P, Photoinduced Motions in Azo-ContainingPolymers [J]. Chemical Reviews,2002,102(11):4139-4176.
    [14] ICHIMURA K, Photoalignment of Liquid-Crystal Systems [J]. Chemicalreviews,2000,100(5):1847-1874.
    [15] KIM D, TRIPATHY S, LI L, KUMAR J, Laser-Induced Holographic SurfaceRelief Gratings on Nonlinear Optical Polymer Films [J]. Applied PhysicsLetters,1995,66(10):1166-1168.
    [16] ROCHON P, BATALLA E, NATANSOHN A, Optically Induced SurfaceGratings on Azoaromatic Polymer Films [J]. Applied Physics Letters,1995,66(2):136-138.
    [17] UBUKATA T, SEKI T, ICHIMURA K, Surface Relief Gratings in Host–Guest Supramolecular Materials [J]. Advanced Materials,2000,12(22):1675-1678.
    [18] GAO J, HE Y, XU H, et al. Azobenzene-Containing Supramolecular PolymerFilms for Laser-Induced Surface Relief Gratings [J]. Chemistry of materials,2007,19(1):14-17.
    [19] WANG Y, MA N, WANG Z, et al. Photocontrolled ReversibleSupramolecular Assemblies of an Azobenzene-Containing Surfactant with-Cyclodextrin [J]. Angewandte Chemie International Edition,2007,46(16):2823-2826.
    [20] BLEGER D, LIEBIG T, THIERMANN R, et al. Light-OrchestratedMacromolecular―Accordions‖: Reversible Photoinduced Shrinking of Rigid-Rod Polymers [J]. Angewandte Chemie,2011,123(52):12767-12771.
    [1] KANG H, LEE S, PARK J, Hierarchical Surface Reliefs by HolographicPhotofluidization of Azopolymer Arrays: Direct Visualization of PolymericFlows [J]. Adv. Functional Mater,2011,21(23):4412-4422.
    [2] UBUKATA T, SEKI T, ICHIMURA K, Surface Relief Gratings in Host-Guest Supramolecular Materials [J]. Advanced Materials,2000,12(22):1675-1678.
    [3] WANG D, YE G, WANG X, et al. Graphene Functionalized with AzoPolymer Brushes: Surface-Initiated Polymerization and PhotoresponsiveProperties [J]. Advanced Materials,2011,23(9):1122-1125.
    [4] PRIIMAGI A, LINDFORS K, KAIVOLA M, et al. Efficient Surface-ReliefGratings in Hydrogen-Bonded Polymer Azobenzene Complexes [J]. ACSapplied materials&interfaces,2009,1(6):1183-1189.
    [5] NATANSOHN A, ROCHON P, Photoinduced Motions in Azo-ContainingPolymers [J]. Chemical Reviews,2002,102(11):4139-4176.
    [6] HO M S, BARRETT C, PATERSON J, et al. Synthesis and OpticalProperties Of Poly{(4-Nitrophenyl)-[3-[N-[2-(Methacryloyloxy) Ethyl]-Carbazolyl]] Diazene}[J]. Macromolecules,1996,29(13):4613-4618.
    [7] VICTOR J G, TORKELSON J M, On Measuring the Distribution of LocalFree Volume in Glassy Polymers by Photochromic and FluorescenceTechniques [J]. Macromolecules,1987,20(9):2241-2250.
    [8] BARRETT C, NATANSOHN A, ROCHON P, Mechanism of OpticallyInscribed High-Efficiency Diffraction Gratings in Azo Polymer Films [J].The Journal of Physical Chemistry,1996,100(21):8836-8842.
    [9] XIE S, NATANSOHN A, ROCHON P, Recent Developments in AromaticAzo Polymers Research [J]. Chemistry of materials,1993,5(4):403-411.
    [10] LEE T S, KIM D Y, JIANG X L, et al. Photoinduced Surface Relief Gratingsin High-Tg Main-Chain Azoaromatic Polymer Films [J]. Journal of PolymerScience Part A: Polymer Chemistry,1998,36(2):283-289.
    [11] NA S I, KIM S S, JO J, et al. Efficient Polymer Solar Cells with SurfaceRelief Gratings Fabricated by Simple Soft Lithography [J]. AdvancedFunctional Materials,2008,18(24):3956-3963.
    [12] KRAVCHENKO A, SHEVCHENKO A, OVCHINNIKOV V, et al. OpticalInterference Lithography Using Azobenzene-Functionalized Polymers forMicro-and Nanopatterning of Silicon [J]. Advanced Materials,2011,23(36):4174-4177.
    [13] GANGOPADHYAY R, DE A. Conducting polymer nanocomposites: a briefoverview [J]. Chemistry of Materials,2000,12(3):608-22.
    [14] SCROSATI B, Applications of electroactive polymers [M]. Springer,1993.
    [15] TOURILLON G, GARNIER F, Inclusion of Metallic Aggregates in OrganicConducting Polymers. A New Catalytic System,[Poly (3-Methylthiophene)-Ag-Pt], for Proton Electrochemical Reduction [J]. The Journal of PhysicalChemistry,1984,88(22):5281-5.
    [16][TOURILLON G, GARNIER F, New Electrochemically Generated OrganicConducting Polymers [J]. Journal of Electroanalytical Chemistry andInterfacial Electrochemistry,1982,135(1):173-8.
    [17] SKOTHEIM T A, Handbook of Conducting Polymers [M]. CRC Press,1998.
    [18] WANG J, Electrochemical Glucose Biosensors [J]. Chemical Reviews,2008,108(2):814-25.
    [19] GERARD M, CHAUBEY A, MALHOTRA B, et al. Application ofConducting Polymers to Biosensors [J]. Biosensors&Bioelectronics,2002,17(5):345-59.
    [20] RAMANAVI IUS A, RAMANAVI IEN A, MALINAUSKAS A, et al.Electrochemical Sensors Based on Conducting Polymer—Polypyrrole [J].Electrochimica Acta,2006,51(27):6025-37.
    [21] RUDGE A, DAVEY J, RAISTRICK I, et al. Conducting Polymers as ActiveMaterials in Electrochemical Capacitors [J]. Journal of power sources,1994,47(1):89-107.
    [22] DE LEEUW D, SIMENON M, BROWN A, et al. Stability of N-Type DopedConducting Polymers and Consequences for Polymeric MicroelectronicDevices [J]. Synthetic Metals,1997,87(1):53-9.
    [23] MONK P, MORTIMER R, ROSSEINSKY D, Electrochromism [M]. Wiley-VCH,2008.
    [24] HEINZE J, FRONTANA-URIBE B, LUDWIGS S, Electrochemistry ofConducting Polymers Persistent Models and New Concepts [J]. ChemicalReviews,2010,110(8):4724-71.
    [25] MARREC P, DANO C, GUEGUEN-SIMONET N, et al. The AnodicOxidation and Polymerization of Carbazoles and Dicarbazoles N-Substitutedby Polyether Chains [J]. Synthetic Metals,1997,89(3):171-9.
    [26] DESBENE-MONVERNAY A, LACAZE P, DELAMAR M, A QuantitativeStudy of Cross-Linking in Electrodeposited Carbazole Films UsingTetrabutylammonium Tribromide Bromination and XPS Analysis [J]. Journalof Electroanalytical Chemistry,1992,334(1):241-6.
    [27] DESBENE-MONVERNAY A, LACAZE P, DUBOIS J,Polaromicrotribometric (PMT) and IR, ESCA, EPR Spectroscopic Study ofColored Radical Films Formed by The Electrochemical Oxidation ofCarbazoles: Part I. Carbazole and N-Ethyl, N-Phenyl And N-CarbazylDerivatives [J]. Journal of Electroanalytical Chemistry and InterfacialElectrochemistry,1981,129(1):229-241.
    [1] PEDERSEN C, Cyclic Polyethers and Their Complexes with Metal Salts [J].Journal of the American Chemical Society,1967,89(26):7017-7036.
    [2] BRIGHT D, TRUTER M, Crystal Structure of A Cyclic Polyether Complexof Alkali Metal Thiocyanate [J].1970:176-177.
    [3] MAKOSZA M, LUDWIKOW M, Crown Ethers as Catalysts in Reactionsof Carbanions and Halocarbenes [J]. Angewandte Chemie InternationalEdition in English,1974,13(10):665-666.
    [4] WONG K, YAGI K, SMID J, Ion Transport through Liquid MembranesFacilitated by Crown Ethers And Their Polymers [J]. The Journal ofMembrane Biology,1974,18(1):379-397.
    [5] V GTLE F, FRENSCH K, Papaverine Crown Ethers [J]. AngewandteChemie International Edition in English,1976,15(11):685-686.
    [6] BROTIN T, GONCALVES S, BERTHAULT P, et al. Influence of the CavitySize of Water-Soluble Cryptophanes on Their Binding Properties for Cesiumand Thallium Cations [J]. The Journal of Physical Chemistry B,2013,117(41):12593-12601.
    [7] COOK T, ZHENG Y, STANG P, Metal–organic Frameworks and Self-Assembled Supramolecular Coordination Complexes: Comparing andContrasting The Design, Synthesis, and Functionality of Metal–OrganicMaterials [J]. Chemical Reviews,2012,113(1):734-777.
    [8] SHINKAI S, NAKAJI T, NISHIDA Y, et al. Photoresponsive Crown Ethers.1. Cis-Trans Isomerism of Azobenzene as A Tool to Enforce ConformationalChanges of Crown Ethers and Polymers [J]. Journal of the AmericanChemical Society,1980,102(18):5860-5865.
    [9] TAHARA R, MOROZUMI T, NAKAMURA H, et al. Photoisomerization ofAzobenzocrown Ethers. Effect of Complexation of Alkaline Earth Metal Ions[J]. The Journal of Physical Chemistry B,1997,101(39):7736-7743.
    [10] JANUS K, SWORAKOWSKI J, Photochromism of Crown Ethers withIncorporated Azobenzene Moiety [J]. The Journal of Physical Chemistry B,2005,109(1):93-101.
    [11] PIPOOSANANAKATON B, SUKWATTANASINITT M, JAIBOON N, etal. Preparation of New Azobenzene Crown Ether P-Tert-Butylcalix[4]Arenesand Their Roles as Switchable Ionophores for Na+and K+Ions [J].Tetrahedron Letters,2000,41(47):9095-9100.
    [12] SHINKAI S, KINDA H, MANABE O, Photoresponsive Complexation ofMetal Cations with an Azobenzene-Crown-Azobenzene Bridge Immobilizedin Polymer Supports [J]. Journal of the American Chemical Society,1982,104(10):2933-2934.
    [13] OKA Y, TAMAOKI N, Structure of Silver (I) Complex Prepared fromAzobenzenonaphthalenophane, Photochemical Coordination Change ofSilver (I) and Silver (I)-Induced Acceleration of Z-E Thermal Isomerizationof Azobenzene Unit [J]. Inorganic Chemistry,2010,49(11):4765-4767.
    [14] COOPER A, Conjugated Microporous Polymers [J]. Advanced Materials,2009,21(12):1291-1295.
    [15] JIANG J, WANG C, LAYBOURN A, et al. Metal–organic ConjugatedMicroporous Polymers [J]. Angewandte Chemie International Edition,2011,50(5):1072-1075.
    [16] WANG X, MAEDA K, THOMAS A, et al. A Metal-Free PolymericPhotocatalyst for Hydrogen Production from Water Under Visible Light [J].Nature Materials,2009,8(1):76-80.
    [17] THOMAS A, Functional Materials: from Hard to Soft Porous Frameworks[J]. Angewandte Chemie International Edition,2010,49(45):8328-8344.
    [18] CHEN L, YANG Y, JIANG D, CMPs as Scaffolds for Constructing PorousCatalytic Frameworks: A Built-in Heterogeneous Catalyst with High Activityand Selectivity Based on Nanoporous Metalloporphyrin Polymers [J]. Journalof the American Chemical Society,2010,132(26):9138-9143.
    [19] KOU Y, XU Y, GUO Z, et al. Supercapacitive Energy Storage and ElectricPower Supply Using an Aza-Fused π-Conjugated Microporous Framework[J]. Angewandte Chemie,2011,123(37):8912-8916.
    [20] JIANG J, LAYBOURN A, CLOWES R, et al. High Surface Area ContortedConjugated Microporous Polymers Based on Spiro-Bipropylenedioxythiophene [J]. Macromolecules,2010,43(18):7577-7582.
    [21] WEBER J, THOMAS A, Toward Stable Interfaces in Conjugated Polymers:Microporous Poly (P-Phenylene) and Poly (Phenyleneethynylene) Based onA Spirobifluorene Building Block [J]. Journal of the American ChemicalSociety,2008,130(20):6334-6335.
    [22] TREWIN A, COOPER A, Porous Organic Polymers: Distinction fromDisorder [J]. Angewandte Chemie International Edition,2010,49(9):1533-1535.
    [23] SCHMIDT J, WEBER J, EPPING J, et al. Microporous ConjugatedPoly(Thienylene Arylene) Networks [J]. Advanced Materials,2009,21(6):702-705.
    [24] SENKOVSKYY V, SENKOVSKA I, KIRIY A, Surface-Initiated Synthesisof Conjugated Microporous Polymers: Chain-Growth Kumada Catalyst-Transfer Polycondensation at Work [J]. ACS Macro Letters,2012,1(4):494-498.
    [25] KIM M, BYEON M, BAE J, et al. Preparation of Ultrathin Films ofMolecular Networks Through Layer-by-Layer Cross-Linking Polymerizationof Tetrafunctional Monomers [J]. Macromolecules,2011,44(18):7092-7095.
    [26] CHENG G, HASELL T, TREWIN A, et al. Soluble Conjugated MicroporousPolymers [J]. Angewandte Chemie International Edition,2012,51(51):12727-12731.
    [27] GU C, CHEN Y, ZHANG Z, et al. Electrochemical Route to Fabricate Film-Like Conjugated Microporous Polymers and Application for OrganicElectronics [J]. Advanced Materials,2013,25(25):3443-3448.
    [28] GU C, LIU H, HU D, et al. Controllable Optical, Electrical, and MorphologicProperties of3,4-Ethylenedioxythiophene Based ElectrocopolymerizationFilms [J]. Macromolecular Rapid Communications,2011,32(13):1014-1019.
    [29] CHEN Q, LUO M, HAMMERSH J P, et al. Microporous Polycarbazolewith High Specific Surface Area for Gas Storage and Separation [J]. Journal
    of the American Chemical Society,2012,134(14):6084-6087.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700