用户名: 密码: 验证码:
基于多源遥感影像的雪盖及雪表面温度反演
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
积雪作为融雪径流模型的重要输入参数,其数据的准确性将直接影响到融雪径流的模拟和预报结果。遥感以其宏观、综合、动态及快速的优势成为积雪研究的重要手段,目前对于积雪的遥感研究因受传感器及应用需求的影响,多集中在中尺度和大尺度的研究,而对小的流域尺度的研究不多。随着我国对融雪径流模拟预报研究的深入开展,对融雪期流域积雪数据的准确获取和动态监测需求迫切。
     本文即在此需求的基础上,从经济、准确、快速且尽可能多的获得连续数据的角度出发,选择我国自行研制的专门用于环境与灾害监测的环境与灾害监测预报小卫星(HJ-1A/1B)及MODIS数据,以地处新疆天山北坡昌吉州呼图壁县境内的军塘湖流域作为典型研究区,对基于两种数据源的雪盖及雪表面温度遥感定量反演展开了较为系统和深入的研究。
     本文开展的主要研究内容包括以下几个方面:
     开展了积雪在可见光、近红外及热红外波段的光谱特性研究,对融雪期的积雪光谱特性、影响因素等进行细致的分析和研究,为研究区积雪参数的遥感定量反演提供相应的物理基础。结果表明,融雪期间,积雪物理状态的快速变化会造成明显的积雪反射差异,从而对积雪的定量遥感研究产生影响。
     探讨常用几种大气校正方法在HJ-1A/1B卫星影像大气校正中的适用性,并针对HJ-1A/1B卫星影像观测角大的特点,研究利用MODTRAN模型模拟构建了不同观测条件下的大气校正参数查找表。结果表明,查找表法的大气校正效果最好,能有效提高大气校正精度,若对大气校正精度要求不高,不考虑观测天顶角变化的影响时,FLAASH模型不失为一种简便有效的大气校正方法。
     根据研究区特点及每天能够获取的实际数据情况,开展不同情况下的雪盖提取方法研究,构建针对不同数据源和不同融雪状态的雪盖提取方法。提出融合TM影像获取的研究区林区覆盖本底数据进行雪盖提取,提高了林区雪盖提取精度;分析了HJ-1A/1B影像在不同融雪状态下的雪盖指数最优波段组合及判别阈值;当只有CCD数据时,采用纹理辅助的SVM分类方法能提高雪盖提取精度;此外对于MODIS数据,根据研究区状况模拟构建了林区与非林区的分段雪盖率反演模型,提出利用NDSI阈值修订模型系数的方法,该模型明显提高了MODIS在小流域尺度上的雪盖反演精度,且通过对模型系数的快速调整,能适应不同融雪状态下雪盖率反演,避免固定系数因融雪差异而产生的较大误差。
     针对HJ-1B IRS和MODIS数据,进行了雪表面温度反演方法研究。探讨利用HJ-1BIRS数据进行雪表面温度反演,开展低温地表下QK&B及JM&S两种单通道温度反演算法及参数获取研究,借助大气辐射传输模型MODTRAN进行低温环境下的算法验证和敏感性分析,结果表明在不考虑参数误差的情况下,两种算法在低温环境下均会造成1K左右的误差,其中QK&B算法随雪表面温度升高误差迅速增大,而JM&S算法则变化不大,误差相对稳定,总的来说,两种算法均能准确反映雪表面温度的空间分布趋势和差异,但普遍高估了雪表面温度,其中JM&S算法精度略高于QK&B算法;对于MODIS影像,首先模拟了低温环境下Plank函数的线性化系数,其次提出以像元雪盖率及林区本底数据为基础的混合像元组成结构假设,并以此推导出了亚像元雪表面温度反演公式,最后提出了一种基于像元雪盖率及林区本底数据的MODIS积雪像元地表平均比辐射率估算方法,实验表明,该方法相对传统组分温度反演方法简单且易于操作实现,一定程度上提高了MODIS的雪表面温度反演精度,特别是对于混合像元较为明显的区域,如林区。
As the snowmelt runoff model input parameters, the accuracy of the snow parameterswill directly affect the snowmelt runoff modeling and forecasting results. Because of themacro, comprehensive, dynamic and fast advantages, remote sensing has become animportant means for snow study. At present, due to the influence of the sensor and applicationrequirements, remote sensing is often used for mesoscale and large-scale snow study but littlefor watershed scale snow study. With the in-depth study on the forecasts of snowmelt runoffsimulation, there is an urgent need to obtain accurate snow data in river basin during thesnowmelt period.
     This study is based on the above requirements, select the JunTanghu River basin as atypical study area, and choose HJ-1A/1B and MODIS data used for snow cover and snowsurface temperature inversion study.
     The main research contents include the following aspects:
     Explore the spectral characteristics of the snow in the visible, near infrared and thermalinfrared band. Analysis of the spectral characteristics and influencing factors of snow in thesnowmelt period, to provide the physical basis of remote sensing quantitative retrieval ofsnow parameters for the study area. The results show that, during the snowmelt, the snowphysical state rapidly changes will cause obvious change of snow reflectance, which willaffect the snow parameters quantitative inversion.
     Some commonly used atmosphere correction methods are used to corrected theatmospheric distortion for HJ-1A/1B data and discussed the feasibility of these methods.According to the characteristics that observation angle is biger in HJ-1A/1B, usingMODTRAN model building atmosphere correction parameter look-up table in differentobservation condition. The results indicate that, the method of look-up table is best inatmosphere correction. If the demand for accuracy is not high, can use the FLAASH model for atmospheric correction.
     According to the characteristics of the study area and the type of data source, to carry outthe snow cover extraction method research, and build snow cover extraction methods fordifferent data sources and snowmelt state. Fusion inversion forest data by TM image for snowcover extraction, the method can improve the snow cover extraction accuracy in forest area.Research the optimum band combination of the snow cover index and discriminationthreshold in different snowmelt state for HJ-1A/1B image. If only use CCD data, textureassisted SVM method can improve the snow cover extraction accuracy. In addition, for theMODIS data, to build a segmented snow cover fraction inverse model according to the statusof the study area and proposed use NDSI threshold to revision model coefficients. Themethod significantly improves the retrieval accuracy of snow cover on a watershed scale, andby the rapid adjustment of the model coefficients, can adapt the fraction of snow coverinversion under the different snowmelt state.
     To carry out the snow surface temperature inversion method study based on the HJ-1BIRS and MODIS data. Using IRS data to retrieved the snow surface temperature, and carriedout the research on QK&B and JM&S two single-channel algorithms and the parametersacquisition methods. Atmospheric radiative transfer model MODTRAN was used to carry outthe validation of the two algorithms errors and sensitivity analysis at low temperatures. Theresults show that in low temperature, if do not take into account the parameter errors, the twoalgorithms will produce to1K error. QK&B algorithm error rapidly increasedwith the snowsurface temperature increases, the error that caused by JM&S algorithm is little change. Ingeneral, both algorithms can accurately reflect the space distribution trends and thedifferences of the snow surface temperature, but both generally overestimated the snowsurface temperature, the accuracy of the JM&S algorithm slightly higher than the QK&Balgorithm. For MODIS image, firstly, simulate the linear coefficient of the Plank function inlow temperature environment, then to deduce the sub-pixel snow surface temperature inversion formula, and based on the snow cover fraction and forest areas and then proposed asurface average emissivity estimation methods. the result indicate that, compared to thetraditional component temperature inversion method this algorithm is simple and easy tooperate and it can improve the MODIS snow surface temperature retrieval accuracy in acertain extent, especially for the mixed pixel area, such as forest areas.
引文
[1]曹梅盛,李新,陈贤章等.冰冻圈遥感[M].北京:科学出版社,2006.
    [2] NASA. Chapter6: Cryospheric Systems. http://eospso.gsfc.nasa.gov/science_plan/Ch6.pdf,1998:261-307.
    [3]李培基,米德生.中国积雪的分布[J].冰川冻土.1983,5(4):9-18.
    [4]李培基.中国季节积雪资源的初步评价[J].地理学报.1988,43(2):108-119.
    [5] Bulygina O. N., Groisman P. Y., Razuvaev V. N. et al. Changes in snow cover characteristicsover Northern Eurasia since1966[J]. Environmental Research Letters.2011,6:1-10.
    [6] Wang Z. Y., Che T. Spatiotemporal distributions analysis of snow cover based on combinedMODIS and AMSR-E products in the arid land of China[J]. International Journal of LandProcesses and Arid Environment (IJLPAE).2012,1(1):19-26.
    [7] Gurung D. R., Kulkarni A. V., Giriraj A. et al. Monitoring of seasonal snow cover in Bhutanusing remote sensing technique[J]. Current Science (Bangalore).2011,101(10):1364-1370.
    [8]李金亚,杨秀春,徐斌等.基于MODIS与AMSR-E数据的中国6大牧区草原积雪遥感监测研究[J].地理科学.2011,31(9):1097-1104.
    [9] Sheffield J., Pan M., Wood E. F. et al. Snow process modeling in the North American Land DataAssimilation System (NLDAS). Part I: Evaluation of model simulated snow cover extent,submitted to[J]. J. Geophys. Res.2003,(GCIP3):1-41.
    [10]张洪恩.青藏高原中分辨率亚像元雪填图算法研究[D].中国科学院博士学位论文,2004.
    [11]文军, Paul D. J.,王致君等.利用MODIS和ASAR资料估算青藏高原念青唐古拉山脉地区冰雪范围及厚度[J].冰川冻土.2006,28(1):54-61.
    [12] Ulaby F. T., Moore R. K., Fung A. K. Microwave Remote Sensing: Active and Passive[J]. ArtechHouse, Norwood, MA.1981,1(1):2062.
    [13] Ulaby F. T., Moore R. K., Fung A. K. Microwave Remote Sensing: Active and Passive, vol.2[J].Norwood, MA: Artech House.1981:256–343.
    [14] Ulaby F. T., Moore R. K., Fung A. K. Microwave remote sensing: active and passive. Vol.3,From theory to applications[M]. Addison-Wesley,1986.
    [15] Chang A. T. C., Foster J. L., Hall D. K. Nimbus-7SMMR derived global snow coverparameters[J]. Ann. Glaciol.1987,9:39-44.
    [16]张顺英.利用诺阿-5号卫星影像研究积雪和融雪径流[J].科学通报.1980,25(15):700-702.
    [17]曹梅盛,冯学智,金德洪.积雪的若干光谱反射特征[J].科学通报.1982,27(20):1259-1261.
    [18] Hall D. K., Riggs G. A., Salomonson V. V. Development of methods for mapping global snowcover using moderate resolution imaging spectroradiometer data[J]. Remote Sensing ofEnvironment.1995,54(2):127-140.
    [19] Hall D. K., Riggs G. A., Salomonson V. V. et al. MODIS snow-cover products[J]. RemoteSensing of Environment.2002,83(1):181-194.
    [20] Hall D. K., Riggs G. A., Salomonson V. V. et al. Earth Observing System (EOS) ModerateResolution Imaging Spectroradiometer (MODIS) global snow-cover maps[J]. IAHS Publication.2001,(267):55-60.
    [21] Salomonson V. V., Appel I. Estimating fractional snow cover from MODIS using the normalizeddifference snow index[J]. Remote Sensing of Environment.2004,89(3):351-360.
    [22]方墨人,田庆久,李英成等.青藏高原MODIS图像冰雪信息挖掘与动态监测分析[J].地球信息科学.2006,7(4):10-14.
    [23] Shi J., Dozier J. Mapping seasonal snow with SIR-C/X-SAR in mountainous areas[J]. Remotesensing of environment.1997,59(2):294-307.
    [24] Shi J., Dozier J., Rott H. Snow mapping in alpine regions with synthetic aperture radar[J].Geoscience and Remote Sensing, IEEE Transactions on.1994,32(1):152-158.
    [25] Rott H., Strobl D. Synergism of SAR and Landsat TM imagery for thematic investigations incomplex terrain[J]. Advances in Space Research.1992,12(7):425-431.
    [26] Baghdadi N., Gauthier Y., Bernier M. Capability of multitemporal ERS-1SAR data forwet-snow mapping[J]. Remote Sensing of Environment.1997,60(2):174-186.
    [27] Baghdadi N., Gauthier Y., Bernier M. et al. Potential and limitations of RADARSAT SAR datafor wet snowmonitoring[J]. Geoscience and Remote Sensing, IEEE Transactions on.2000,38(1):316-320.
    [28] Bernier M., Fortin J. P. The potential of times series of C-Band SAR data to monitor dryandshallow snow cover[J]. Geoscience and Remote Sensing, IEEE Transactions on.1998,36(1):226-243.
    [29] Koskinen J. T., Pulliainen J. T., Hallikainen M. T. The use of ERS-1SAR data in snow meltmonitoring[J]. Geoscience and Remote Sensing, IEEE Transactions on.1997,35(3):601-610.
    [30] Wismann V. Special section on emerging scatterometer applications-special issue papers-ploarand snow ice-monitoring of seasonal snowmelt on greenland with ERS scatterometer data[J].IEEE Transactions on Geoscience and Remote Sensing.2000,38(4):1821-1826.
    [31] Nghiem S. V., Tsai W. Y. Global snow cover monitoring with spaceborne Ku-bandscatterometer[J]. Geoscience and Remote Sensing, IEEE Transactions on.2001,39(10):2118-2134.
    [32] Rodell M., Houser P. R. Updating a land surface model with MODIS-derived snow cover[J].Journal of Hydrometeorology.2004,5(6):1064-1075.
    [33] Lee S., Klein A. G., Over T. M. A comparison of MODIS and NOHRSC snow‐cover productsfor simulating streamflow using the Snowmelt Runoff Model[J]. Hydrological Processes.2005,19(15):2951-2972.
    [34]沙依然,王茂新.气象卫星遥感资料在积雪监测中的应用[J].气象.2004,30(4):33-36.
    [35]黄镇,崔彩霞.基于EOS/MODIS的新疆积雪监测[J].冰川冻土.2006,28(3):343-347.
    [36]裴欢.基于MODIS数据的北疆积雪信息提取及其应用研究[D].新疆大学硕士学位论文,2006.
    [37]魏锋华,李才兴.基于中巴资源卫星数据的积雪监测研究[J].国土资源遥感.2007,(3):31-35.
    [38]边多,董妍.基于MODIS资料的西藏遥感积雪监测业务化方法[J].气象科技.2008,36(3):345-348.
    [39]李三妹,闫华,刘诚. FY-2C积雪判识方法研究[J].遥感学报.2007,11(3):406-413.
    [40]周强,王世新,周艺等. MODIS亚像元积雪覆盖率提取方法[J].中国科学院研究生院学报.2009,26(3):383-388.
    [41] Coll C., Caselles V., Sobrino J. A. et al. On the atmospheric dependence of the split-windowequation for land surface temperature[J]. Remote Sensing.1994,15(1):105-122.
    [42] Key J. R., Collins J. B., Fowler C. et al. High-latitude surface temperature estimates fromthermal satellite data[J]. Remote Sensing of Environment.1997,61(2):302-309.
    [43] Oesch D., Wunderle S., Hauser A. Snow surface temperature from AVHRR as a proxy forsnowmelt in the Alps[C]. EARSeL eProceedings.2002,(2):163-169.
    [44] Key J., Haefliger M. Arctic ice surface temperature retrieval from AVHRR thermal channels[J].Journal of Geophysical Research.1992,97(D5):5885-5893.
    [45] Haefliger M., Steffen K., Fowler C. AVHRR surface temperature and narrow-band albedocomparison with ground measurements for the Greenland ice sheet[J]. Annals of Glaciology.1993,17:49-54.
    [46] Stroeve J., Haefliger M., Steffen K. Surface temperature from ERS-1ATSR infrared thermalsatellite data in polar regions[J]. Journal of applied meteorology.1996,35(8):1231-1239.
    [47]覃志豪, Minghua Z., Karnieli A.等.用陆地卫星TM6数据演算地表温度的单窗算法[J].地理学报.2001,56(4):456-466.
    [48]覃志豪, hua Z.用NOAA—AVHRR热通道数据演算地表温度的劈窗算法[J].国土资源遥感.2001,(2):33-42.
    [49]毛克彪,覃志豪,施建成等.针对MODIS影像的劈窗算法研究[J].武汉大学学报:信息科学版.2005,30(8):703-707.
    [50]周纪,陈云浩,李京等.基于MODIS数据的雪面温度遥感反演[J].武汉大学学报:信息科学版.2007,32(8):671-675.
    [51]邱冬梅.基于MODIS的主要积雪参数反演及其应用研究[D].新疆大学硕士学位论文,2011.
    [52]卢新玉,王秀琴,崔彩霞等.基于ENVI二次开发的遥感雪面温度反演方法[J].气象科技.2012,40(1):35-39.
    [53] Shi J., Dozier J. Estimation of snow water equivalence using SIR-C/X-SAR. I. Inferring snowdensity and subsurface properties[J]. Geoscience and Remote Sensing, IEEE Transactions on.2000,38(6):2465-2474.
    [54] Shi J., Dozier J. Estimation of snow water equivalence using SIR-C/X-SAR. II. Inferring snowdepth and particle size[J]. Geoscience and Remote Sensing, IEEE Transactions on.2000,38(6):2475-2488.
    [55]刘艳,张璞,李杨等.基于MODIS数据的雪深反演——以天山北坡经济带为例[J].地理与地理信息科学.2005,21(6):41-44.
    [56]刘艳.基于MODIS数据的积雪深度反演研究[D].武汉大学硕士学位论文,2005.
    [57]李三妹,傅华,黄镇等.用EOS/MODIS资料反演积雪深度参量[J].干旱区地理.2006,29(5):718-725.
    [58]裴欢,房世峰,覃志豪等.基于遥感的新疆北疆积雪盖度及雪深监测[J].自然灾害学报,2008,17(005):52-57.
    [59]傅华,沙依然,黄镇等. MODIS积雪遥感监测系统的研制[J].气象.2007,33(3):114-118.
    [60]车涛.积雪被动微波遥感反演与积雪数据同化方法研究[D].中国科学院寒区旱区环境与工程研究所博士学位论文,2006.
    [61]孙之文,施建成,蒋玲梅等.被动微波遥感反演中国西部地区雪深、雪水当量算法初步研究[J].地球科学进展.2006,21(12):1363-1369.
    [62] Wiscombe W. J., Warren S. G. A model for the spectral albedo of snow. I: Pure snow[J]. J. atmos.Sci.1980,37(12):2712-2733.
    [63] Hyvarinen T., Lammasniemi J. Infrared measurement of free-water content and grain size ofsnow[J]. Optical engineering.1987,26(4):342-348.
    [64]宋珍,陈晓玲,刘海等.基于HJ-1A/1B卫星遥感数据的积雪识别方法研究[J].长江流域资源与环境.2011,20(5):553-558.
    [65]张旭.基于多源遥感数据的雪盖信息提取算法及其应用研究[D].西南大学硕士学位论文,2010.
    [66]董廷旭,蒋洪波,陈超等.基于实测光谱分析的HJ-1B数据浅层雪深反演[J].光谱学与光谱分析.2011,31(10):2784-2788.
    [67]段四波,阎广建,钱永刚等.利用HJ-1B模拟数据反演地表温度的两种单通道算法[J].自然科学进展.2008,18(9):1001-1008.
    [68]李艳芳,李小娟,孟丹.环境减灾卫星热红外数据的地表温度反演及LST分布分析——以北京市城八区为例[J].首都师范大学学报:自然科学版.2010,31(3):70-75.
    [69]罗菊花,张竞成,黄文江等.基于单通道算法的HJ-1B与Landsat5TM地表温度反演一致性研究[J].光谱学与光谱分析.2010,30(12):3285-3289.
    [70]赵利民,余涛,田庆久等. HJ-1B热红外遥感数据陆表温度反演误差分析[J].光谱学与光谱分析.2010,30(12):3359-3362.
    [71]赵少华,秦其明,张峰等.基于环境减灾小卫星(HJ-1B)的地表温度单窗反演研究[J].光谱学与光谱分析.2011,31(6):1552-1556.
    [72]周纪,李京,赵祥等.用HJ-1B卫星数据反演地表温度的修正单通道算法[J].红外与毫米波学报.2011,30(1):61-67.
    [73] http://www.cresda.com/n16/n1130/n1582/8384.html.
    [74] http://modis.gsfc.nasa.govhttp://modis.gsfc.nasa.gov.
    [75] O'Brien H. W. Red and near-infrared spectral reflectance of snow. DTIC Document.1975.
    [76]曹梅盛,冯学智,金德洪.积雪若干光谱反射特征的初步研究[J].冰川冻土.1984,6(3):15-26.
    [77]房世峰,裴欢,刘志辉.新疆天山北坡典型研究区融雪期地物光谱特征分析[J].光谱学与光谱分析.2010,30(5):1301-1304.
    [78] Warren S. G. Optical Properties of Snow[J]. Reviews of Geophysics and Space Physics.1982,20(1):67-89.
    [79]吕斯骅.遥感物理基础[M].北京:商务印书馆,1981.
    [80]郑伟,曾志远.遥感图像大气校正方法综述[J].遥感信息.2004,(4):66-70.
    [81]亓雪勇,田庆久.光学遥感大气校正研究进展[J].国土资源遥感.2005,4:1-6.
    [82] Kaufman Y. J., Sendra C. Algorithm for automatic atmospheric corrections to visible and near-IRsatellite imagery[J]. International Journal of Remote Sensing.1988,9(8):1357-1381.
    [83] Kruse F. A. Use of Airborne Imaging Spectrometer data to map minerals associated withhydrothermally altered rocks in the northern Grapevine Mountains, Nevada, and California[J].Remote Sensing of Environment.1988,24(1):31-51.
    [84] Rast M., Hook S. J., Elvidge C. D. et al. An evaluation of techniques for the extraction ofmineral absorption features from high spectral resolution remote sensing data[J].Photogrammetric engineering and remote sensing.1991,57(10):1303-1309.
    [85] Turner R. E., Spencer M. M. Atmospheric model for correction of spacecraft data[C].Proceedings of the Eighth International Symposium on Remote Sensing of Environment.1972,895.
    [86]吴北婴.大气辐射传输实用算法[M].北京:气象出版社,1998.
    [87] Tanré D., Deroo C., Duhaut P. et al. Technical note Description of a computer code to simulatethe satellite signal in the solar spectrum: the5S code[J]. International Journal of Remote Sensing.1990,11(4):659-668.
    [88] Adler-Golden S. M., Matthew M. W., Bernstein L. S. et al. Atmospheric correction forshort-wave spectral imagery based on MODTRAN4[C]. SPIE Proceeding, ImagingSpectrometry V.1999,3753:61-69.
    [89] Vermote E. F., Tanré D., Deuze J. L. et al. Second simulation of the satellite signal in the solarspectrum,6S: An overview[J]. Geoscience and Remote Sensing, IEEE Transactions on.1997,35(3):675-686.
    [90]阿布都瓦斯提·吾拉木,秦其明,朱黎江.基于6S模型的可见光、近红外遥感数据的大气校正[J].北京大学学报(自然科学版).2004,40(4):611-618.
    [91]杜鑫,陈雪洋,蒙继华等.基于6S模型的环境星CCD数据大气校正[J].国土资源遥感.2010,(2):22-25.
    [92]范文义,孙晓芳,王岩等.基于两种辐射传输模型的遥感数据大气校正及结果对比分析[J].东北林业大学学报.2009,37(7):121-124.
    [93]郝建亭,杨武年,李玉霞等.基于FLAASH的多光谱影像大气校正应用研究[J].遥感信息.2008,(1):78-81.
    [94]李玉环,王静,吕春燕等.基于TM/ETM+遥感数据的地面相对反射率反演[J].山东农业大学学报·自然科学版.2005,36(4):545-551.
    [95]王钊.6S辐射模型算法解析及在MODIS大气校正中的应用[J].陕西气象.2006,(5):34-37.
    [96]张婷媛,林文鹏,陈家治等.基于FLAASH和6S模型的Spot5大气校正比较研究[J].光电子·激光.2009,20(11):1471-1473.
    [97] Vermote E. F., Tanré D., Deuzé J. L. et al. Second simulation of the satellite signal in the solarspectrum,6S: an overview[J]. IEEE transactions on Geoscience and Remote Sensing.1997,35(3):675.
    [98] Vermote E., Tanre D., Deuze J. L. et al.6S user guide version2. Geometrical ConditionsAtmospheric Conditions P (z), T (z), UH20.1997.
    [99] Cooley T., Anderson G. P., Felde G. W. et al. FLAASH, a MODTRAN4-based atmosphericcorrection algorithm, its application and validation[C]. IEEE,2002,41(6):1246-1259.
    [100] Chavez P. S. Image-based atmospheric corrections-revisited and improved[J]. PhotogrammetricEngineering and Remote Sensing.1996,62(9):1025-1035.
    [101] http://www.cresda.com/n16/n1115/n1522/n2134/index.html.
    [102] Нарке В. Bidirectional reflectance spectroscopy,1, Theory[J]. J. Geophys. Res.1981,86:3039-3054.
    [103] Domingue D., Hartman B., Verbiscer A. The Scattering Properties of Natural Terrestrial Snowsversus Icy Satellite Surfaces*1[J]. Icarus.1997,128(1):28-48.
    [104] Verbiscer A. J., Veverka J. Scattering properties of natural snow and frost: Comparison with icysatellite photometry[J]. Icarus.1990,88(2):418-428.
    [105]陈贤章,李新.积雪定量化遥感研究进展[J].遥感技术与应用.1996,11(4):46-52.
    [106]曹云刚,刘闯.从AVHRR到MODIS的雪盖制图研究进展[J].地理与地理信息科学.2005,21(5):15-19.
    [107] Negi H. S., Kulkarni A. V., Semwal B. S. Estimation of snow cover distribution in Beas basin,Indian Himalaya using satellite data and ground measurements[J]. Journal of Earth SystemScience.2009,118(5):525-538.
    [108] Parajka J., Pepe M., Rampini A. et al. A regional snow-line method for estimating snow coverfrom MODIS during cloud cover[J]. Journal of Hydrology.2010,381(3-4):203-212.
    [109]梁继,王建,朱仕杰等.多尺度卫星雪盖面积获取的对比研究[J].遥感技术与应用.2009,24(5):567-575.
    [110]梁天刚,高新华,黄晓东等.新疆北部MODIS积雪制图算法的分类精度[J].干旱区研究.2007,24(4):446-452.
    [111]马虹,姜小光.利用NOAA—AVHRR数据进行积雪监测与制图的方法研究[J].干旱区地理.1998,21(3):73-80.
    [112]吴杨,张佳华,徐海明等.卫星反演积雪信息的研究进展[J].气象.2007,33(6):3-10.
    [113]延昊. NOAA16卫星积雪识别和参数提取[J].冰川冻土.2004,26(3):369-373.
    [114]季泉,孙龙祥,王勇等.基于MODIS数据的积雪监测[J].遥感信息.2006,(3):57-58.
    [115]王建.卫星遥感雪盖制图方法对比与分析[J].遥感技术与应用.1999,14(4):29-36.
    [116] Barton J. S., Hall D. K., Riggs G. A. Remote sensing of fractional snow cover using ModerateResolution Imaging Spectroradiometer (MODIS) data[C]. Proc. of the57th Eastern SnowConference.2000,171-183.
    [117] Kaufman Y. J., Kleidman R. G., Hall D. K. et al. Remote sensing of subpixel snow cover using0.66and2.1μm channels[J]. Geophysical Research Letters.2002,29(16):1781.
    [118] Hall D. K., Foster J. L., Verbyla D. L. et al. Assessment of snow-cover mapping accuracy in avariety of vegetation-cover densities in central Alaska[J]. Remote Sensing of Environment.1998,66(2):129-137.
    [119] Xiao X., Shen Z., Qin X. Assessing the potential of VEGETATION sensor data for mappingsnow and ice cover: a Normalized Difference Snow and Ice Index[J]. International Journal ofRemote Sensing.2001,22(13):2479-2487.
    [120]张旭,唐宏,赵祥等.基于MODIS与HJ-1-B数据的雪盖率反演及其相关因子分析[J].长江流域资源与环境.2010,19(5):566-571.
    [121]金翠,张柏,刘殿伟等.东北地区MODIS亚像元积雪覆盖率反演及验证[J].遥感技术与应用.2008,23(2):195-201.
    [122] Klein A. G., Hall D. K., Riggs G. A. Improving snow cover mapping in forests through the use ofa canopy reflectance model[J]. Hydrological Processes.1998,12(10-11):1723-1744.
    [123] Vikhamar D., Solberg R. Subpixel mapping of snow cover in forests by optical remotesensing[J]. Remote Sensing of Environment.2003,84(1):69-82.
    [124] Saito A., Yamazaki T. Characteristics of spectral reflectances for vegetation ground surfaces withsnow cover: vegetation indices and snow indices[J]. Journal of Japan Society of Hydrology andWater Resources.1999,12:28–38.
    [125] Shimamura Y., Izumi T., Matsuyama H. Evaluation of a useful method to identify snow-coveredareas under vegetation–comparisons among a newly proposed snow index, normalizeddifference snow index, and visible reflectance[J]. International journal of remote sensing.2006,27(21):4867-4884.
    [126]张学工.关于统计学习理论与支持向量机[J].自动化学报.2000,26(1):32-42.
    [127]李盼池,许少华.支持向量机在模式识别中的核函数特性分析[J].计算机工程与设计.2005,26(2):302-304.
    [128] Roli F., Fumera G. Support vector machines for remote-sensing image classification[C].Proc.SPIE.2001,4170:160-166.
    [129] Chihjen.CHANG Chihchung,LIN. LIBSVM-A library for support vector machines..http://www.csie.ntu.edu.tw/~cjlin/libsvm/index.html..
    [130] Baraldi A., Parmiggiani F. An investigation of the textural characteristics associated with graylevel cooccurrence matrix statistical parameters[J]. Geoscience and Remote Sensing, IEEETransactions on.1995,33(2):293-304.
    [131]宋小宁,赵英时. MODIS图象的云检测及分析[J].中国图象图形学报: A辑.2003,8(9):1079-1083.
    [132] Salomonson V. V., Appel I. Development of the Aqua MODIS NDSI fractional snow coveralgorithm and validation results[J]. Geoscience and Remote Sensing, IEEE Transactions on.2006,44(7):1747-1756.
    [133]曹云刚,刘闯.一种简化的MODIS亚像元积雪信息提取方法[J].冰川冻土.2006,28(4):562-567.
    [134] Wark D. Q., Yamamoto G., Lienesch J. H. Methods of Estimating Infrared Flux and SurfaceTemperature from Meteorological Satellites[J]. Journal of Atmospheric Sciences.1962,19:369-384.
    [135]杜培军,赵银娣.遥感原理与应用[M].徐州:中国矿业大学出版社,2006.
    [136]李粉玲.高山高原地区地表温度遥感反演研究[D].兰州大学硕士学位论文,2006.
    [137] Jiménez-Mu oz J. C., Sobrino J. A. A generalized single-channel method for retrieving landsurface temperature from remote sensing data[J]. Journal of geophysical research.2003,108(D22):4688-4695.
    [138]覃志豪.单窗算法的大气参数估计方法[J].国土资源遥感.2003,(2):37-43.
    [139] Kaufman Y. J., Gao B. C. Remote sensing of water vapor in the near IR from EOS/MODIS[J].Geoscience and Remote Sensing, IEEE Transactions on.1992,30(5):871-884.
    [140] Sobrino J. A., Raissouni N., Li Z. L. A comparative study of land surface emissivity retrievalfrom NOAA data[J]. Remote Sensing of Environment.2001,75(2):256-266.
    [141]覃志豪,李文娟,徐斌.陆地卫星TM6波段范围内地表比辐射率的估计[J].国土资源遥感.2004,3(1):28-32.
    [142] http://speclib.jpl.nasa.gov/.
    [143] Sobrino J. A., Coll C., Caselles V. Atmospheric correction for land surface temperature usingNOAA-11AVHRR channels4and5[J]. Remote Sensing of Environment.1991,38(1):19-34.
    [144] Qin Z., Dall'Olmo G., Karnieli A., et al. Derivation of split window algorithm and its sensitivityanalysis for retrieving land surface temperature from NOAA-advanced very high resolutionradiometer data[J]. Journal of Geophysical Research.2001,106(D19):22655-22670.
    [145]毛克彪.用于MODIS数据的地表温度反演方法研究[D].南京大学硕士学位论文,2004.
    [146]毛克彪,覃志豪,施建成.用MODIS影像和劈窗算法反演山东半岛的地表温度[J].中国矿业大学学报.2005,34(1):46-50.
    [147]丁莉东,覃志豪,毛克彪.基于MODIS影像数据的劈窗算法研究及其参数确定[J].遥感技术与应用.2005,20(2):284-289.
    [148]高懋芳,覃志豪,徐斌.用MODIS数据反演地表温度的基本参数估计方法[J].干旱区研究.2007,24(1):113-119.
    [149] Colbeck S. C. A theory of water percolation in snow[J]. Journal of Glaciology.1972,11:369-385.
    [150]房世峰.新疆融雪径流预报及其不确定性研究[D].新疆大学博士学位论文,2010.
    [151] Anderson E. A. National Weather Service river forecast system--snow accumulation and ablationmodel[J]. NOAA Tech. Memo. NWS HYDRO-17. US Department of Commerce, Sliver Springs,MD.1973,217.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700