用户名: 密码: 验证码:
自组织亚微米有序结构及其光子带隙性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
具有周期性介质结构的光子晶体(Photonic crystal)亦称光子带隙材料(Photonic bandgap material),是目前信息功能材料研究的前沿领域。本论文以自组装光子晶体为主要研究对象,系统研究了作为光子晶体的二维或三维亚微米周期结构制备方法、微观结构与光学性质。
    通过电泳方法制备出单层微球六角密排点阵二维有序模板;通过蒸发-表面张力作用制备多层微球面心立方点阵结构蛋白石三维有序模板。分析了微球模板自组装过程的动力学模型。自组装蛋白石模板具有不完全光子带隙,且带隙性质受到模板缺陷的影响。通过对模板进行热处理,可以在较小范围内改变微球点阵的结构参数,从而不可逆的精细调节带隙位置。
    通过溶胶-凝胶方法制备具有不同填充率的PLZT、TiO2和Zn2SiO4:Mn2+(ZMS) 功能陶瓷基反蛋白石材料,证明溶胶-凝胶方法对于陶瓷基反蛋白石材料制备具有普遍适应性。发现陶瓷基反蛋白石材料中的结晶形态随着烧结温度变化发生明显变化;通过分析反射谱中的Fabry -Perot干涉计算出反蛋白石材料厚度。
    在国际上首次通过实验发现铁电PLZT反蛋白石材料具有可调光子带隙,带隙中心随外加电场强度增加向长波方向移动,并最终达到饱和。该性质可用于基于光子晶体超棱镜(superprism)效应的新型电控光开关设计。
    发现Zn2SiO4:Mn2+荧光材料反蛋白石结构中虽然不存在完全光子带隙,但不同晶面对于处于其相应光子带隙中的光发射具有抑制作用,可以阻止沿特定晶面方向的自发辐射。
    对具有结构反光性质蝴蝶鳞片的微观结构分析证实特殊生物组织体可以构成具有反光作用的二维有序结构。确认了蝴蝶具有三种典型的显色模式:光栅式(光子带隙)反射、回归式反射和色素着色漫散射,提供了区分结构反光与色素反光的实验证据。首次通过溶胶-凝胶方法制备蝴蝶翅膀的二维有序陶瓷基反演结构。
Photonic bandgap (PBG) materials (photonic crystals) with regular periodicity of dielectric structures are the frontier of functional materials for their ability in manipulating photons. This dissertation focuses on the sub-micron self-assembled photonic crystals. The preparation methods, microstructures and optical properties of 2-dimensional and 3-dimensional sub-micron periodic structures were studied systematically.
    2-dimensional template of monolayer microspheres with ordered close-packed hexagonal lattice has been assembled by electric-field-induced deposition process against gravity, and 3-dimensional opal template of multilayer microspheres with face-centered cubic lattice has been assembled by the combined action of evaporation and surface tension respectively. The kinetic model of the microsphere template’s assembly process was analyzed also. Self-assembled opals possess pseudo photonic bandgap, and the bandgap property was influenced by the defects of template drastically. The microsphere lattice’s structural parameters can be changed by annealing polymer opal templates at elevated temperature; it provides the possibility to fine-tune the bandgap properties of photonic crystals irreversibly.
    PLZT, TiO2 and Zn2SiO4:Mn2+(ZMS) functional ceramic inverse opals with different infilling ratios have been fabricated by sol-gel process. It testifies that sol-gel process is fit for the preparation of different sorts of ceramic matrix inverse opal materials universally. The crystalline forms of ceramic matrix inverse opal materials are changed distinctly with the increase of treating temperature. The thickness of the inverse opal materials has been estimated by analyzing the Fabry-Perot fringe in reflective spectra.
    It is confirmed that ferroelectric PLZT inverse opal materials possess electrically tunable Photonic bandgap for the first time. The bandgap position
    
    
    shifts continuously to long-wavelength with increasing of the applied electric field. It should supply a more reliable mode to design the novel electric controlled optical switch based on the superprism effect in photonic crystals.
    Different crystal planes of luminescent Zn2SiO4:Mn2+ inverse opals forbid the light propagation falling in the directional bandgaps though there is no complete bandgap in Zn2SiO4:Mn2+ inverse opals, leading to the inhibition of spontaneous emission in certain directions.
    The microstructure analysis of the butterfly wing’s squamae with structure color properties shows that the specific bio-tissue is patterned with 2D ordered periodic dielectric changes. Three typical modes for the color display have been summarized as: raster (2-dimensional PBG) reflection, regressive reflection and pigment colored diffusion. The 2D ordered inverse structure of butterfly wing’s squamae formed by ceramic matrix has been fabricated through sol-gel process for the first time.
引文
] Yablonovitch E. Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 1987, 58:2059-2062
    
    ] John S. Strong localization of photons in certain disordered dielectric superlattices Phys. Rev. Lett. 1987, 58: 2486-2489
    
    ] Fink Y, Winn J N, Fan S H, et al. A dielectric omnidirectional reflector. Science 1998, 282:1679-1682
    
    ] Feng D, Ming N B, Hong J F, et al. Enhancement of second-harmonic generation in LiNbO3 crystals with periodic laminar ferroelectric domains. Appl. Phys. Lett. 1980, 37:607-609
    
    ] Zhu S, Zhu Y Y, and Ming N B. Quasi-phase-matched third-harmonic generation in a quasi-periodic optical superlattice. Science 1997, 278: 843-846
    
    ] Sanders J V. Diffraction of light by opals. Acta Crystallogr. A 1968, 24:427-434
    
    ] Anderson P W. Absence of diffusion in certain random lattices. Phys. Rev. 1958, 109:1492-1505
    
    ] Yablonovitch E, and Gmitter T J. Photonic Band Structure: The face centered cubic case. Phys. Rev. Lett. 1989, 63:1950
    
    ] Joannopoulos J D, Meade R D, and Winn J W. Photonic crystals, Princeton: Priceton University Press, 1995
    
    ] Suzuki T, and Yu P K L. Dispersion-relation at point-l in the photonic band-structure of the face-centered-cubic lattice with active or conductive dielectric media. J. Opt. Soc. Am. B 1995, 12:583-591
    
    ] Li Z Y, Lin L L, and Zhang Z Q. Spontaneous emission from photonic crystals: Full vectorial calculations. Phys. Rev. Lett. 2000, 84:4341-4344
    
    ] Li Z Y, Zhang X D, and Zhang Z Q. Disordered photonic crystals understood by a perturbation formalism Phys. Rev. B 2000, 61:15738-15748
    
    ] Khorasani S, and Rashidian B. Modified transfer matrix method for conducting interfaces J. Opt. A-Pure. Appl. Op. 2002, 4: 251-256
    
    ] Sigalas M M, Soukoulis C M, Chan C T, et al. Electromagnetic-Wave propagation through dispersive and absorptive photonic-band-gap materials Phys. Rev. B 1994, 49:11080-11087
    
    ] Tran P. Optical switching with a nonlinear photonic crystal: A numerical study. Opt. Lett. 1996, 21:1138-1140
    
    ] Ward A J, and Pendry J B. Calculating photonic Green's functions using a nonorthogonal finite-difference time-domain method. Phys. Rev. B 1998, 58: 7252-7259
    
    ] Coccioli R, Yang F R, Ma K P, et al. Aperture-coupled patch antenna on UC-PBG substrate IEEE T. Microw. Theory 1999, 47:2123-2130
    
    ] Nesic D, and Nesic A. Bandstop Microstrip PBG Filter With Sinusoidal Variation Of The Characteristic Impedance and Without Etching In The Ground Plane. Microw. Opt. Techn. Let. 2001, 29:418-420
    
    ] Kyriazidou C A, Contopanagos H F, and Alexópoulos N G. Monolithic Waveguide Filters Using Printed Photonic-Bandgap Materials IEEE T. Microw. Theory. 2001, 49:297-307
    
    ] Yang F R, Ma K P, Qian Y X, et al. A novel tem waveguide using uniplanar compact photonic-bandgap (UC-PBG) structure. IEEE T. Microw. Theory. 1999, 47:2092-2098
    
    ] Robert K. Trapping Light. Discover 2001, 22:72-79
    
    ] Painter O, Lee R K, Scherer A, et al. Two-dimensional photonic band-gap defect mode laser. Science 1999, 284:1819-1821
    
    ] Zhou W D, Sabarinathan J, Kochman B, et al. Electrically injected single-defect photon bandgap surface-emitting laser at room temperature. Electron. Lett. 2000, 36:1541-1542
    
    ] Rue R D L, and Smith C. On the threshold of success. Science 2000, 408: 653-656
    
    ] Noda S, Chutinan A, and Imada M. Trapping and emission of photons by a single defect in a photonic bandgap structure. Nature 2000, 407:608-610
    
    ] Russell P. Photonic Crystal Fibers. Science 2003, 299:358-362.
    
    ] Knight J C, Broeng J, Birks T A, et al. Photonic Band Gap Guidance in Optical Fibers. Science, 1998, 282:1476-1478
    
    ] Knight J C, and Russett P S. Applied optics: New ways to guide light. Science 2002, 296:276-277
    
    ] Cregan R F, Mangan B J, Knight J C, et al. Single-mode Photonic Band Gap Guidance of Light in Air. Science 1999, 285:1537-1539
    
    ] Benabid F, Knight J C, Antonopoulos G, et al. Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber. Science 2002, 298:399-402
    
    ] Mazurenko D A, Kerst R, Dijkhuis J I, et al. Ultrafast Optical Switching in Three-Dimensional Photonic Crystals. Phys. Rev. Lett. 2003, 91:213903
    
    ] Yablonovitch E, Gmitter T J, and Leung K M. Photonic band structure: The face-centered-cubic case employing nonspherical atoms, Phys. Rev. Lett. 1991, 67:2295-2298
    
    ] Sozuer H S, and Dowling J P. Photonic Band Calculations for Woodpile Structures. J. Mod. Optic. 1994, 41:231-239
    
    ] Ozbay E, Michel E, Tuttle G, et al. Micromachined millimeter-wave photonic bandgap crystals, Appl. Phys. Lett. 1994, 64:2059-2061
    
    ] Aoki K, Miyazaki H T, Hirayama H, et al. Microassembly of semiconductor threedimensional photonic crystals nature materials 2003, 2:117-121
    
    ] Noda S, Tomoda K, Yamamoto N, et al. Full three-dimensional photonic bandgap crystals at near-infrared wavelengths. Science 2000, 289:604-606
    
    ] Noda S, Yamamoto N, Imada M, et al. Alignment and stacking of semiconductor photonic bandgaps by wafer-fusion. J Lightwave Technol. 1999, 17:1948-1955
    
    ] Velev O D, and Lenhoff A M. Colloidal crystals as templates for porous materials. Curr. Opin. Colloid. In. 2000 5:56-63
    
    ] Astratov V N, Bogomolov V N, Kaplyanskii A A, et al. Optical spectroscopy of opal matrices with CdS embedded in its pores: Quantum confinement and photonic band gap effects. Nuovo Cimento D 1995, 17:1349-1354
    
    ] Mayoral R, Requena J, Moya J S, et al. 3D long-range ordering in an SiO2 submicrometer-sphere sintered superstructure Adv. Mater. 1997, 9:257-260
    
    ] Vos W L, Sprik R, vanBlaaderen A, et al. Strong effects of photonic band structures on the diffraction of colloidal crystals. Phys. Rev. B 1996, 53: 16231 -16235
    
    ] Park SH, Qin D, and Xia Y N. Crystallization of mesoscale particles over large areas. Adv. Mater. 1998, 10:1028-1032
    
    ] Park S H, and Xia Y N. Assembly of mesoscale particles over large areas and its application in fabricating tunable optical filters. Langmuir 1999, 15:266-273
    ] Holgado M, García-Santamaría F, Blanco A, et al. Electrophoretic deposition to control artificial opal growth. Langmuir 1999, 15:4701-4704
    
    ] Vlasov Y A, Bo X Z, Sturm J C, et al. On-chip natural assembly of silicon photonic bandgap crystals. Nature 2001, 414:289-293
    
    ] Joannopoulos J D. Self-assembly lights up. Nature 2001, 414:257-258
    
    ] Vlasov Y A, Yao N, and Norris D J. Synthesis of photonic crystals for optical wavelengths from semiconductor quantum dots. Adv Mater 1999, 11:165-169
    
    ] Velev O D, Tessier P M, Lenhoff AM, et al. A class of porous metallic nanostructures. Nature 1999, 401:548
    
    ] Tessier P M, Velev O D, Kalambur A T, et al. Assembly of gold nanostructured films templated by colloidal crystals and use in surface-enhanced raman spectroscopy. J. Am. Chem. Soc. 2000, 122:9554-9555
    
    ] Tessier P M, Velev O D, Kalambur A T, et al. Structured metallic films for optical and spectroscopic applications via colloidal crystal templating. Adv. Mater. 2001, 13:396–400
    
    ] Blanco A, Chomski E, Grabtchak S, et al. Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres. Nature 2000, 405:437-440
    
    ] Miguez H, Chomski E, Garcia-Santamaria F, et al. Photonic bandgap engineering in germanium inverse opals by chemical vapor deposition. Adv. Mater. 2001, 13: 1634-1637
    
    ] Braun P V, and Wiltzius P. Microporous materials-Electrochemically grown photonic crystals. Nature 1999, 402:603-604
    
    ] Jiang P, Cizeron J, Bertone J F, et al. Preparation of macro-porous metal films from colloidal crystals. J. Am. Chem. Soc. 1999, 121:7957-7958
    
    ] Velev O D, Jede T A, Lobo R F, et al. Porous silica via colloidal crystallization Nature 1997, 389:447-448
    
    ] Imhof A, and Pine D J. Ordered macroporous materials by emulsion templating Nature 1997, 389: 948-951
    
    ] Wijnhoven J E G J, and Vos W L. Preparation of photonic crystals made of air spheres in titania Science 1998, 281:802-804
    ] Gundiah G, and Rao C N R. Macroporous oxide materials with three- dimensionally interconnected pores. Solid. State. Sci. 2000, 2:877-882
    
    ] Lei Z B, Li J M, Zhang Y G, et al. Fabrication and characterization of highly-ordered periodic macroporous barium titanate by the sol–gel method. J. Mater. Chem. 2000, 10:2629-2631
    
    ] Li B, Zhou J, Li Q, et al. Synthesis of (Pb,La)(Zr,Ti)O3 inverse opal photonic crystals J. Am. Ceram. Soc. 2003, 86:867-869
    
    ] Li B, Zhou J, Hao L F, et al. Photonic band gap in (Pb,La)(Zr,Ti)O3 inverse opals Appl. Phys. Lett. 2003, 82:3617-3619
    
    ] Li B, Zhou J, Li L T, et al. Ferroelectric inverse opals with electrically tunable photonic band gap Appl. Phys. Lett. 2003, 83:4704-4706
    
    ] John S, and Busch K. Photonic bandgap formation and tunability in certain self-organizing systems. J. Lightwave Technol. 1999, 17: 1931-1943
    
    ] Xu X, Tian BZ, Kong JL, et al. Ordered mesoporous niobium oxide film: A novel matrix for assembling functional proteins for bioelectrochemical applications. Adv. Mater. 2003, 15:1932-1936
    
    ] Galloro J, Ginzburg M, Miguez H, et al. Replicating the structure of a crosslinked polyferrocenylsilane inverse opal in the form of a magnetic ceramic. Adv. Funct. Mater. 2002, 12:382-388
    
    ] Gates B, Xia YN Photonic crystals that can be addressed with an external magnetic field Adv. Mater. 2001, 13:1605-1608
    
    ] Sigalas M M, Soukoulis C M, Biswas R, et al. Effectof the magnetic permeability on photonic band gaps. Phys. Rev. B 1997, 56:959-962
    
    ] Figotin A, Godin Y A and Vitebsky I. Two-dimensional tunable photonic crystals. Phys. Rev. B 1998, 57:2841-2848
    
    ] Kee C S, Kim J E, Park H Y et al. Two-dimensional tunable magnetic photonic crystals. Phys. Rev. B 2000, 61:15523-15525
    ] Hu XY, Zhang Q, Liu YH, et al. Ultrafast three-dimensional tunable photonic crystal. Appl. Phys. Lett. 2003, 83:2518-2520
    
    ] Ozaki M, Shimoda Y, Kasano M, et al. Electric field tuning of the stop band in a liquid-crystal-infiltrated polymer inverse opal. Adv. Mater. 2002, 14:514-518
    
    ] Ozaki M, Kasano M, Kitasho T, et al. Electro-tunable liquid-crystal laser. Adv. Mater. 2003, 15: 974-977
    
    ] Takeda H and Yoshino K. Tunable photonic band schemes of opals and inverse opals infiltrated with liquid crystals. J. Appl. Phys. 2002, 92:5658-5662
    
    ] Megens M, Wijnhoven J E G J, Lagendijk A, et al. Light sources inside photonic crystals. J. Opt. Soc. Am. B 1999, 16:1403-1408
    
    ] Vats N, John S, and Busch K. Theory of fluorescence in photonic crystals. Phys. Rev. A 2002, 65: Art. No.043808 Part B
    
    ] Li Z Y, Lin L L, and Zhang Z Q. Spontaneous emission from photonic crystals: Full vectorial calculations. Phys. Rev. Lett. 2000, 84:4341-4344
    
    ] Zhu S Y, Yang Y P, Chen H, et al. Spontaneous radiation and lamb shift in three-dimensional photonic crystals. Phys. Rev. Lett. 2000, 84:2136-2139
    
    ] Schriemer H P, van Driel H M, Koenderink A F, et al. Modified spontaneous emission spectra of laser dye in inverse opal photonic crystals. Phys. Rev. A 2001, 63: Art. No. 011801
    
    ] Romanov S G, Maka T, Torres C M S, et al. Emission properties of dye-polymer-opal photonic crystals. J. Lightwave Technol. 1999, 17: 2121-2127
    
    ] Yamasaki T and Tsutsui T. Spontaneous emission from fluorescent molecules embedded in photonic crystals consisting of polystyrene microspheres. Appl. Phys. Lett. 1998, 72:1957-1959
    
    ] Yoshino K, Tatsuhara S, Kawagishi Y, et al. Amplified spontaneous emission and lasing in conducting polymers and fluorescent dyes in opals as photonic crystals. Appl. Phys. Lett. 1999, 74:2590-2592
    ] Zhou J, Zhou Y, Buddhudu S, et al. Photoluminescence of of ZnS:Mn embedded in three-dimensional photonic crystal of submicron polymer spheres. Appl. Phys. Lett. 2000, 76:3513-3515
    
    ] Blanco A, Lopez C, Mayoral R, et al. CdS photoluminescence inhibition by a photonic structure. Appl. Phys. Lett. 1998, 73:1781-1783
    
    ] Lin Y, Zhang J, Sargent EH, et al. Photonic pseudo-gap-based modification of photoluminescence from CdS nanocrystal satellites around polymer microspheres in a photonic crystal. Appl. Phys. Lett. 2002, 81:3134-3136
    
    ] Solovyev V G, Romanov S G, Torres C M S, et al. Modification of the spontaneous emission of CdTe nanocrystals in TiO2 inverted opals. J. Appl. Phys. 2003, 94:1205-1210
    
    ] Lee D W. Ultrastructural basis and function of iridescent blue color of fruits in Elaeocarpus. Nature 1991, 349, 260-262
    
    ] Lee D W. Iridescent blue plants. Am. Sci. 1997, 85, 56-63
    
    ] Zi J, Yu X D, Li Y Z, et al. Coloration strategies in peacock feathers. PNAS 2003, 100: 12576-12578
    
    ] Parker A R., McPhedran R C, McKenzie D R, et al. A. Photonic engineering: Aphrodite’s iridescence. Nature 2001, 409:36-37
    
    ] Parker A R, Welch V L, Driver D, et al. Structural colour-Opal analogue discovered in a weevil. Nature 2003, 426:786-787
    
    ] Land M F and Nilsson D E. Animal Eyes. (Oxford:Oxford Univ., 2001)
    
    ] Yoshida A, Motoyama M, Kosaku A, et al. Antireflective nanoproturberance array in the transparent wing of a hawkmoth Cephanodes. hylas. Zool. Sci. 1997, 14: 737-741
    
    ] Vukusic P, Sambles J R, Lawrence C R, et al. Structural colour - Now you see it now you don't. Nature 2001, 410:36
    
    ] Vukusic P, and Sambles J R. Colour effects in bright butterflies. J. Soc. Dyers. Colour. 2000, 116:376-380
    
    ] Sweeney A, Jiggins C and Johnsen S. Polarized light as a butterfly mating signal. Nature 2003, 423:31-32
    
    ] Vukusic P, Sambles J R and Lawrence C R. Colour mixing in wing scales of a butterfly. Nature 2000, 404:457
    
    ]Vukusic P and Sambles J R. Photonic structures in biology. Nature 2003, 424: 852-855
    
    ] Velev O D, and Lenhoff A M. Colloidal crystals as templates for porous materials. Curr. Opin. Colloid. In. 2000, 5: 56-63
    
    ]Yeh S R, Seul M, and Shraiman B I, Assembly of ordered colloidal aggregates by electric-field-induced fluid flow. Nature 1997, 386:57-59
    
    ]Hayward R C, Saville D A, and Aksay I A, Electrophoretic assembly of colloidal crystals with optically tunable micropatterns. Nature 2000, 404:56-59
    
    ] Trau M, Saville D A, and Aksay I A. Field-induced layering of colloidal crystals. Science 1996, 272:706-709
    
    ] Giersig M, Mulvaney P. Preparation of ordered colloid monolayers by electrophoretic deposition. Langmuir. 1993, 9:3408-3413
    
    ] Trau M, Saville D A, and Aksay I A, Assembly of colloidal crystals at electrode interfaces. Langmuir. 1997, 13:6375-6381
    
    ] Cong H L, and Cao W X. Colloidal Crystallization Induced by Capillary Force langmuir 2003, 19:8177-8181
    
    ] Dushkin C D, Yoshimura Y, and Nagayama K. Nucleation And Growth Of 2-Dimensional Colloidal Crystals. Chem. Phys. Lett. 1993, 204:455-460
    
    ] Dushkin C D, Lazarov G S, Kotsev S N, et al. Effect of growth conditions on the structure of two-dimensional latex crystals:experiment. Colloid. Polym. Sci. 1999, 277:914-930
    
    ] Ye Y H, Leblanc F, and Haché A. Self-assembling three-dimensional colloidal photonic crystal structure with high crystalline quality. Appl. Phys. Lett. 2001, 78:52-54
    
    ] Ni P G, Cheng B Y, and Zhang D Z. Inverse opal with an ultraviolet photonic gap. Appl. Phys. Lett. 2002, 80:1879-1881
    
    ] Gates B D. self-Assembly approaches to nanastructureed materials. [博士学位论文]. Washington: University of Washinton, 2001
    
    ] Goldenberg L M, Wagner J, Stumpe J, et al. Ordered arrays of large latex particles organised by vertical deposition. Langmuir 2002, 18:3319-3323
    
    ] Yoshino K, Shimoda Y, Kawagishi Y, et al. Temperature tuning of the stop band in transmission spectra of liquid-crystal infiltrated synthetic opal as tunable photonic crystal. Appl. Phys. Lett. 1999, 75: 932-934
    
    ] Yoshino K, Satoh S, Shimoda Y, et al. Tunable optical stop band and reflection peak in synthetic opal infiltrated with liquid crystal and conducting polymer as photonic crystal, Jpn. J. Appl. Phys. 1999, Part 2 38: L961-L963
    
    ] Busch K, and John S. Liquid-crystal photonic-band-gap materials: The tunable electromagnetic vacuum. Phys. Rev. Lett. 1999, 83: 967-970
    
    ] Sheng P, Wen W J, Wang N, et al. Multiply coated microspheres. A platform for realizing fields-induced structural transition and photonic bandgap. Pure Appl. Chem. 2000, 72: 309-315
    
    ] Zhou J, Sun CQ, Pita K, et al. Thermally tuning of the photonic band gap of SiO2 colloid-crystal infilled with ferroelectric BaTiO3. Appl. Phys. Lett. 2001, 78: 661-663
    
    ] Soten I, Miguez H, Yang SM, et al. Barium titanate inverted opals - Synthesis, characterization, and optical properties. Adv. Funct. Mater. 2002, 12: 71-77
    
    ] Yoshino K, Satoh S, Shimoda Y, et al. Tunable optical properties of conducting polymers infiltrated in synthetic opal as photonic crystal. Synthetic Met. 2001, 121: 1459-1462
    
    ] Leonard S W, Mondia J P, van Driel H M, et al. Tunable two-dimensional photonic crystals using liquid-crystal infiltration. Phys. Rev. B. 2000, 61: R2389-R2392
    
    ] Kang D, Maclennan J E, Clark NA, et al. Electro-optic behavior of liquid-crystal-filled silica opal photonic crystals: Effect of liquid-crystal alignment. Phys. Rev. Lett. 2001, 86 (18): 4052-4055
    
    ] Ozaki M, Shimoda Y, Kasano M, et al. Electric field tuning of the stop band in a liquid-crystal-infiltrated polymer inverse opal. Adv. Mater. 2002, 14: 514-518
    
    ] Shimoda Y, Ozaki M, and Yoshino K. Electric field tuning of a stop band in a reflection spectrum of synthetic opal infiltrated with nematic liquid crystal. Appl. Phys. Lett. 2001, 79 (22): 3627-3629
    
    ] Scott J F, Araujo C A P. Ferroelectric memories. Science 1989, 246:1400-1405
    
    ] Wenger A B, Brueck S R J, Wu A Y. Integrated PLZT Thin Film Waveguide Modulators. Ferroelectrics 1991, 116:195-204
    
    ] 曾亦可, 刘梅冬, 王培英等. 钛酸铅系铁电薄膜电容器及其存储单元的制备. 电子元件与材料 1998, 17(4):1-3
    
    ] 张红芳,佘正国 探讨溶胶-凝胶工艺制备PZT薄膜 江苏大学学报(自然科学版) 2002, 239(2):83-87
    
    ] Lin V S Y, Motesharei K, Dancil K P S, et al. A porous silicon-based optical interferometric biosensor. Science 1997, 278: 840-843
    
    ] Jiang P, Bertone J F, Hwang K S, et al. Single-crystal colloidal multilayers of controlled thickness. Chem. Mater. 1999, 11: 2132-2140
    
    ] Goldenberg L M, Wagner J, Stumpe J, et al. Ordered Arrays of Large Latex Particles Organized by Vertical Deposition. Langmuir. 2002, 18: 3319-3323
    
    ] Bertone J F, Jiang P, Hwang KS, et al. Thickness dependence of the optical properties of ordered silica-air and air-polymer photonic crystals Phys. Rev. Lett. 1999, 83: 300-303
    
    ] Müller, M, Zentel R, Maka T, et al. Photonic crystal films with high refractive index contrast. Adv. Mater. 2000, 12(20): 1499-1503
    
    ] Rossi B. Optics, Addison-Wesley Publishing Company: Reading, MA, 1957
    
    ] Kosaka H, Kawashima T, Tomita A, et al. Superprism phenomena in photonic crystals. Phys. Rev. B. 1998, 58:10096-10099
    
    ] Scrymgeour D, Malkova N, Kim S, et al. Electro-optic control of the superprism effect in photonic crystals. Appl. Phys. Lett. 2003, 82: 3176-3178
    
    ] Burns G, and Scott B A. Index of refraction in ‘dirty’ displacive ferroelectrics. Solid State Commun. 1973, 13: 423-426
    
    ] Burns G, and Dacol F H. Crystalline ferroelectrics with glassy polarization behavior. Phys. Rev. B 1983, 28: 2527-2530
    
    ] Kim D Y, Choi J J, and Kim H E. Random exchange-type electro-optic behavior of Pb0.865La0.09(Zr0.65Ti0.35)O3 relaxor ferroelectrics. Appl. Phys. Lett. 2002, 81:706-709
    
    ] Bobnar V, Kutnjak Z, Pirc R, et al. Electric-field-temperature phase diagram of the relaxor ferroelectric lanthanum-modified lead zirconate titanate. Phys. Rev. B 1999, 60:6420-6427
    
    ] Bobnar V, Kutnjak Z, Pirc R, et al. Electric-field induced phase transitions in 9/65/35 PLZT ceramics Ferroelectrics 2000, 240:1479-1486
    
    ] Shames P E, Sun P C, and Fainman Y, Modeling of scattering and depolarizing electro-optic devices. II. Device simulation. Appl. Optics. 1998, 37:3726-3734
    
    ] Wang F, Fuflyigin V, and Osinsky A. Electro-optic properties of oxide ferroelectrics grown on GaN/sapphire. J. Appl. Phys. 2000, 88:1701-1703
    
    ] Holland B T, Blanford C F, Do T, et al. Synthesis of highly ordered, three-dimensional, macroporous or crystalline inorganic oxides, phosphates, and hybrid composites. Chem. Mater. 1999, 11:795–805
    
    ] Taghavinia N, Lerondel G, Makino H, et al. Nanocrystalline Zn2SiO4: Mn2+ grown in oxidized porous silicon. Nanotechnology. 2001, 12(4): 547-551
    
    ] El-Shennawi A W A, Hamzawy E M A, Khater G A, et al. Crystallization of some aluminosilicate glasses. Ceram. Int. 2001, 27(7): 725-730
    
    ] Rooksby H P, and Mckeag A H. The yellow fluorescent form of zinc silicate. Trans. Faraday Soc. 1941, 37: 308-311
    
    ] Alig R C, and Bloom S. cathodoluminescent efficiency. J. Electrochem. Soc. 1977, 124: 1136-1138
    
    ] Miyata T, Minami T, Saikai K, et al. Zn2SiO4 as a host material for phosphor-emitting layers of TFEL devices. J. Lumin. 1994, 60: 926-929
    
    ] Copeland T S, Lee B I, Qi J, et al. Synthesis and luminescent properties of Mn2+-doped zinc silicate phosphors by sol-gel methods. J. Lumin. 2002, 97: 168-173
    
    ] Taghavinia N, Lerondel G, Makino H, et al. Structural and optical properties of oxidized porous silicon layers activated by Zn2SiO4: Mn2+” J. Electrochem. Soc. 2002, 149: G251-G256
    
    ] Taghavinia N, Lerondel G, Makino H, et al. Activation of porous silicon layers using Zn2SiO4: Mn2+ phosphor particles. J. Lumin. 2002, 96: 171-175
    
    ] Leverenz H W, Seitz F. Luminescent materials. J.Appl.Phys. 1939,10: 479-493
    
    ] Taghavinia N, Lerondel G, Makino H, et al. Growth of luminescent Zn2SiO4: Mn2+ particles inside oxidized porous silicon: emergence of yellow luminescence. J. Cryst. Growth. 2002, 237: 869-873
    
    ] Romanov S G, Maka T, Torres C M S, et al. Suppression of spontaneous emission in incomplete opaline photonic crystal. J. Appl. Phys. 2002, 91:9426-9428

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700