用户名: 密码: 验证码:
几种材料表面微纳米复合结构的构筑与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
材料表面的微纳米复合结构能使材料产生一些独特的性能,如超疏水、超光学吸收、超粘附等,在人们的日常生活、工农业生产和国防建设等方面都有着广阔的应用前景。因此探索简单、实用、高效的制备微纳米复合结构的技术,不论在科学研究领域还是在实际生产应用领域都有着非常重要的意义。
     在本文中,我们首先以自组装单层聚苯乙烯(PS)小球为模板,结合真空热蒸镀的方法,制备了大面积纳米银碗分级阵列结构,作为表面增强拉曼散射(SERS)活性基底,克服了传统基底无序排列、均匀性差等缺点。以单层PS小球阵列为模板,通过模板复制的方法,成功制备了两种可任意折叠和弯曲,且表面具有有序微纳米复合结构的超疏水聚合物薄膜。这种材料能转移到其他亲水材料和曲面上,弥补了刚性超疏水材料不能弯曲及不能在弯曲表面使用的缺点,拓宽了超疏水材料的使用范围。利用纤维素凝胶的方法,结合聚四氟乙烯溶液在纤维素表而的旋涂修饰,制备出了具有微纳米复合结构表面、可任意折叠弯曲、生物可降解的超疏水纤维素薄膜,弥补了聚合物超疏水薄膜造价较高、大而积制备困难、不能生物降解的缺点。
     总体来讲,本文介绍了在不同材料表而制备微纳米复合结构的方法及在SERS活性基底、超疏水领域的应用,为快速、高效、低成本制备微纳米复合结构材料提供了新的途径。
The micro/nano composite structure on the materials surface can endow the materials with unique properties, such as superhydrophobicity, super-adhesion and super-light-absorbance et al, has comprehensive potential applications in the field of industry, military, medicine, aviation and so on. Surface enhanced Raman scattering (SERS) and superhydrophobic properties of materials surface are closely related to their micro/nano composite structures, so it is very essential to develop economic and efficient techniques for fabricating micro/nano composite structures on materials surface. We have fabricated the micro/nano composite structures on several materials surface by replicating template method and so on and researched their SERS and superhydrophobic properties. The main research contents, conclusions and original points of this thesis are summarized as following:
     1、We present an efficient, economic method for fabricating large-area silver nanobowl array structures via thermally evaporating silver onto the self-assembled monolayer of PS spheres. The materials for generating nanobowl array can be readily extended to a wide range and the size and period can be adjusted by varying the size of PS spheres. The test results of SEM indicate that the whole nanobowl array is composed of silver nanoparticles with average diameter size of ca.10 nm. The absorption peak of the optical absorption spectra at 410 nm indicate that surface plasmon resonance of silver nanoparticles exists on the nanobowl array. The silver nanobowl array was served as the reaction container and catalyst, the catalytic reduction reaction of p-nitroaniline by sodium borohydride was carried out inside the nanobowl arrays and the SERS spectra of the reactant and product molecules were measured. The results demonstrate that the nanobowl array is not only an excellent catalyst, but also an excellent SERS-active substrate. Silver nanobowl array is a multifunctional nanostructure, which can sever as reaction containers, catalyst and SERS-active substrate.
     2、We fabricated a large area flexible superhydrophobic polymer film with biomimic structure with an efficient and a low cost approach. In which, the photopolymer (NOA 63) was patterned into hemispheres array by twice-replicating from the self-assembled PS spheres array, and then silver were thermally evaporated onto the hemispheres array surface to achieve the hierarchical structures. The morphology of the prepared polymer surface of the polymer hemispheres/silver nanoparticles hierarchical composite structure is similar to that of the natural lotus leaf. After modifying the surface of silver nanoparticles with 1-Dodecanethiol, the biomimic film exhibits remarkable superhydrophobic property with a high water contact angle (CA) of about 166°and a low sliding angle (SA) of less than 3°. The wettability of the film surface can be adjusted by changing the thickness of silver film and the size of PS spheres. The biomimic polymer film exhibits good flexibility, which is expected to be applied in arbitrarily curved surfaces and can satisfy a wide range of applications.
     3、We present an approach to fabricate a stable flexible superhydrophobic polymer film. In which, the silver was thermally evaporated onto the templates of PS sphere monolayer, and then PVA aqueous solution was cast on it. After peeling off the glass substrate, removing the PS spheres in tetrahydrofuran solution, the films with silver microbowl array structures were obtained. The test results indicate the silver microbowl arrays were composed of silver nanoparticles with an average diameter size of ca.10 nm, so the polymer surface is a hierarchical microbowl/silver nanoparticles composite structures, which is helpful for obtaining surfaces with superhydrophobic ability. After modifying the silver surface with 1H,1H,2H,2H-perfluorodecanethiol, the polymer films exhibit remarkable superhydrophobicity with a high water CA of about 163°and a low SA of less than 3°. The silver nanoparticles stick firmly on the PVA substrate, which ensure the prepared films with excellent stability when being bended. This flexible superhydrophobic film may satisfy a wide range of applications, which is expected to be applied for self-cleaning of arbitrarily curved hydrophilic surfaces.
     4、We present an effective approach to change the surface of cellulose sheet from superhydrophilic to superhydrophobic by creating hierarchical micro/nano structures. The biodegradable superhydrophobic cellulose sheets are fabricated by the dissolution of cellulose, crystallization of cellulose gel, coagulation in acid and followed by the dip-coating of Teflon solution. Teflon nanoparticles were produced when the apolar Teflon solution was dip-coated on the polar cellulose sheet surface due to the difference of polarity, a biomimic surface with cellulose protuberances/Teflon nanoparticles composite hierarchical structure was obtained. Dip-coating Teflon solution on the surface can not only create a rough surface by producing the nanoparticles and the hierarchical micro/nano structures, but also reduced the cellulose sheet surface energy due to the incorporation of Teflon material with low-surface energy. The prepared cellulose sheets exhibit remarkable superhydrophobicity, satisfactory long-term chemical stability. Using this method, the cellulose materials can be fabricated into any desired forms, which will extend the potential applications of superhydrophobic cellulose products.
引文
[1]GLEITER H, MARQUARDT P Z. Nanocrystalline structures-an approach to new materials [J]. Metall,1984,75:263-267.
    [2]KROTO H W, HEATH J R, O'BRIEN S C, ET AL. C60:Buckminsterfullerene [J]. Nature,1985,318:162-163.
    [3]GEIM A K, NOVOSELOV K S. The rise of grapheme [J]. Nature Materials, 2007,6:183-191.
    [4]BRUS L E. Electron-electron and electron-hole interactions in small semiconductor crystallites:The size dependence of the lowest excited electronic state [J]. Journal of Chemical Physics,1984,80:4403-4409.
    [5]WANG Y, MAHLER W. Degenerate four-wave mixing of CdS/polymer composite [J]. Optical Communication,1987,61:233-236.
    [6]李永军,刘春艳。有序纳米结构薄膜材料[M]。北京:化学工业出版社,2005。
    [7]BARBARA B, WERNSDORFER W. Quantum tunneling effect in magnetic particles [J]. Current Opinion in Solid State and Materials,1997,2:220-225.
    [8]BARTHLOTT W, NEINHUIS C. Purity of the sacred lotus, or escape from contamination in biological surfaces [J]. Planta.,1997,202:1-8.
    [9]NEINHUIS C, BARTHLOTT W. Characterization and distribution of water-repellent self-cleaning plant surfaces [J]. Annals of Botany,1997,79: 667-677.
    [10]WAGNER T, NEINHUIS C, BARTHLOTT W. Wettability and contain inability of insect wings as a function of their surface sculptures [J]. Acta Zoologica,1996,77:213.
    [11]GORBA S N, KESELB A, BERGER J. Microsculpture of the wing surface in Odonata:evidence for cuticular wax covering[J]. Arthropod Struct. Dev.,2000, 29:129-135.
    [12]FENG L, LI S, LI Y, LI H, ZHANG L, ZHAI J, SONG Y, LIU B, JIANG L, ZHU D. Super-hydrophobic surfaces:from natural to artificial[J]. Adv. Mater. 2002,14:1857-1860.
    [13]ZHANG X, SHI F, NIU J, JIANG Y G, WANG Z Q. Superhydrophobic surfaces:from structural control to functional application [J]. J. Mater. Chem., 2008,18:621-633.
    [14]LUM K, CHANDLER D, WEEKS J D. Hydrophobicity at Small and Large Length Scales [J]. J. Phys. Chem. B,1999,103:4570-4577.
    [15]AUTUMN K, LIANG Y A, HSIEH S T, ZESCH W, CHAN W P, KENNY T W, FEARING R, FULL R J. Adhesive force of a single gecko foot-hair [J]. Nature, 2000,405:681-685.
    [16]AUTUMN K, PEATTIE A M. Mechanisms of Adhesion in Geckos [J]. Integr. Comp. Biol.,2002,42:1081-1090.
    [17]KESEL A B, MARTIN A, SEIDL T. Getting a grip on spider attachment:an AFM approach to microstructure adhesion in arthropods [J]. Smart Mater. Struct., 2004,13:512-518.
    [18]EISNER T, ANESHANSLEY D J. Defense by foot adhesion in a beetle (Hemisphaerota cyanea) [J]. PNAS,2000,97:6568-6573.
    [19]AUTUMN K, LIANG Y A, HSIEH S T, ET AL. Adhesive Force of a Single Gecko Foot-hair [J]. Nature,2000,405:681-685.
    [20]AUTUMN K, SITTI M, LIANG Y C A, ET AL. Evidence for van der Waals Adhesion in Gecko Setae [J]. PNAS,2002,99:12252-12256.
    [21]VUKUSIC P, SAMBLES J R. Photonic structures in Biology [J]. Nature, 2003,424:852-855.
    [22]SANDERS J V. Color of precious opal [J]. Nature,1964,204:1151-1153.
    [23]ZI J, YU X D, LI Y Z, HU X H, XU C, WANG X J, LIU X H, FU R T. Coloration strategies in peacock feathers [J]. PNAS,2003,100:12576-12578.
    [24]SRINIVASARAO M. Nano-optics in the biological world:Beetles, butterflies, birds, and moths [J]. Chem Rev,1999,99:1935-1962.
    [25]VUKUSIC P, SAMBLES J R, LAWRENCE C R, WOOTTON R J. Structural Colour:Now you see it-Now you don't [J]. Nature,2001,410:36-36.
    [26]VUKUSIC P, SAMBLES J R, LAWRENCE C R. Structural Colour:Colour Mixing in the wing scales of a butterfly [J]. Nature,2000,404:457.
    [27]VUKUSIC P, HOOPER I. Directionally controlled fluorescence emission in butterflies[J]. Science,2005,310:1151.
    [28]PARKER A, WELCH V, DRIVER D, MARTINI N. Structural colour-opal analogue discovered in a weevil [J]. Nature,2003,426:786-787.
    [29]PARKER A R, MCPHEDRAN R C, MCKENZIE D R, BOTTEN L C, NICOROVICI N N P. Aphrodite's iridescence [J]. Nature,2001,409:36-37.
    [30]VUKUSIC P, SAMBLES J R. Photonic Structures in Biology [J]. Nature, 2003,424:852-855.
    [31]VUKUSIC P, SAMBLES J R, LAWRENCE C R. Structural Colour:Colour Mixing in Wing Scales of a Butterfly [J]. Nature,2000,404:457.
    [32]DEB P, KIM H, RAWAT V, ET AL. Faceted and vertically aligned GaN nanorod arrays fabricated without catalysts or lithography [J]. Nano Letters,2005, 5:1847-1851.
    [33]LEI Y, CHIM W K. Shape and size control of regularly arrayed nanodots fabricated using ultrathin alumina masks [J]. Chemistry of Materials,2005,17: 580-585.
    [34]LIU K, NOGUES J, LEIGHTON C, ET AL. Fabrication and thermal stability of arrays of Fe nanodots [J]. Applied Physics Letters,2002,81:4434-4436.
    [35]LU Z C, RUAN W D, YANG J X, ET AL. Deposition of Ag nanoparticles on porous anodic alumina for surface enhanced Raman scattering substrate [J]. Journal of Raman Spectroscopy,2009,40:112-116.
    [36]MASUDA H, YASUI K, NISHIO K. Fabrication of ordered arrays of multiple nanodots using anodic porous alumina as an evaporation mask [J]. Advanced Materials,2000,12:1031-1033.
    [37]MEI X Y, KIM D, RUDA H E, ET AL. Molecular-beam epitaxial growth of GaAs and InGaAs/GaAs nanodot arrays using anodic Al2O3 nanohole array template masks [J]. Applied Physics Letters,2002,81:361-363.
    [38]SAUER G, BREHM G, SCHNEIDER S, ET AL. Highly ordered monocrystalline silver nanowire arrays [J]. Journal of Applied Physics,2002,91: 3243-3247.
    [39]STEINHART M, WENDORFF J H, GREINER A, ET AL. Polymer nanotubes by wetting of ordered porous templates [J]. Science,2002,296:1997.
    [40]WU Z H, MEI X Y, KIM D, ET AL. Growth of Au-catalyzed ordered GaAs nanowire arrays by molecular-beam epitaxy [J]. Applied Physics Letters,2002,81: 5177-5179.
    [41]ZHENG M, MENON L, ZENG H, ET AL. Magnetic properties of Ni nanowires in self-assembled arrays [J]. Physical Review B,2000,62: 12282-12286.
    [42]CHOI J, SAUER G, NIELSCH K, ET AL. Hexagonally arranged monodisperse silver nanowires with adjustable diameter and high aspect ratio [J].Chemistry of Materials,2003,15:776-779.
    [43]HONG J F, LEE W, SCHOLZ R, ET AL. Arrays of vertically aligned and hexagonally arranged ZnO nanowires:a new template-directed approach [J]. Nanotechnology,2005,16:913-917.
    [44]LU L H, CAPEK R, KORNOWSKI A, ET AL. Selective fabrication of ordered bimetallic nanostructures with hierarchical porosity [J]. Angewandte Chemie-International Edition,2005,44:5997-6001.
    [45]HAYNES C L, VAN DUYNE R P. Nanosphere lithography:A versatile nanofabrication tool for studies of size-dependent nanoparticle optics [J]. Journal of Physical Chemistry B,2001,105:5599-5611.
    [46]DUAN G T, CAI W P, LUO Y Y, ET AL. Hierarchical structured Ni nanoring and hollow sphere arrays by morphology inheritance based on ordered through-pore template and electrodeposition [J]. Journal of Physical Chemistry B, 2006,110:15729-15733.
    [47]SUN F, CAI W P, LI Y, DUAN G T, NICHOLS W T, ET AL. Laser morphological manipulation of gold nanoparticles periodically arranged on solid supports [J]. Applied Physics B:Lasers and Optics,2005,81:765-768.
    [48]WANG X D, GRAUGNARD E, KING J S, WANG Z L, SUMMERS C J. Large-scale fabrication of ordered nanobowl arrays [J]. Nano Letters,2004,4: 2223-2226.
    [49]ANDRES R P, BEIN T, DOROGI M, ET AL. "Coulomb Staircase" at Room Temperature in a Self-assembled Molecular Nanostructure [J]. Science,272: 1323-1325.
    [50]MIRKIN C A, LETSINGER R L, MUCIC R C, ET AL. A DNA-based method for rationally assembling nanoparticles into macroscopic materials [J]. Nature,1996,382:607-609.
    [51]CARUSO F, CARUSO R A, MOHWALD H. Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating [J]. Science,1998,282: 1111-1114.
    [52]BOWDEN N B, WECK M, CHOI I S, ET AL. Molecule-mimetic chemistry and mesoscale self-assembly [J]. Ace. Chem. Res.,2001,34:231-238.
    [53]BICO J, ROMAN B, MOULIN L, ET AL. Elastocapillary Coalescence in Wet Hair [J]. Nature,2004,432:690.
    [54]YABU H, TAKEBAYASHI M, TANAKA M. Superhydrophobic and lipophobic properties of self-organized honeycomb and pincushion structures [J]. Langmuir,2005,21:3235-3237.
    [55]AMRO N A, XU S. Patterning Surfaces Using Tip-directed Displacement and Self-assembly [J]. Langmuir,2000,16:3006~3009.
    [56]WANG, L F, ZHAO Y,WANG J M, HONG X, ZHAI J, JIANG L, WANG F S. Ultra-Fast Spreading on Superhydrophilic Fibrous Mesh with Nanochannels [J]. Appl. Surf. Sci.,2009,255:4944-4949.
    [57]KOLLIAS K, WANG H Y, SONG Y, ZOU M. Production of A Superhydrophilic Surface by Aluminum-Induced Crystallization of Amorphous Silicon [J]. Nanotechnology,2008,19:465304-465309.
    [58]SONG S, JING L Q, LI S D, FU H G, LUAN Y B. Superhydrophilic Anatase TiO2 Film with the Micro-and Nanometer-Scale Hierarchical Surface Structure [J]. Mater. Lett.,2008,62:3503-3505.
    [59]LIU X M, DU X, HE J H. Hierarchically structured porous films of silica hollow spheres via layer-by-layer assembly and their superhydrophilic and antifogging Properties [J]. Chemphyschem,2008,9:305-309.
    [60]WU Z Z, LEE D, RUBNER M, COHEN R. Structural color in porous, superhydrophilic and self-cleaning SiO2/TiO2 Bragg stacks [J]. Small,2007,3: 1445-1451.
    [61]BOINOVICH L, EMELYANENKO A. Principles of design of superhydrophobic coatings by deposition from dispersions [J]. Langmuir,2009, 25:2907-2912.
    [62]YANG C W, HAO P F, HE F. Effect of Upper Contact Line on Sliding Behavior of Water Droplet on Superhydrophobic Surface [J]. Chinese Sci.Bull., 2009,54:727.
    [63]RAO V V, LATTHE S S, NADARGI D Y, HIRASHIMA H, GANESAN V. Preparation of MTMS Based Transparent Superhydrophobic Silica Films by Sol-Gel Method [J]. J.Colloid Interface Sci.,2009,332:484-490.
    [64]BHUSHAN B, JUNG Y C, KOCH K. Self-Cleaning Efficiency of Artificial Superhydrophobic Surfaces [J]. Langmuir,2009,25:3240-3248.
    [65]LING X Y, PHANG I Y, VANCSO G J, HUSKENS J, REINHOUDT D N. Stable and transparent superhydrophobic nanoparticle films [J]. Langmuir,2009, 25:3260-3263.
    [66]QIAN Z, ZHANG Z C, SONG L Y, LIU H R. A novel approach to raspberry-like particles for superhydrophobic materials [J]. J. Mater. Chem.,2009, 19:1297-1304.
    [67]CRICK C R, PARKIN I P. A single step route to superhydrophobic surfaces through aerosol assisted deposition of rough polymer surfaces:duplicating the lotus effect [J]. J. Mater. Chem.,2009,19:1074-1076.
    [68]TADA H, NAGAYAMA H. Chemical Vapor Surface Modification of Porous Glass with Fluoroalkyl-Functionalized Silanes.2. Resistance to Water [J]. Langmuir,1995,11:136-142.
    [69]WU J, MATE C. M. Contact Angle Measurements of Lubricated Silicon Wafers and Hydrogenated Carbon Overcoats [J]. Langmuir,1998,14(17): 4929-4934.
    [70]HUI M, BLUNT M. Effects of wettability on three-phase flow in porous media [J]. J. Phys. Chem. B,2000,104:3833-3845.
    [71]COULSON S R, WOODWARD I, BADYAL J P S, BREWER S A, WILLIS C. Super-repellent composite fluoropolymer surfaces [J]. J. Phys. Chem. B,2000, 104:8836-8840.
    [72]NISHINO T, MEGURO M, NAKAMAE K, MATSUSHITA M, UEDA Y. The lowest surfacefree energy based on-CF3 alignment [J]. Langmuir,1999,15: 4321-4323.
    [73]JIN M H, FENG X J, FENG L,SUN T L, ZHAI J, LI T J, JIANG L, Super-hydrophobic Aligned Polystyrene Nanotubes Film with High Adhesive Force [J]. Adv.Mater.,2005,17:1977-1981.
    [74]SHIU J Y, KUO C W, CHEN P L, MOU C Y. Fabrication of Tunable Superhydrophobic Surfaces by Nanosphere Lithography [J]. Chem.Mater.,2004, 16:561-564.
    [75]MA M L, HILL R M, LOWERY J L, FRIDRIKH S V, RUTLEDGE G C. Electrospun Poly(Styrene-block-dimethylsiloxane) Block Copolymer Fibers Exhibiting Superhydrophobicity [J]. Langmuir,2005,21:5549-5554.
    [76]MINKO S, MULLER M, MOTORNOV M, NITSCHKE M, GRUNDKE K, STAMM M. Two-level structured self-adaptive surfaces with reversibly tunable properties [J]. J. Am. Chem. Soc.,2003,125:3896-3900.
    [77]DOSHI D A, SHAH P B, SINGH S, BRANSON E D, ET AL. Investigating the interface of superhydrophobic surfaces in contact with water [J]. Langmuir, 2005,21:7805-7811.
    [78]ONDA T, SHIBUISHI S, SATOH N, TSUJII K. Super-Water-Repellent Fractal Surfaces [J]. Langmuir,1996,12:2125-2217.
    [79]CHEN W, FADEEV A Y, HEIEH M C, ET AL. Ultrahydrophobic and Ultralyophobic Surfaces:Some Comments and Examples [J]. Langmuir,1999,15: 3395-3399.
    [80]LI Y, HUANG X JIU, HEO S H, LI C C, CHOI Y K, CAI W P, CHO S O. Superhydrophobic Bionic Surfaces with Hierarchical Microsphere/SWCNT Composite Arrays [J]. Langmuir,2007,23:2169-2174.
    [81]LI Y, LI C C, CHO S O, DUAN G T, CAI W P. Silver hierarchical bowl-like array:synthesis, superhydrophobicity and optical properties [J]. Langmuir,2007, 23:9802-9807.
    [82]SUN M H, LUO C X, XU L P, JI H, QI O Y, YU D P, CHEN Y. Artificial lotus leaf by nanocasting [J]. Langmuir,2005,21:8978-8981.
    [83]TSEREPI A D, VLACHOPOULOU M E, GOGOLIDES E. Nanotexturing of poly(dimethylsiloxane) in plasmas for creating robust super-hydrophobic surfaces [J]. Nanotechnology,2006,17:3977-3983.
    [84]JIN M H, FENG X J, XI J M, ZHAI J, CHO K W, FENG L, JIANG L. Super-hydrophobic PDMS surface with ultra-low adhesive force [J]. Macromol. Rapid Commun.,2005,26:1805-1809.
    [85]DE GIVENCHY E P T, AMIGONI S, MARTIN C, ANDRADA G, CAILLIER L, GERIBALDI S, GUITTARD F. Fabrication of Superhydrophobic PDMS Surfaces by Combining Acidic Treatment and Perfluorinated Monolayers [J]. Langmuir,2009,25:6448-6453.
    [86]LEE S, KANG J H, LEE S J, HWANG W. Tens of centimeter-scale flexible superhydrophobic nanofiber structures through curing process [J]. Lab on a Chip, 2009,9:2234-2237.
    [87]YAO T J, WANG C X, LIN Q, LI X, CHEN X L, WU J, ZHANG J H, YU K, YANG B. Fabrication of flexible superhydrophobic films by lift-up soft-lithography and decoration with Ag nanoparticles [J]. Nanotechnology,2009, 20:065304.
    [88]FLEISCHMANN M, HENDRA P J, MCQUILLAN A J. Raman spectra from electrode surfaces [J]. J. Chem. Soc. Chem. Commun.,1973,3:80-81.
    [89]JEANMAIRE D L, VAN DUYNE R P. J. Surface Raman spectroelectrochemistry Part Ⅰ. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode [J]. Electroanal. Chem.,1977,84:1-20.
    [90]ALBRECHT M G, CREIGHTON J A. Anomalously Intense Raman Spectra of Pyridine at a Silver Electrode [J]. J. Am. Chem. Soc.,1977,99:5215-5217.
    [91]HAYNES C L, MCFARLAND A D, VAN DUYNE R P. Surface-Enhanced Raman Spectroscopy [J]. Anal. Chem.,2005,77:338A-346A.
    [92]ZHANG J T, LI X L, SUN X M, LI Y D. Surface enhanced raman scattering effects of silver colloids with different shapes[J]. J. Phys. Chem. B,2005,109: 12544-12548.
    [93]LI X L, XU W Q, ZHANG J H, JIA H Y, YANG B, ZHAO B, LI B F, OZAKI Y. Self-assembled metal colloid films:Two approaches for preparing new SERS active substrates [J]. Langmuir,2004,20:1298-1304.
    [94]DUAN, G T, CAI W P, LUO Y Y, LI Y, LEI Y. Hierarchical surface rough ordered Au particle arrays and their surface enhanced Raman scattering [J]. Appl. Phys. Lett.,2006,89:181918-181920.
    [95]NETTI M C, COYLE S, BAUMBERG J J, GHANEM M A, BIRKIN P R, BARTLETT P N, WHITTAKER D M. Confined surface plasmons in gold photonic nanocavities [J]. Adv. Mater.,2001,13:1368-1370.
    [96]ZHOU Q, ZHAO H, PANG F Z, JING Q Y, WU Y, ZHENG J W. Formation of Two-Dimensional Silver Cavity Array and Surface-Enhanced Raman Scattering of Adsorbed Molecules [J]. J. Phys. Chem. C,2007,111:514-518.
    [1]WANKE M C, LEHMANN O, MULLER K, WEN Q, STUKE M. Laser Rapid Prototyping of Photonic Band-Gap Microstructures [J]. Science,1997,275: 1284-1286.
    [2]KUO C W, SHIU J Y, CHO Y H, CHEN P. Fabrication of large-area periodic nanopillar arrays for nanoimprint lithography using polymer colloid masks [J]. Adv. Mater.,2003,15:1065-1068.
    [3]HEHN M, OUNADJELA K, BUNCHER J P, ROUSSEAUX F, DECANINI D, BARTENLIAN B, CHAPPERT C. Nanoscale Magnetic Domains in Mesoscopic Magnets [J] Science,1996,272:1782-1785.
    [4]CHENG J Y, ROSS C A, CHAN V Z H, THOMAS E L, LAMMERTINK R G H, VANCSO G J. Formation of a cobalt magnetic dot array via block copolymer lithography [J]. Adv. Mater.,2001,13:1174-1178.
    [5]HAES A J, VAN DUYNE R P. A nanoscale optical blosensor:Sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles [J]. J. Am. Chem. Soc.,2002,124: 10596-10604.
    [6]LEE K B, PARK S J, MIRKIN C A, SMITH J C, MRKSICH M. Protein nanoarrays generated by dip-pen nanolithography [J]. Science,2002,295: 1702-1705.
    [7]XU D W, GRAUGNARD E, KING J S, ZHONG L W, SUMMERS C J. Large-scale fabrication of ordered nanobowl arrays [J]. Nano Lett.,2004,4: 2223-2226.
    [8]WANG X D, LAO C S, GRAUGNARD E, SUMMERS C J, WANG Z L. Large-size liftable inverted-nanobowl sheets as reusable masks for nanolithiography [J]. Nano Lett.,2005,5:1784-1788.
    [9]LI Y, LI C C, CHO S O, DUAN G T, CAI W P. Silver hierarchical bowl-like array:Synthesis, superhydrophobicity, and optical properties [J]. Langmuir,2007, 23:9802-9807.
    [10]SRIVASTAVA A K, MADHAVI S, WHITE T J, RAMANUJAN R V. Template assisted assembly of cobalt nanobowl arrays [J]. J. Mater. Chem.,2005, 15:4424-4428.
    [11]CHEN T H, TSAI T Y, HSIEH K C, CHANG S C, TAI N H, CHEN H L. Two-dimensional metallic nanobowl array transferred onto thermoplastic substrates by microwave heating of carbon nanotubes [J]. Nanotechnology,2008, 19:465303.
    [12]WANG X D, NEFF C, GRAUGNARD E, DING Y, KING J S, PRANGER L A, TANNENBAUM R, WANG Z L, SUMMERS C J. Photonic crystals fabricated using patterned nanorod arrays [J]. Adv. Mater.,2005,17:2103-2106.
    [13]KEI C C, CHEN T H, CHANG C M, SU C Y, LEE C T, HSIAO C N, CHANG S C, PERNG T P. Preparation of periodic Arrays of metallic nanocrystals by using nanoboneycomb as reaction vessel [J]. Chem. Mater.,2007,19: 5833-5835.
    [14]KOSIOREK A, KANDULSKI W, GLACZYNSKA H, GIERSIG M. Fabrication of nanoscale rings, dots, and rods by combining shadow nanosphere lithography and annealed polystyrene nanosphere masks [J]. Small,2005,1: 439-444.
    [15]LI J R, GARNO J C. Nanostructures of Octadecyltrisiloxane Self-Assembled Monolayers Produced on Au(111) Using Particle Lithography [J]. Acs Applied Materials & Interfaces,2009,1:969-976.
    [16]SUN F Q, YU J C, WANG X C. Construction of size-controllable hierarchical nanoporous TiO2 ring Arrays and their modifications [J]. Chem. Mater.,2006,18:3774-3779.
    [17]PACIFICO J, GOMEZ D, MULVANEY P. A simple route to tunable two-dimensional arrays of quantum dots [J]. Adv. Mater.,2005,17:415-418.
    [18]SUN F, CAI W, LI Y, DUAN G, NICHOLS W T, LIANG C, KOSHIZAKI N, FANG Q, BOYD I W. Laser morphological manipulation of gold nanoparticles periodically arranged on solid supports [J]. Appl. Phys. B:Lasers Opt.,2005,81: 765-768.
    [19]LI Y, CAI W, DUAN G. Ordered micro/nanostructured arrays based on the monolayer colloidal crystals [J]. Chem. Mater.,2008,20:615-624.
    [20]TRUJILLO N J, BAXAMUSA S H, GLEASON K K. Grafted Functional Polymer Nanostructures Patterned Bottom-Up by Colloidal Lithography and Initiated Chemical Vapor Deposition (iCVD) [J]. Chem. Mater.,2009,21: 742-750.
    [21]CHEN X, WEI X, JIANG K. Fabrication of large-area nickel nanobump arrays [J]. Microelectron. Eng.,2009,86:871-873.
    [22]WANG S, PILE D F P, SUN C, ZHANG X. Nanopin plasmonic resonator array and its optical properties [J]. Nano Lett.,2007,7:1076-1080.
    [23]SHIN C, SHIN W, HONG H G. Electrochemical fabrication and electrocatalytic characteristics studies of gold nanopillar array electrode (AuNPE) for development of a novel electrochemical sensor [J]. Electrochim. Acta.,2007, 53:720-728.
    [24]HAYNES C L, VAN DUYNE R P. Plasmon-sampled surface-enhanced Raman excitation spectroscopy [J]. J. Phys. Chem. B,2003,107:7426-7433.
    [25]ZHANG X Y, YONZON C R, VAN DUYNE R P. Nanosphere lithography fabricated plasmonic materials and their applications [J]. J. Mater. Res.,2006,21: 1083-1092.
    [26]LU L H, RANDJELOVIC I, CAPEK R, GAPONIK N, YANG J H, ZHANG H J, EYCHMULLER A. Controlled fabrication of gold-coated 3D ordered colloidal crystal films and their application in surface-enhanced Raman spectroscopy [J]. Chem. Mater.,2005,17:5731-5736.
    [27]BAUMBERG J J, KELF T A, SUGAWARA Y, CINTRA S, ABDELSALAM M E, BARTLETT P N, RUSSELL A E. Angle-resolved surface-enhanced Raman scattering on metallic nanostructured plasmonic crystals [J]. Nano Lett.,2005.5: 2262-2267.
    [28]DINTINGER J, KLEIN S, BUSTOS F, BARNES W L, EBBESEN T W. Strong coupling between surface plasmon-polaritons and organic molecules in subwavelength hole arrays [J]. Phys. ReV. B,2005,71:035424.
    [29]LIZ-MARZAN, L. M.; GIERSIG, M. Low-Dimensional Systems:Theory, Preparation, and Some Applications, Kluwer Academic Publishers, Dordeecht. 2003,p.163-172.
    [30]KELLY K L, CORONADO E, ZHAO L L, SCHATZ G C. The optical properties of metal nanoparticles:The influence of size, shape, and dielectric environment [J]. J. Phys. Chem. B,2003,107:668-677.
    [31]TANAKA T, NAKAJIMA A, WATANABE A, OHNO T, OZAKI Y. Surface-enhanced Raman scattering spectroscopy and density functional theory calculation studies on adsorption of o-, m-, and p-nitroaniline on silver and gold colloid [J]. J. Mol. Struct.,2003,661:437-449.
    [32]MA W Q, FANG Y. Experimental (SERS) and theoretical (DFT) studies on the adsorption of p-, m-, and o-nitroaniline on gold nanoparticles [J]. J. Colloid Interface Sci.,2006,303:1-8.
    [33]MALLICK K, SCURRELL M S. CO oxidation over gold nanoparticles supported on TiO2 and TiO2-ZnO:catalytic activity effects due to surface modification of TiO2 with ZnO [J]. Appl. Catal. A-Gen.,2003,253:527-536.
    [34]MALLIEK, K.; WITEOMB, M. J.; SEURRELL, M.S. Appl. Catal. A.2003, 259,163.
    [35]MALLICK K, WITCOMB M J, SCURRELL M S. Simplified single-step synthetic route for the preparation of a highly active gold-based catalyst for CO oxidation [J]. J. Mol. Catal. A,2004,215:103-106.
    [36]ZHOU Q F, BAO J C, XU Z. Shape-controlled synthesis of nanostructured gold by a protection-reduction technique [J]. J. Mater. Chem.,2002,12:384-387.
    [37]MALLICK K, WITCOMB M J, SCURRELL M S. Polymer-stabilized colloidal gold:a convenient method for the synthesis of nanoparticles by a UV-irradiation approach [J]. Appl.Phys. A-Mater.,2005,80:395-398.
    [38]CASON J P, MILLER E M, THOMPSON B J, ROBERTS B C. Solvent effects on copper nanoparticle growth behavior in AOT reverse micelle systems [J]. J. Phys. Chem. B,2001,105:2297-2302.
    [39]KUNDU S, MANDAL M, GHOSH S K, PAL T. Photochemical deposition of SERS active silver nanoparticles on silica gel and their application as catalysts for the reduction of aromatic nitro compounds [J]. J. Colloid Interface Sci.,2004,272: 134-144.
    [40]ZHOU Q, QIAN G Z, LI Y, ZHAO G, CHAO Y W, ZHENG J W. Two-dimensional assembly of silver nanoparticles for catalytic reduction of 4-nitroaniline [J]. Thin Solid Films,2008,516:953-956.
    [41]EBBESEN T W, LEZEC H J, GHAEMI H F. Extraordinary optical transmission through sub-wavelength hole arrays [J]. Nature,1998,391:667-669.
    [42]NETTI M C, COYLE S, BAUMBERG J J, GHANEM M A, BIRKIN P R, BARTLETT P N, WHITTAKER D M. Confined surface plasmons in gold photonic nanocavities [J]. Adv. Mater.,2001,13:1368-1370.
    [43]COYLE S, NETTI M C, BAUMBERG J J, GHANEM M A, BIRKIN P R, BARTLETT P N, WHITTAKER D M. Confined plasmons in metallic nanocavities [J]. Phys. ReV. Lett.,2001,87:176801.
    [1]GAO X F, JIANG L. Water-repellent legs of water striders [J]. Nature,2004, 432:36.
    [2]SUN T L, FENG L, GAO X F, JIANG L. Bioinspired surfaces with special wettability [J]. Acc. Chem. Res.,2005,38:644-652.
    [3]GAU H, HERMINGHAUS S, LENZ P, LIPOWSKY R. Liquid Morphologies on Structured Surfaces:from Microchannels to Microchips [J]. Science,1999,283: 46-49.
    [4]SHULL K R, KARIS T E. Dewetting dynamics for large equilibrium contact angels [J]. Langmuir,1994,10:334-339.
    [5]BARTHLOTT W, NEINHUIS C. Purity of the sacred lotus, or escape from contamination in biological surfaces [J]. Planta,1997,202:1-8.
    [6]FENG L, LI S, LI Y, LI H, ZHANG L, ZHAI J, SONG Y, LIU B, JIANG L, ZHU D. Super-hydrophobic surfaces:from natural to artificial [J]. Adv. Mater., 2002,14:1857-1860.
    [7]BLOSSEY R. Self-cleaning surfaces-virtual realities [J]. Nat. Mater.,2003,2: 301-306.
    [8]NOSONOVSKY M. Multiscale roughness and stability of superhydrophobic biomimetic interfaces [J]. Langmuir,2007,23:3157-3161.
    [9]LAFUMA A, QUERE D. Superhydrophobic states [J]. Nat. Mater.,2003,2: 457-460.
    [10]GAO L C, MCCARTHY T J. How Wenzel and Cassie were wrong [J]. Langmuir,2007,23:3762-3765.
    [11]WANG S T, LIU H J, LIU D S, MA X Y, FANG X H, JIANG L, Enthalpy-driven 3-state Switching Superhydrophilic/superhydrophobic Surface [J]. Angew. Chem. Int. Ed.,2007,46:3915-3917.
    [12]CHEN C H, CAI Q J, TSAI C L, CHEN C L, XIONG G Y, YU Y, REN Z F. Dropwise condensation on superhydrophobic surfaces with two-tier roughness [J]. Appl. Phys. Lett.,2007,90:173108-173110.
    [13]MICHIELSEN S, LEE H J. Design of a Superhydrophobic Surface Using Woven Structures [J]. Langmuir,2007,23:6004-6010.
    [14]TAKEI G, NONOGI M, HIBARA A, KITAMORI T, KIM H B. Tuning microchannel wettability and fabrication of multiple-step Laplace valves [J]. Lab Chip,2007,7:596-602.
    [15]WANG T, HU X G, DONG S J. A general route to transform normal hydrophilic cloths into superhydrophobic surfaces [J]. Chem. Commun.,2007,18: 1849-1851.
    [16]MIYAUCHI Y, DING B, SHIRATORI S. Fabrication of a silver-ragwort-leaf-like super-hydrophobic micro/nanoporous fibrous mat surface by electrospinning [J]. Nanotechnology,2006,17:5151-5156.
    [17]NEINHUIS C, BARTHLOTT W. Characterization and Distribution of Water-repellent, Self-cleaning Plant Surfaces [J]. Ann. Bot.,1997,79:667-677.
    [18]XIU Y H, ZHU L B, HESS D W, WONG C P. Biomimetic creation of hierarchical surface structures by combining colloidal self-assembly and Au sputter deposition [J]. Langmuir,2006,22:9676-9681.
    [19]FANG W J, MAYAMA H, TSUJII K. Spontaneous formation of fractal structures on triglyceride surfaces with reference to their super water-repellent properties [J]. J. Phys. Chem. B,2007,111:564-571.
    [20]GAO L C, MCCARTHY T J. The "lotus effect" explained:Two reasons why two length scales of topography are important [J]. Langmuir,2006,22: 2966-2967.
    [21]TUNG P H, KUO S W, JEONG K U, CHENG S Z D, HUANG C F, CHANG F C. Formation of honeycomb structures and superhydrophobic surfaces by casting a block copolymer from selective solvent mixtures [J]. Macromol. Rapid Commun.,2007,28:271-275.
    [22]LEE E J, LEE H M, LI Y, HONG L Y, KIM D P, CHO S O. Hierarchical pore structures fabricated by electron irradiation of silicone grease and their applications to superhydrophobic and superhydrophilic films [J]. Macromol. Rapid Commun.,2007,28:246-251.
    [23]GAO X F, YAO X, JIANG L. Effects of rugged nanoprotrusions on the surface hydrophobicity and water adhesion of anisotropic micropatterns [J]. Langmuir,2007,23:4886-4891.
    [24]SHI F, SONG Y Y, NIU H, XIA X H, WANG Z Q, ZHANG X. Facile method to fabricate a large-scale superhydrophobic surface by galvanic cell reaction [J]. Chem. Mater.,2006,18:1365-1368.
    [25]ZHAO N, SHI F, WANG Z Q, ZHANG X. Combining layer-by-layer assembly with electrodeposition of silver aggregates for fabricating superhydrophobic surfaces [J]. Langmuir,2005,21:4713-4716.
    [26]ZHANG X, SHI F, YU X, LIU H, FU Y, WANG Z Q, JIANG L, LI X Y. Polyelectrolyte multilayer as matrix for electrochemical deposition of gold clusters:toward super-hydrophobic surface [J]. J. Am. Chem. Soc.,2004,126: 3064-3065.
    [27]SHI F, WANG Z Q, ZHANG X. Combining a layer-by-layer assembling technique with electrochemical deposition of gold aggregates to mimic the legs of water striders [J]. Adv. Mater.,2005,17:1005-1009.
    [28]ZHAI L, CEBECI F C, COHEN R E, RUBNER M F. Stable superhydrophobic coatings from polyelectrolyte multilayers [J]. Nano Lett.,2004, 4:1349-1353.
    [29]ZHANG L B, CHEN H, SUN J Q, SHEN J C. Layer-by-layer deposition of poly(diallyldimethylammonium chloride) and sodium silicate multilayers on silica-sphere-coated substrate-facile method to prepare a superhydrophobic surface [J]. Chem. Mater.,2007,19:948-953.
    [30]ZHAI L, BERG M C, CEBECI F C, KIM Y, MILWID J M, RUBNER M F, COHEN R E. Patterned superhydrophobic surfaces:Toward a synthetic mimic of the Namib Desert beetle [J]. Nano Lett.,2006,6:1213-1217.
    [31]JI J, FU J H, SHEN J C. Fabrication of a superhydrophobic surface from the amplified exponential growth of a multilayer [J]. Adv. Mater.,2006,18: 1441-1444.
    [32]QU M N, ZHANG B W, SONG S Y, CHEN L, ZHANG J Y, CAO X P. Fabrication of superbydrophobic surfaces on engineering materials by a solution-immersion process [J]. Adv. Funct. Mater.,2007,17:593-596.
    [33]LARMOUR I A, BELL S E J, SAUNDERS G C. Remarkably simple fabrication of superhydrophobic surfaces using electroless galvanic deposition [J]. Angew. Chem. Int. Ed.,2007,46:1710-1712.
    [34]HUANG Z B, ZHU Y, ZHANG J H, YIN G F. Stable biomimetic superhydrophobicity and magnetization film with Cu-ferrite nanorods [J]. J. Phys. Chem. C,2007,111:6821-6825.
    [35]ZHAO Y, LU Q H, CHEN D S, WEI Y. Superhydrophobic modification of polyimide films based on gold-coated porous silver nanostructures and self-assembled monolayers [J]. J. Mater. Chem.,2006,16:4504-4509.
    [36]ZHAO N, ZHANG X Y, ZHANG X L, XU J. Simultaneous tuning of chemical composition and topography of copolymer surfaces:Micelles as building blocks [J]. ChemPhysChem.,2007,8:1108-1114.
    [37]YANG L L, BAI S, ZHU D S, YANG Z H, ZHANG M F, ZHANG Z F, CHEN E Q, CAO W. Superhydrophobic patterned film fabricated from DNA assembly and Ag deposition [J]. J. Phys. Chem. C,2007,111:431-434.
    [38]WANG S T, FENG L, JIANG L. One-step solution-immersion process for the fabrication of stable bionic superhydrophobic surfaces [J]. Adv. Mater.,2006,18: 767-770.
    [39]SUN M H, LUO C X, XU L P, JI H, QI O Y, YU D P, CHEN Y. Artificial lotus leaf by nanocasting [J]. Langmuir,2005,21:8978-8981.
    [40]TSEREPI A D, VLACHOPOULOU M E, GOGOLIDES E. Nanotexturing of poly(dimethylsiloxane) in plasmas for creating robust super-hydrophobic surfaces [J]. Nanotechnology,2006,17:3977-3983.
    [41]JIN M H, FENG X J, XI J M, ZHAI J, CHO K W, FENG L, JIANG L. Super-hydrophobic PDMS surface with ultra-low adhesive force [J]. Macromol. Rapid Commun.,2005,26:1805-1809.
    [42]DE GIVENCHY E P T, AMIGONI S, MARTIN C, ANDRADA G, CAILLIER L, GERIBALDI S, GUITTARD F. Fabrication of Superhydrophobic PDMS Surfaces by Combining Acidic Treatment and Perfluorinated Monolayers [J]. Langmuir,2009,25:6448-6453.
    [43]LEE S, KANG J H, LEE S J, HWANG W. Tens of centimeter-scale flexible superhydrophobic nanofiber structures through curing process [J]. Lab on a Chip, 2009,9:2234-2237.
    [44]YAO T J, WANG C X, LIN Q, LI X, CHEN X L, WU J, ZHANG J H, YU K, YANG B. Fabrication of flexible superhydrophobic films by lift-up soft-lithography and decoration with Ag nanoparticles [J]. Nanotechnology,2009, 20:065304.
    [45]RYBCZYNSKI J, HILGENDORFF M, GIERSIG M. Nanosphere lithography-Fabrication of various periodic magnetic particle arrays using versatile nanosphere masks [J]. Low-Dimensional Systems:Theory, Preparation, and Some Applications.2003,91:163-172.
    [46]R. N. J. Wenzel, Phys. Colloid Chem.,1949,53,1446.
    [47]CASSIE A B D, BAXTER S. Wettability of porous surfaces [J] Trans. Faraday Soc.,1944,40:546-551.
    [1]YABU H, TAKEBAYASHI M, TANAKA M, SHIMOMURA M. Superhydrophobic and lipophobic properties of self-organized honeycomb and pincushion structures [J]. Langmuir,2005,21:3235-3237.
    [2]YABU H, SHIMOMURA M. Single-step fabrication of transparent superhydrophobic porous polymer films [J]. Chem. Mater.,2005,17:5231-5234.
    [3]L. M. LIZ-MARZAN, M. GIERSIG, Low-Dimensional Systems:Theory, Preparation, and Some Applications, Kluwer Academic Publishers, Dordeecht. 2003, p.163-172.
    [4]KELLY K L, CORONADO E, ZHAO L L, SCHATZ G C. The optical properties of metal nanoparticles:The influence of size, shape, and dielectric environment [J]. J. Phys. Chem. B,2003,107:668-677.
    [1]SCHURZ J.'Trends in polymer science'-A bright future for cellulose [J]. Prog. Polym. Sci.1999,24:481-483.
    [2]WANG T, HU X G, DONG S J. A general route to transform normal hydrophilic cloths into superhydrophobic surfaces [J]. Chem. Commun.2007,18: 1849-1851.
    [3]LI S H, XIE H B, ZHANG S B, WANG X H. Facile transformation of hydrophilic cellulose into superhydrophobic cellulose [J]. Chem. Commun 2007, 46:4857-4859.
    [4]LI S H, ZHANG S B, WANG X H. Fabrication of superhydrophobic cellulose-based materials through a solution-immersion process [J]. Langmuir. 2008,24:5585-5590.
    [5]LENG B X, SHAO Z Z, DE WITH G, MING W H. Superoleophobic Cotton Textiles [J]. Langmuir.2009,25:2456-2460.
    [6]BALU B, BREED VELD V, HESS D W. Fabrication of "roll-off" and "sticky" superhydrophobic cellulose surfaces via plasma processing [J]. Langmuir.2008, 24:4785-4790.
    [7]JIN H J, ZHA C X, GU L X. Direct dissolution of cellulose in NaOH/thiourea/urea aqueous solution [J]. Carbohyd. Res.2007,342:851-858.
    [8]HU Z S, ZEN X Y, GONG J, DENG Y L. Water resistance improvement of paper by superhydrophobic modification with microsized CaCO3 and fatty acid coating [J]. Colloid Surfaces A.2009,351:65-70.
    [9]GONCALVES G, MARQUES P, TRINDADE T, PASCOAL C, GANDINI A. Superhydrophobic cellulose nanocomposites [J]. J. Colloid. Interf. Sci.2008,324: 42-46.
    [10]XUE C H, JIA S T, ZHANG J, TIAN L Q. Superhydrophobic surfaces on cotton textiles by complex coating of silica nanoparticles and hydrophobization [J]. Thin Solid Films,2009,517:4593-4598.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700