用户名: 密码: 验证码:
蝶翅分级结构功能氧化物的制备与耦合性能探索研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
材料是人类文明的物质基础,现代高科技的迅猛发展对材料的性能提出了更多更高的要求。材料的性能不仅取决于其化学组分,更与其自身的结构,特别是从宏观到微观的分级结构密切相关。同一组分,不同结构的材料往往表现出截然不同的性能特征。因此材料分级结构与性能之间的耦合效应是当前材料科学领域中新兴和备受关注的重要研究领域之一。一方面对已有材料的结构及其性能进行研究表征,另一方面不断设计制备具有新的优越性能的分级结构材料。在材料分级结构的设计研究中,自然给了我们很多优秀范例与深刻启迪。长期的进化过程中,自然界生物形成了多种复杂的分级精细结构。生物体以最经济、最优化的方式构筑和组合了维持它们生存、生长的结构和组分。同时,这些丰富的分级精细结构与其材质相互耦合,呈现了结构功能的一体化。
     蝴蝶翅膀(以下简称蝶翅)正是这样一种利用其自身分级精细结构实现各种优异性能的典型实例。这些以甲壳素为主要成分的蝶翅结构不仅具有所适配的机械强度及自清洁的表面性质,同时形成蝶翅的甲壳素薄膜与填充期间的空气具有不同的折射率,对入射的光线产生散射、干涉、衍射乃至光子晶体等光学作用,使得蝶翅能够呈现出不同的颜色,满足其求偶捕食等生存需要。除了颜色的变化,某些蝶翅鳞片还具有特殊的捕捉光的能力。蝶翅以简单的组分,复杂多变的分级结构实现了其赖以生存的各种功能,而这些复杂分级结构目前是人类无法精确制备和实现的。这些结构不仅对蝴蝶本身有着重要的生物意义,更给了材料研究很多新的启发与指导。以这些具有特殊多级精细微观结构的蝶翅为模板,基于遗态材料的制备思想,人工变更其组分,将甲壳素基体替换为各种具有优越物理特性的其他组分,就可以合成各种兼具原始蝶翅分级结构与新组分特性的新材料,使材料达到既具有原始蝶翅的分级结构,同时由于组分的替换产生了新的性能,达到一种“形似而神高”的境界。而对这些结构进行模拟计算,则可以预测出转变为不同组分后可能获得的新性能,为进一步的深入研究提供了理论指导和应用途径。
     在本研究中,选用具有精细分级结构的蝶翅作为生物模板,以氧化锌和二氧化钛功能材料为例,合成了一系列具有蝶翅分级结构的氧化物材料。首先研究制备过程中各种工艺参数对于自然精细分级结构与形态的保真性、成分转变可控性的影响规律,并对制备得到的蝶翅结构遗态氧化锌和二氧化钛材料的性能进行了研究,同时通过对蝶翅结构的计算模拟进一步地研究蝶翅结构与性能之间的耦合关系。并在此基础上,通过工艺的改进将蝶翅的多级精细结构制备成染料敏化太阳能电池光阳极,并探讨了具有多级精细结构改善染料敏化太阳能电池光阳极效率的可行性和机理,为今后分级结构和材料特性的耦合效应来设计和提高染料敏化太阳能电池的性能提供了方法,主要研究内容和结果如下:
     1.针对原始蝶翅成分及其热分解性能的分析,设计优化和确立了针对甲壳素基体的遗态功能氧化物的制备方法。经过对蝶翅基体的前处理,合适配方与浓度前驱体的配制,浸渍环境参数(温度,时间等)的调节。特别是浸渍后干燥及烧结工艺,根据蝶翅模板与前驱体成及浸渍后蝶翅模板的热分解规律的研究,提出了分步烧结工艺方法来制备蝶翅结构遗态材料。采用这一烧结工艺不仅提高了蝶翅结构遗态材料的烧得率,同时改善了其微观结构的完好性,将原始蝶翅结构仅完美地保留在遗态功能氧化物之中。由于这一方法针对蝶翅主要成分为甲壳素进行设计,所以推广至其他甲壳素基遗态材料的制备中。
     2.针对尺度在微米级的蝶翅鳞片,采用显微光学研究方法,研究不同显微结构对于其显微反射谱线的影响。本章研究,通过实验证实了色素色与结构色之间的差异,同时考察结构色鳞片不同位置的颜色差异。分析结果发现显示结构色的鳞片,不同位置显示不同的颜色,其鳞片内部、外部及鳞片相互叠加处显示的颜色均有所不同,这些发现一方面证实了蝶翅结构与光之间存在的耦合效应,另一方面指导蝶翅模型的建立与光学特性的模拟。
     3.在研究和分析多种蝶翅显微结构特征的基础上,建立了蝶翅结构的二维复格子模型。基于严格耦合波方法,计算模拟了本研究工作中涉及的各种具有交叉格子结构鳞片的光学特性,模拟计算的结果与实验数据有较好的拟合性。在此基础上,进一步的并对各种结构参数(包括窗口大小以及翅脊与翅肋的宽度)以及基体折射率对于模型的光反射谱线的影响规律进行了探讨。利用模拟计算得到的蝶翅多级精细结构与光之间的耦合关系可以为进一步设计优化具有类蝶翅结构,既具有交叉格子结构的光功能器件提供理论参考依据。
     4.制备了具有不同种多级精细结构的氧化锌蝶翅遗态材料,分析其显微结构发光性能。在对结构参数计量分析和研究的基础上,探讨了其不同于一般氧化锌材料的发光机制。研究结果表明蝶翅显微结构与氧化锌基体的耦合效应影响了其发光特性,其机理是由于蝶翅内部显微结构形成的微谐振腔导致的随机激发现象调控了氧化锌的发光性质。蝶翅结构的氧化锌材料,不仅可以影响原有发光峰的强度,特别是黄绿色波段(500-600nm)激发光,还可以改变发光峰的位置,如在某些蝶翅结构氧化锌材料中发现了发光峰蓝移的现象。
     5.鉴于上述研究基础并结合光生伏打效应,本研究在相当完整制备多级精细蝶翅结构的基础上,进一步优化工艺。将具有蝶翅结构的二氧化钛制备于导电玻璃表面上,制备出了染料敏化太阳能电池光阳极。制备得到的蝶翅结构光阳极具有高于普通多孔二氧化钛的光吸收曲线,在可见光区域的平均吸收率增加超过300%,使其具有较高的光捕获性能,从而增加了光载流子产生的几率。进一步的氮吸附与压汞仪检测结果表明蝶翅结构的光阳极结构具有较高的比表面积和良好的孔径分布,这些都有利于染料的吸附加载与再生。综合这些性能,可以推论具有蝶翅结构的光阳极在光捕获性能、染料吸附性能有着优于普通多孔二氧化钛薄膜光阳极的特性,这一研究结果为今后利用分级结构和材料特性的耦合效应来设计和提高染料敏化太阳能电池的结构提供了新思路和依据。
Scientists are always amazed by the biological materials evolved millions of years, which are characterized by unique structures and morphologies. These materials possessed the integrated functions with the hierarchical microstructures coupled with the components. Occurred on the earth in Tertiary period 25 MYA (around million years ago), the butterfly family possesses the largest number of species (about 100 000 species), which also have the most complicated hierarchical microstructures on their wings. A butterfly's wing is a uniquely visual exhibition, not only of the aesthetics of nature, but of the machinery of evolution and of inspiration of research. They are made of scales which are quite small and form two or more layers over the wing membrane.
     Allured by butterfly wings special and complex hierarchical microstructures, this paper dedicated to studying on the transformation and characteristics of the inorganic butterfly wings. Based on the morph-genetic materials fabrication theory, a series of functional oxides with butterfly wings’microstructure are obtained in this study. This study was divided into five parts as follows:
     1. Design a special fabrication method of morph-genetic oxides with butterfly wings microstructure, based on the careful study of the components and thermo-properties of the original butterfly wings. The influences of synthesis’parameters on the morphology and elements of the morph-genetic oxides are carefully analyzed, such as the pretreatment methods, proper concentration of precursors, environment parameters (Temperature and Time etc.) of soaking method and so on. The key factor of fabrication method is the calcination roadmap, for the original butterfly wings templates and the precursors have different thermal decomposition manner. By adjusting all of the parameters mentioned above, integrate and precise butterfly wings microstructure could be maintained in the morph-genetic oxides.
     2. Using microspectrameters, the optical properties of the original butterfly wings and morph-genetic ZnO materials are studied on the micro areas on the samples. The results show that the wings with different microstructures have different colours. Also the inner, outer and the overlap area of the scales have variety colours, which are due to the interaction of the hierarchical structures and the lights.
     3. Based on the measurements and statistics of the microstructures from different scales, a two-dimension crossingrib structure module was build up. Using Gsolver5.1, all the optical properties of the scales involved in the paper were calculated and simulated. The influences of the microstructure size parameters and the refraction index on the optical properties are carefully studied. Coupling relations between the hierarchical microstructure and the lights could be used for the design of optical functional devices with butterfly wings structure in the future.
     4. The cathodoluminescence properties of the morph-genetic ZnO are analyzed. Using random emitted theory, the unusual cathodoluminescence behaviors of the morph-genetic ZnO are explained based on the measurements and statistics of the microstructure parameters. Not only the emitting intensities can be influenced, but also the emitting peaks positions are changed due to the coupling effect between the microstructures and emitting lights.
     5. A novel photoanode structure inspired by butterfly wing scales is fabricated with potential application on solar cell. Quasi-honeycomb like structure, shallow concavities structure and cross-ribbing structure were synthesized to a fluorine-doped tin oxide-coated glass substrate using butterfly wings as biotemplates. The morphology of the photoanodes, which were maintained from the original butterfly wings, was characterized by scanning and transmission electron microscopes. The calcined butterfly wings structures photoanodes were fully crystalline with arranged ridges and ribs consisting of nanoparticles. Analysis of visible light absorption spectra measurements indicates that the light-harvesting efficiencies of the quasi-honeycomb like structure photoanode were higher than the normal titania photoanode without biotemplates owing to the special microstructures.
     According the researches mentioned above, the butterfly wings hierarchical microstructures are maintained integrately and precisely in the morph-genetic oxides. Some novel properties of the morph-genetic oxides are studies for potential applications in optical devices, such as DSSC. Also, the fabrication method may be applied to other metal oxide systems that could eventually lead to the production of optical, magnetic or electric devices or components as building blocks for nanoelectronic, magnetic or photonic integrated systems.
引文
[1]朱静主编.纳米材料和器件.北京:清华大学出版社. 2003: 459.
    [2]崔福斋,冯庆玲.生物材料学.北京:清华大学出版社. 2004: 310.
    [3] Feynman, R. P. There's plenty of room at the bottom[J]. Engineering and science. 1960: 22-36.
    [4] Parker, A. R. Colour in Burgess Shale animals and the effect of light on evolution in the Cambrian[J]. Proceedings of the Royal Society of London Series B-Biological Sciences. 1998, 265(1400): 967-972.
    [5] Wong, K. K. W., Douglas, T., Gider, S., Awschalom, D. D.,Mann, S. Biomimetic synthesis and characterization of magnetic proteins (magnetoferritin)[J]. Chemistry of Materials. 1998, 10(1): 279-285.
    [6] Shenton, W., Mann, S., Colfen, H., Bacher, A.,Fischer, M. Synthesis of nanophase iron oxide in lumazine synthase capsids[J]. Angewandte Chemie-International Edition. 2001, 40(2): 442-445.
    [7] Shenton, W., Pum, D., Sleytr, U. B.,Mann, S. Synthesis of cadmium sulphide superlattices using self-assembled bacterial S-layers[J]. Nature. 1997, 389(6651): 585-587.
    [8] Hall, S. R., Shenton, W., Engelhardt, H.,Mann, S. Site-specific organization of gold nanoparticles by biomolecular templating[J]. Chemphyschem. 2001, 2(3): 184-186.
    [9] Chia, S. Y., Urano, J., Tamanoi, F., Dunn, B.,Zink, J. I. Patterned hexagonal arrays of living cells in sol-gel silica films[J]. Journal of the American Chemical Society. 2000, 122(27): 6488-6489.
    [10] Ono, Y., Kanekiyo, Y., Inoue, K., Hojo, J., Nango, M.,Shinkai, S. Preparation of novel hollow fiber silica using collagen fibers as a template[J]. Chemistry Letters. 1999, (6): 475-476.
    [11] Douglas, T.,Young, M. Host-guest encapsulation of materials by assembled virus protein cages[J]. Nature. 1998, 393(6681): 152-155.
    [12] Shenton, W., Douglas, T., Young, M., Stubbs, G.,Mann, S. Inorganic-organic nanotube composites from template mineralization of tobacco mosaic virus[J]. Advanced Materials. 1999, 11(3): 253-256.
    [13] Dameron, C. T., Reese, R. N., Mehra, R. K., Kortan, A. R., Carroll, P. J., Steigerwald, M. L., Brus, L. E.,Winge, D. R. Biosynthesis of cadmium sulphide quantum semiconductor crystallites[J]. Nature. 1989, 338(6216): 596-597.
    [14] Davis, S. A., Burkett, S. L., Mendelson, N. H.,Mann, S. Bacterial templating of ordered macrostructures in silica and silica-surfactant mesophases[J]. Nature. 1997, 385(6615): 420-423.
    [15] Zhou, H., Fan, T., Zhang, D., Guo, Q.,Ogawa, H. Novel bacteria-templated sonochemical route for the in situ one-step synthesis of ZnS hollow nanostructures[J]. Chemistry of Materials. 2007, 19(9): 2144-2146.
    [16] Zhou, H., Fan, T. X.,Zhang, D. Bacteria-templated synthesis of ZnO hollow spheres via a facile hydrothermal method[J]. Pricm 6: Sixth Pacific Rim International Conference on Advanced Materials and Processing, Pts 1-3. 2007, 561-565: 781-786.
    [17] Zhou, H., Fan, T. X.,Zhang, D. Hydrothermal synthesis of ZnO hollow spheres using spherobacterium as biotemplates[J]. Microporous and Mesoporous Materials. 2007, 100(1-3): 322-327.
    [18] Klaus-Joerger, T., Joerger, R., Olsson, E.,Granqvist, C. G. Bacteria as workers in the living factory: metal-accumulating bacteria and their potential for materials science[J]. Trends in Biotechnology. 2001, 19(1): 15-20.
    [19] Klaus, T., Joerger, R., Olsson, E.,Granqvist, C.-G. Silver-based crystalline nanoparticles, microbially fabricated[J]. Proceedings of the National Academy of Sciences. 1999, 96(24): 13611-13614.
    [20] Cha, J. N., Shimizu, K., Zhou, Y., Christiansen, S. C., Chmelka, B. F., Stucky, G. D.,Morse, D. E. Silicatein filaments and subunits from a marine sponge direct the polymerization of silica and silicones in vitro[J]. Proceedings of the National Academy of Sciences. 1999, 96(2): 361-365.
    [21] Anderson, M. W., Holmes, S. M., Hanif, N.,Cundy, C. S. Hierarchical pore structures through diatom zeolitization[J]. Angewandte Chemie International Edition. 2000, 39(15): 2707-2710
    [22] Wang, Y., Tang, Y., Wang, X., Dong, A., Shan, W.,Gao, Z. Fabrication of hierarchically structured zeolites through layer-by-layer assembly of zeolite nanocrystals on diatom templates[J]. Chemistry Letters. 2001, 30(11): 1118-1119.
    [23] Hernandez-Ramirez, O., Hill, P. I., Doocey, D. J.,Holmes, S. M. Removal and immobilisation of cobalt ions by a novel, hierarchically structured, diatomite/zeolite Y composite[J]. Journal of Materials Chemistry. 2007, 17(18): 1804-1808.
    [24] Ogasawara, W., Shenton, W., Davis, S. A.,Mann, S. Template mineralization of ordered macroporous chitin-silica composites using a cuttlebone-derived organic matrix[J]. Chemistry of Materials. 2000, 12(10): 2835-2837
    [25] Meldrum, F. C.,Seshadri, R. Porous gold structures through templating by echinoid skeletal plates[J]. Chemical Communications. 2000, (1): 29-30.
    [26] Seshadri, R.,Meldrum, F. C. Bioskeletons as templates for ordered, macroporous structures[J]. Advanced Materials. 2000, 12(15): 1149-1151.
    [27] Ha, Y. H., Vaia, R. A., Lynn, W. F., Costantino, J. P., Shin, J., Smith, A. B., Matsudaira, P. T.,Thomas, E. L. Three-dimensional network photonic crystals via cyclic size reduction/infiltration of sea urchin exoskeleton[J]. Advanced Materials. 2004, 16(13): 1091-1094.
    [28] Yang, D., Qi, L. M.,Ma, J. M. Eggshell membrane templating of hierarchically ordered macroporous networks composed of TiO2 tubes[J]. Advanced Materials. 2002, 14(21): 1543-1547.
    [29] Dong, Q., Su, H. L., Zhang, C. F., Zhang, D., Guo, Q. X.,Kiessling, F. Fabrication of hierarchical ZnO films with interwoven porous conformations by a bioinspired templating technique[J]. Chemical Engineering Journal. 2008, 137(2): 428-435.
    [30] Dong, Q., Su, H. L., Zhang, D., Cao, W.,Wang, N. Biogenic synthesis of tubular SnO2 with hierarchical intertextures by an aqueous technique involving glycoprotein[J]. Langmuir. 2007, 23(15): 8108-8113.
    [31] Dong, Q., Su, H. L., Xu, J. Q.,Zhang, D. Influence of hierarchical nanostructures on the gas sensing properties of SnO2 biomorphic films[J]. Sensors and Actuators B-Chemical. 2007, 123(1): 420-428.
    [32] Dong, Q., Su, H. L., Xu, J. Q., Zhang, D.,Wang, R. B. Synthesis of biomorphic ZnO interwoven microfibers using eggshell membrane as the biotemplate[J]. Materials Letters. 2007, 61(13): 2714-2717.
    [33] Wang, N., Su, H. L., Dong, Q., Zhang, D.,Lai, Y. J. Bio-induced fabrication of PbSe nano-semiconductors at room temperature[J]. Journal of Inorganic Materials. 2007, 22(2): 209-212.
    [34] Dong, Q., Su, H. L., Cao, W., Zhang, D., Guo, Q. X.,Lai, Y. J. Synthesis and characterizations of hierarchical biomorphic titania oxide by a bio-inspired bottom-up assembly solution technique[J]. Journal of Solid State Chemistry. 2007, 180(3): 949-955.
    [35] Dong, Q., Su, H. L., Zhang, D., Zhu, N.,Guo, X. Q. Biotemplate-directed assembly of porous SnO2 nanoparticles into tubular hierarchical structures[J]. Scripta Materialia. 2006, 55(9): 799-802.
    [36] Dong, Q., Su, H. L., Zhang, D.,Zhang, F. Y. Fabrication and gas sensitivity of SnO2 hierarchical films with interwoven tubular conformation by a biotemplate-directed sol-gel technique[J]. Nanotechnology. 2006, 17(15): 3968-3972.
    [37] Imai, H., Matsuta, M., Shimizu, K., Hirashima, H.,Negishi, N. Preparation of TiO2 fibers with well-organized structures[J]. Journal of Materials Chemistry. 2000, 10(9): 2005-2006.
    [38] Kim, Y. Small structures fabricated using ash-forming biological materials as templates[J]. Biomacromolecules. 2003, 4(4): 908-913.
    [39] Li, N., Li, X. T., Wang, W.,Qiu, S. L. Mesoporous silica tubes fabricated with human hair as template[J]. Materials Chemistry and Physics. 2005, 91(1): 223-226.
    [40] Liu, S.,He, J. Facile Fabrication of Porous Titania Microtube Arrays by Replication of Human Hair[J]. Journal of the American Ceramic Society. 2005, 88(12): 3513-3514.
    [41] Hall, S. R., Bolger, H.,Mann, S. Morphosynthesis of complex inorganic forms using pollen grain templates[J]. Chemical Communications. 2003, (22): 2784-2785.
    [42] Wang, Y., Liu, Z., Han, B., Huang, Y.,Yang, G. Carbon microspheres with supported silver nanoparticles prepared from pollen grains[J]. Langmuir. 2005,21(23): 10846-10849.
    [43] Hall, S. R., Swinerd, V. M., Newby, F. N., Collins, A. M.,Mann, S. Fabrication of porous titania (brookite) microparticles with complex morphology by sol-gel replication of pollen grains[J]. Chemistry of Materials. 2006, 18(3): 598-600.
    [44] Shin, Y. S., Liu, J., Chang, J. H., Nie, Z. M.,Exarhos, G. Hierarchically ordered ceramics through surfactant-templated sol-gel mineralization of biological cellular structures[J]. Advanced Materials. 2001, 13(10): 728-732.
    [45] Dong, A. G., Wang, Y. J., Tang, Y., Ren, N., Zhang, Y. H., Yue, J. H.,Gao, Z. Zeolitic tissue through wood cell templating[J]. Advanced Materials. 2002, 14(12): 926-929.
    [46] Shin, Y., Wang, L. Q., Liu, J.,Exarhos, G. J. pH-controlled synthesis of hierarchically ordered ceramics with wood cellular structures by surfactant-directed sol-gel procedure[J]. Journal of Industrial and Engineering Chemistry. 2003, 9(1): 76-82.
    [47] Wang, L. Q., Shin, Y., Samuels, W. D., Exarhos, G. J., Moudrakovski, I. L., Terskikh, V. V.,Ripmeester, J. A. Magnetic resonance studies of hierarchically ordered replicas of wood cellular structures prepared by surfactant-mediated mineralization[J]. Journal of Physical Chemistry B. 2003, 107(50): 13793-13802.
    [48] Persson, P. V., Fogden, A., Hafren, J., Daniel, G.,Iversen, T. Silica-cast replicas for morphology studies on spruce and birch xylem[J]. Iawa Journal. 2004, 25(2): 155-164.
    [49] Persson, P. V., Hafren, J., Fogden, A., Daniel, G.,Iversen, T. Silica nanocasts of wood fibers: A study of cell-wall accessibility and structure[J]. Biomacromolecules. 2004, 5(3): 1097-1101.
    [50] Valtchev, V. P., Smaihi, M., Faust, A. C.,Vidal, L. Equisetum arvense templating of zeolite beta macrostructures with hierarchical porosity[J]. Chemistry of Materials. 2004, 16(7): 1350-1355.
    [51] Klingner, R., Sell, J., Zimmermann, T., Herzog, A., Vogt, U., Graule, T., Thurner, P., Beckmann, F.,Muller, B. Wood-derived porous ceramics via infiltration of SiO2-sol and carbothermal reduction[J]. Holzforschung. 2003, 57(4): 440-446.
    [52] Shin, Y. S., Li, X. H. S., Wang, C. M., Coleman, J. R.,Exarhos, G. J. Synthesis of hierarchical titanium carbide from titania-coated cellulose paper[J]. Advanced Materials. 2004, 16(14): 1212-1215.
    [53] Rambo, C. R.,Sieber, H. Novel synthetic route to biomorphic Al2O3 ceramics[J]. Advanced Materials. 2005, 17(8): 1088-1091.
    [54] Huang, J. G.,Kunitake, T. Nano-precision replication of natural cellulosic substances by metal oxides[J]. Journal Of The American Chemical Society. 2003, 125(39): 11834-11835.
    [55] Caruso, R. A. Micrometer-to-manometer replication of hierarchical structures by using a surface sol-gel process[J]. Angewandte Chemie-International Edition. 2004,43(21): 2746-2748.
    [56] Srinivasarao, M. Nano-Optics in the Biological World: Beetles, Butterflies, Birds, and Moths[J]. Chemical Reviews. 1999, 99: 1935-1961.
    [57] Ghiradella, H.,Radigan, W. Development of butterfly scales:Ⅱ.Struts, lattices and surface tension[J]. Journal of Morphology. 1976, (150): 279-296.
    [58] Kumar, M. A review of chitin and chitosan applications[J]. Reactive & Functional Polymers. 2000, 46(1): 1-27.
    [59] Ghiradella, H. Hairs, Bristles and Scales[J]. Microscopic Anatomy of Invertebrates. 1998, 11A: 257-287.
    [60] Chen, G., Cong, Q., Feng, Y.,Ren, L. Study on the wettability and self-cleaning of butterfly wing surfaces[J]. Design and Nature II. 2004, 6: 245-251.
    [61] Adams, R. Science imitates nature: Lotus leaves & butterfly wings & bright white beetle scales[J]. Focus on Pigments. 2007, 2007(5): 1-3.
    [62] Mason, C. W. Structural colours in feathers I[J]. Journal of Physical Chemistry. 1923, 27: 201-251.
    [63] Mason, C. W. Structural colours in feathers II[J]. Journal of Physical Chemistry. 1923, 27: 401-447.
    [64] Mason, C. W. Structural colours in insects III[J]. Journal of Physical Chemistry. 1927, 31: 1856.
    [65] Allyn, A. C.,Downey, J. Diffraction structures in the wing scales of Callophrys (Mitoura) siva siva (Lycaenidae)[J]. Bulletin of the Allyn Museum. 1976, 40: 1-6.
    [66] Yablonovitch, E. Inhibited Spontaneous Emission in Solid-State Physics and Electronics[J]. Physical Review Letters. 1987, 58(20): 2059.
    [67] Richard, O. P.,Rodolfo, H. T. A Fourier Tool for the Analysis of Coherent Light Scattering by Bio-Optical Nanostructures[J]. Comparative and Integrative Vision Research. 2003, 43(4): 591-602.
    [68] Ghiradella, H. Structure and Development of Iridescent Lepidoperan Scales: The Papilionidae as a Showcase Family[J]. Annals of the Entomological Society of America. 1985, 78(2): 252-264.
    [69] Vukusic, P., Sambles, J. R.,Ghiradella, H. Optical classification of microstructure in butterfly wing scales[J]. 2000, 6: 61-66.
    [70] Ghiradella, H. Light and colour on the wing: structural colours in butterflies and moths[J]. Applied Optics. 1991, 30: 3492-3500.
    [71] Haruna, T., Mann, S., Miaoulis, I. N.,Wong, P. Y. Effects of a butterfly scale microstructure on the iridescent colour observed at different angles[J]. Applied Optics. 1998, 37(9): 1579-1584.
    [72] Mann, S. E., Miaoulis, I. N.,Wong, P. Y. Spectral imaging, reflectivity measurements, and modeling of iridescent butterfly scale structures[J]. Optical Engineering. 2001, 40(10): 2061-2068.
    [73] Vukusic, P., Sambles, J. R.,Lawrence, C. R. Structural colour - Colour mixing inwing scales of a butterfly[J]. Nature. 2000, 404(6777): 457-457.
    [74] Vukusic, P., Sambles, J. R., Lawrence, C. R.,Wootton, R. J. Structural colour - Now you see it now you don't[J]. Nature. 2001, 410(6824): 36-36.
    [75] Lawrence, C., Vukusic, P.,Sambles, R. Grazing-Incidence Iridescence from a Butterfly Wing [J]. Applied Optics. 2002, 41(3): 437-441.
    [76] Li, B., Li, Q., Zhou, J.,Li, L. T. Photonic structures in butterfly Thaumantis diores[J]. Chinese Science Bulletin. 2004, 49(23): 2545-2546.
    [77] Ghiradella, H. Structure and development of iridescent butterfly scales: Lattices and laminae[J]. Journal of Morphology. 1989, 202(1): 69-88.
    [78] Vukusic, P. Optical Interference Coatings. New York: Springer. 2003: 1-34.
    [79] Biro, L. P., Balint, Z., Kertesz, K., Vertesy, Z., Mark, G. I., Horvath, Z. E., Balazs, J., Mehn, D., Kiricsi, I., Lousse, V.,Vigneron, J. P. Role of photonic-crystal-type structures in the thermal regulation of a Lycaenid butterfly sister species pair[J]. Physical Review E. 2003, 67(2):
    [80] Vukusic, P., Sambles, J. R.,Lawrence, C. R. Structurally assisted blackness in butterfly scales[J]. Proceedings of the Royal Society of London Series B-Biological Sciences. 2004, 271: S237-S239.
    [81] Berthier, S., Charron, E.,Da Silva, A. Determination of the cuticle index of the scales of the iridescent butterfly Morpho menelaus[J]. Optics Communications. 2003, 228(4-6): 349-356.
    [82] Brink, D. J.,Lee, M. E. Confined blue iridescence by a diffracting microstructure: an optical investigation of the Cynandra opis butterfly[J]. Applied Optics. 1999, 38(25): 5282-5289.
    [83] Argyros, A., Manos, S., Large, M. C., Mckenzie, D. R., Cox, G. C.,Dwarte, D. M. Electron tomography and computer visualisation of a three-dimensional 'photonic' crystal in a butterfly wing-scale[J]. Micron. 2002, 33(5): 483-487.
    [84] Wong, T. H., Gupta, M. C., Robins, B.,Levendusky, T. L. Colour generation in butterfly wings and fabrication of such structures[J]. Optics Letters. 2003, 28(23): 2342-2344.
    [85] Iwase, E., Matsumoto, K.,Shimoyama, I. 2004, The structural-colour based on the mechanism of butterfly wing colouring for wide viewing angle reflective display: 17th IEEE International Conference on. (MEMS), 105-108.
    [86] Cook, G., Timms, P. L.,Spickermann, C. G. Exact Replication of Biological Structures by Chemical Vapor Deposition of Silica[J]. Angewandte Chemie International Edition. 2003, 42(5): 557-559.
    [87] Silver, J., Withnall, R., Ireland, T. G.,Fern, G. R. Novel nano-structured phosphor materials cast from natural Morpho butterfly scales[J]. Journal of Modern Optics. 2005, 52(7): 999-1007.
    [88] Li, B., Zhou, J., Zong, R. L., Fu, M., Bai, Y., Li, L. T.,Li, Q. Ordered ceramic microstructures from butterfly bio-template[J]. Journal of the American CeramicSociety. 2006, 89(7): 2298-2300.
    [89] Zhang, J. Z., Gu, Z. Z., Chen, H. H., Fujishima, A.,Sato, O. Inverse morpho butterfly: A new approach to photonic crystal[J]. Journal of Nanoscience and Nanotechnology. 2006, 6(4): 1173-1176.
    [90] Huang, J. Y., Wang, X. D.,Wang, Z. L. Controlled Replication of Butterfly Wings for Achieving Tunable Photonic Properties[J]. 2006, 6(10): 2325-2331.
    [91] Krisztian, K., Zsolt, B., Zofia, V., Geza, I. M., Virginie, L., Jean Pol, V., Marie, R.,Laszlo, P. B. Gleaming and dull surface textures from photonic-crystal-type nanostructures in the butterfly Cyanophrys remus[J]. Physical Review E. 2006, 74(2): 021922.
    [92] Nomura, K., Ohta, H., Ueda, K., Kamiya, T., Hirano, M.,Hosono, H. Thin-film transistor fabricated in single-crystalline transparent oxide semiconductor[J]. Science. 2003, 300(5623): 1269-1272.
    [93] Konenkamp, R., Word, R. C.,Schlegel, C. Vertical nanowire light-emitting diode[J]. Applied Physics Letters. 2004, 85(24): 6004-6006.
    [94] Wang, Z. L., Kong, X. Y., Ding, Y., Gao, P. X., Hughes, W. L., Yang, R. S.,Zhang, Y. Semiconducting and piezoelectric oxide nanostructures induced by polar surfaces[J]. Advanced Functional Materials. 2004, 14(10): 943-956.
    [95] Nakada, T., Hirabayashi, Y., Tokado, T., Ohmori, D.,Mise, T. Novel device structure for Cu(In,Ga)Se-2 thin film solar cells using transparent conducting oxide back and front contacts[J]. Solar Energy. 2004, 77(6): 739-747.
    [96] Wagh, M. S., Patil, L. A., Seth, T.,Amalnerkar, D. P. Surface cupricated SnO2-ZnO thick films as a H2S gas sensor[J]. Materials Chemistry and Physics. 2004, 84(2-3): 228-233.
    [97] Harima, H. Raman studies on spintronics materials based on wide bandgap semiconductors[J]. Journal of Physics-Condensed Matter. 2004, 16(48): S5653-S5660.
    [98] Pearton, S. J., Heo, W. H., Ivill, M., Norton, D. P.,Steiner, T. Dilute magnetic semiconducting oxides[J]. Semiconductor Science and Technology. 2004, 19(10): R59-R74.
    [99] Mor, G. K., Varghese, O. K., Paulose, M., Shankar, K.,Grimes, C. A. A review on highly ordered, vertically oriented TiO2 nanotube arrays: Fabrication, material properties, and solar energy applications[J]. Solar Energy Materials and Solar Cells. 2006, 90(14): 2011-2075.
    [100] Gratzel, M. Applied physics - Solar cells to dye for[J]. Nature. 2003, 421(6923): 586-587.
    [101] Ni, M., Leung, M. K. H., Leung, D. Y. C.,Sumathy, K. A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production[J]. Renewable & Sustainable Energy Reviews. 2007, 11(3): 401-425.
    [102] O'regan, B.,Gratzel, M. A low-cost, high-efficiency solar cell based ondye-sensitized colloidal TiO2 films[J]. Nature. 1991, 353(6346): 737-740.
    [103] Eftekhari, A., Alkire, R. C., Gogots, Y.,Simon, P. Nanostructured Materials in Electrochemistry. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA. 2008: 1-489.
    [104] Berthier, S. Les couleurs des papillons ou l'imperative beauté. Proprietes optiques des ailes de papillons. France, Paris: Springer-Verlag. 2000: 1-142
    [105]周尧.中国蝶类志.河南:科学技术出版社. 1999: 852.
    [106] Allyn, A. C.,Downey, J. Diffraction structures in the wing scales of Callophrys (Mitoura) siva siva (Lycaenidae)[J]. Bull.Allyn Mus. 1976, 40: 1-6.
    [107]周尧.中国蝴蝶志.郑州:河南科学技术出版社. 1994: 1-21.
    [108]虞蔚岩,严明娣.关于简单区别中国十二科蝴蝶的方法[J].生物学教学. 1998, 3: 40-43.
    [109]蒋挺大.甲壳素.北京:中国环境科学出版社. 1996: 1-460.
    [110] Masri, M. S., Reuter, F. W.,Friedman, M. Binding of metal cations by natural substances[J]. Journal Applied Polymer Science. 1974, 18: 675-681.
    [111] Merzendorfer, H. Insect chitin synthases: a review[J]. Journal of Comparative Physiology B-Biochemical Systemic and Environmental Physiology. 2006, 176(1): 1-15.
    [112] Kurita, K., Sannan, T.,Iwakura, Y. Studies on chitin. VI. Binding of metal cations[J]. Journal of Applied Polymer Science. 1979, 23(2): 511-515.
    [113] Mckay, G., Blair, H. S.,Garden, J. R. Adsorption of dyes on chitin 1. Equilibrium studies[J]. Journal of Applied Polymer Science. 1982, 27: 3043-3057.
    [114] Yang, T. C.,Zall, R. R. Absorption of metals by natural polymers generated from seafood processing wastes[J]. Industrial & engineering chemistry product research and development. 1984, 23(1): 168-172.
    [115] Roberts, G. A. F. Chitin Chemistry. London: The Macmillan Press Ltd.,. 1992: 85-91.
    [116] Shao, J., Yang, Y. M.,Shi, C. G. Preparation and adsorption properties for metal ions of chitin modified by L-cysterine[J]. Journal of Applied Polymer Science. 2003, 88(11): 2575-2579.
    [117]候曼玲.食品分析.北京:化学工业出版社. 2004: 1-222.
    [118]董占能,赵兵,郭玉忠.金属醇盐的物化特性[J].昆明理工大学学报:理工版. 2000, 25(2): 58-61.
    [119] Madan, R. L.,Tuli, G. D. S.Chand's Simpl.Course Inorganic Chemistry New Delhi: S Chand & Company. 1999: 720.
    [120] Grzmil, B. U., Grela, D.,Kic, B. Hydrolysis of titanium sulphate compounds[J]. Chemical Papers. 2007, 62(1): 18-25.
    [121] Bavykin, D. V., Dubovitskaya, V. P., Vorontsov, A. V.,Parmon, V. N. Effect of TiOSO4 hydrothermal hydrolysis conditions on TiO2 morphology and gas-phase oxidative activity [J]. Research on Chemical Intermediates. 2007, 33(3-5): 449-464
    [122]戴智铭.玻璃弹簧式负载型光催化剂的制备和应用研究[博士后论文].上海:上海交通大学. 2002.
    [123] Fang, Y., Sun, G., Wang, T. Q., Cong, Q.,Ren, L. Q. Hydrophobicity mechanism of non-smooth pattern on surface of butterfly wing [J]. Chinese Science Bulletin. 2007, 52(5): 711-716.
    [124] Cong, Q., Chen, G. H., Fang, Y.,Ren, L. Q. Study on the super-hydrophobic characteristic of butterfly wing surface[J]. Journal of Bionics Engineering. 2004 1(4): 249-255.
    [125] Cong, Q., Chen, G. H., Fang, Y.,Ren, L. Q. Study on the wettability and self-cleaning of butterfly wing surfaces. Boston: WIT Press. 2004: 245-251.
    [126]米尼奥维契.史启泰,史耀增译.硝酸盐.北京:化学工业出版社. 1956: 1-192.
    [127] Chen, S. Y., Yang, J., Tang, Y.,Zhang, Y. M. Preparation of anatase TiO2 nanoparticles by direct decomposition of Ti(SO4)2 and its photocatalytic performance[J]. Chemical Journal on Internet. 2006, 8(1): 4-6.
    [128]高濂,郑珊,张青红.纳米二氧化钛光催化材料及应用.北京:化学工业出版社. 2002: 1-289.
    [129] Sclafani, A., Palmisano, L.,Schiavello, M. Influence of the Preparation Methods of TiO2 on the Photocatalytic Degradation of Phenol in Aqueous Dispersion[J]. The Journal of Physical Chemistry. 1990, 94: 829-832.
    [130] C.Gonzalez, R., E.Woods, R., L.Eddins, S.,阮秋琦等译.数字图像处理(MATLAB版).北京:电子工业出版社. 2000: 1-473.
    [131]朱翚,王富东.利用MATLAB实现二维图像傅立叶变换算法[J].计算机应用与软件. 2006, 23(12): 141-142.
    [132]达尔文.潘光旦,胡寿文等译.人类的由来.北京:商务印书馆. 1987: 987.
    [133] Caspersson, T., Jacobsson, F., Lomakka, G., Svensson, G.,Safstrom, R. A high resolution ultra-microspectrophotometer for large-scale biological work[J]. Experimental Cell Research. 1953, 5(2): 560-563.
    [134] Olson, Y. R. Colour comparison in questioned document examination using microspectrophotometry[J]. Journal of forensic sciences. 1986, 31(4): 1330-1340
    [135] Zeichner, A. Transmission and Reflectance Microspectrophotome try of Inks[J]. Journal of forensic sciences. 1988, 33(5): 1171-1184.
    [136]任露泉,邱兆美,韩志武,关会英,邬立岩.绿带翠凤蝶翅面结构光变色机理的试验研究[J].中国科学:E辑. 2007, 37(7): 952-957.
    [137]何国瑜,卢才成,洪家才,邓晖.电磁散射的计算和测量.北京:北京航空航天大学出版社. 2006: 486.
    [138] Jarem, J. M.,Banerjee, P. P. Rigorous coupled-wave analysis of photorefractive reflection gratings [J]. Journal of the Optical Society of America B. 1998, 15(7): 2099-2106
    [139] Fluckiger, D. GSolver User's Manual. Texas Grating Solver Development Company. 2008: 123.
    [140] Prather, D. W. Optical gratings can be analyzed with clicks[J]. IEEE Spectrum. 1998, 35(6): 91-92.
    [141]何元金,马兴坤.近代物理实验.北京:清华大学出版社. 2003: 269.
    [142] Bagnall, D. M., Chen, Y. F., Zhu, Z., Yao, T., Koyama, S., Shen, M. Y.,Goto, T. Optically pumped lasing of ZnO at room temperature[J]. Applied Physics Letters. 1997, 70(17): 2230-2232.
    [143] Yang, D., Qi, L. M.,Ma, J. M. Eggshell membrane templating of hierarchically ordered macroporous networks composed of TiO2 tubes[J]. Advanced materials. 2002, 14(21): 1543-+.
    [144] Ng, H. T., Chen, B., Li, J., Han, J. E., Meyyappan, M., Wu, J., Li, S. X.,Haller, E. E. Optical properties of single-crystalline ZnO nanowires on m-sapphire[J]. Applied Physics Letters. 2003, 82(13): 2023-2025.
    [145] Ng, H. T., Han, J., Yamada, T., Nguyen, P., Chen, Y. P.,Meyyappan, M. Single crystal nanowire vertical surround-gate field-effect transistor[J]. Nano Letters. 2004, 4(7): 1247-1252.
    [146] Park, W. I., Jun, Y. H., Jung, S. W.,Yi, G. C. Excitonic emissions observed in ZnO single crystal nanorods[J]. Applied Physics Letters. 2003, 82(6): 964-966.
    [147] Cao, H., Zhao, Y. G., Ho, S. T., Seelig, E. W., Wang, Q. H.,Chang, R. P. H. Random Laser Action in Semiconductor Powder[J]. Physical Review Letters. 1999, 82(11): 2278-2281.
    [148] Fan, H. J., Scholz, R., Zacharias, M., Bertram, F., Forster, D.,Christen, J. Local luminescence of ZnO nanowire-covered surface: A cathodoluminescence microscopy study[J]. Applied Physics Letters. 2005, 86: 023113
    [149] Hsu, H. C., Cheng, H. M., Wu, C. Y., Huang, H. S., Lee, Y. C.,Hsieh, W. F. Luminescence of selective area growth of epitaxial ZnO nanowires and random-growth-oriented nanobelts[J]. Nanotechnology. 2006, 17: 1404-1407
    [150]徐叙瑢,苏勉曾.发光学与发光材料.北京:化学工业出版社. 2004: 1-766.
    [151]张正华,李陵岚,叶楚平,杨平华.有机太阳电池与塑料太阳电池.北京:化学工业出版社. 2006: 1-325.
    [152] Chapin, D. M., Fuller, C. S.,Pearson, G. L. A New Silicon p-n Junction Photocell for Converting Solar Radiation into Electrical Power[J]. Journal of Applied Physics. 1954: 676-677.
    [153] Gr?tzel, M. Photoelectrochemical cells[J]. Nature. 2001, 414(6861): 338-344.
    [154] Gr?tzel, M. Perspectives for Dye-sensitized Nanocrystalline Solar cells[J]. Progress in Photovoltaics Research and Applications. 2000, 8(1): 171~185.
    [155] Uchida, S., Chiba, R., Tomiha, M., Masaki, N.,Shirai, M. Application of titania nanotubes to a dye-sensitized solar cell[J]. Electrochemistry. 2002, 70(6): 418-420.
    [156]马玉涛,林原,肖绪瑞,李学萍,周晓文. TiO2纳米管薄膜的制备及其光散射性能[J].科学通报. 2005, 50(17): 1824-1828.
    [157] Gopal, M. K., K., V. K. O., Maggie, P., Karthik, S.,Craig, G. A. A review onhighly ordered, vertically oriented TiO2 nanotube arrays: Fabrication, material properties, and solar energy applications[J]. Solar Energy Materials and Solar Cells. 2006, 90(14): 2011-2075.
    [158] Ismael, F. C., Nei, J. L., Claudia, L., Marco-Aurelio, D. P., Herbert, W.,Flavia, N. A. Dye-sensitized solar cells based on TiO2 nanotubes and a solid-state electrolyte[J]. Journal of Photochemistry and Photobiology A: Chemistry. 2007, 189(2-3): 153-160.
    [159] Jason, B. B.,Eray, A. S. Nanowire-based dye-sensitized solar cells[J]. Applied Physics Letters. 2005, 86(5): 053114-053113.
    [160] Law, M., Greene, L. E., Johnson, J. C., Saykally, R.,Yang, P. D. Nanowire dye-sensitized solar cells[J]. Nature Materials. 2005, 4(6): 455-459.
    [161] Kai, P., Zhang, Q. L., Wang, Q., Liu, Z. Y., Wang, D. J., Li, J. H.,Bai, Y. B. The photoelectrochemical properties of dye-sensitized solar cells made with TiO2 nanoribbons and nanorods[J]. Thin Solid Films. 2007, 515(7-8): 4085-4091.
    [162] Adachi, M., Murata, Y., Takao, J., Jiu, J., Sakamoto, M.,Wang, F. Highly Efficient Dye-Sensitized Solar Cells with a TitaniaThin-Film Electrode Composed of a Network Structure of Single-Crystal-like TiO2 Nanowires Made by the“Oriented Attachment”Mechanism[J]. Journal of the American Chemical Society. 2004, 126: 14943-14949.
    [163] Lin, S. Y., Moreno, J.,Fleming, J. G. Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation[J]. Applied Physics Letters. 2003, 83(2): 380-382.
    [164] Halaoui, L. I., Abrams, N. M.,Mallouk, T. E. Increasing the Conversion Efficiency of Dye-Sensitized TiO2 Photoelectrochemical Cells by Coupling to Photonic Crystals[J]. Journal of Physical Chemistry B. 2005, 109(13): 6334-6342.
    [165] Huisman, C. L., Schoonman, J.,Goossens, A. The application of inverse titania opals in nanostructured solar cells[J]. Solar Energy Materials and Solar Cells. 2005, 85(1): 115-124.
    [166] Heilman, B. D.,Miaoulis, I. N. Insect thin films as solar collectors[J]. Applied Optics. 1994, 33(28): 6642-6647.
    [167] Koon, D. W.,Crawford, A. B. Insect Thin Films as Sun Blocks, Not Solar Collectors[J]. Applied Optics. 2000, 39(15): 2496-2498.
    [168] Huang, S. Y., Schlichthorl, G., Nozik, A. J., Gratzel, M.,Frank, A. J. Charge recombination in dye-sensitized nanocrystalline TiO2 solar cells [J]. Journal of Physical Chemistry B. 1997, 101(14): 2576-2582.
    [169] Jongh, P. E. D.,Vanmaekelbergh, D. Trap-Limited Electronic Transport in Assemblies of Nanometer-Size TiO2 Particles[J]. Physical Review Letters. 1996, 77(16): 3427-3430
    [170] Shichthorl, G., Huang, S. Y., Sprague, J.,Frank, A. J. Band edge movement and recombination kinetics in dye-sensitized nanocrystalline TiO2 Solar cells: A studyby intensity modulated photovoltage spectroscopy[J]. Journal of Physical Chemistry B. 1997, 101(41): 8141-8155.
    [171] Greg, S. J., Sing, K. S. W.,高敬琮等译.吸附、比表面与孔隙率. 1989: 305.
    [172] Brunauer, S., Deming, L., Deming, W.,Teller, E. On a Theory of the van der Waals Adsorption of Gases[J]. Journal of the American Chemical Society. 1940, 62(7): 1723-1732.
    [173]赵振国.吸附作用应用原理.北京:化学工业出版社. 2005: 604.
    [174] Vukusic, P., Sambles, J. R.,Lawrence, C. R. Structurally assisted blackness in butterfly scales[J]. Proceedings of the Royal Society B: Biological Sciences. 2004, 7(271(Suppl 4)): S237–S239.
    [175] Sayama, K., Nomura, A., Zou, Z. G., Abe, R., Abe, Y.,Arakaw, H. Photoelectrochemical decomposition of water on nanocrystalline BiVO4 film electrodes under visible light[J]. Chemical Communications. 2003, (23): 2908-2909.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700