用户名: 密码: 验证码:
根癌农杆菌介导的ACC氧化酶基因转化香石竹的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
香石竹(Dianthus caryophyllus L.)是世界四大切花之一,在花卉市场中占有重要地位。延长瓶插寿命对延长观赏期和调节流通有重要作用。传统的保鲜方法多采用乙烯抑制剂或乙烯拮抗剂的保鲜剂,但这些化学物质多会造成环境污染,且成本较高。本研究通过克隆香石竹ACC氧化酶(ACO)基因,将其构建成不同T-DNA结构的植物表达载体,并导入香石竹不同品种,分析转基因香石竹切花的瓶插寿命。
     1 ACO基因的克隆及其植物表达载体的构建
     根据已发表的香石竹ACO基因序列,设计一对特异引物,以香石竹品种‘America’基因组DNA为模板,扩增出香石竹ACO基因,将其连接到pMD18-T质粒载体上,对序列测定结果与已发表的ACO基因cDNA序列进行对比分析显示,该克隆片段含3个外显子,2个内含子,外显子序列与已发表的ACO基因cDNA序列完全一致。通过中间载体pBluescript SK和pIC19R,经PCR分析及酶切检测,成功地构建了ACO基因正义、反义、正义重复和反义重复等4种不同T-DNA结构的植物表达载体,并用冻融法将该4种植物表达载体导入了农杆菌LBA4404菌株。
     2 香石竹5个品种再生体系的建立
     采用香石竹无菌苗叶片为外植体,建立了香石竹5个品种‘Aicardi’、‘Master’、‘Yellow Star’、‘Opera’和‘Mabel’的再生体系。幼叶比老叶分化率高,叶片在含BA和TDZ两种细胞分裂素中都可以分化,但在含TDZ培养基中,不定芽玻璃化程度较高,且发现AgNO_3(0-25 mmol/L)对不定芽分化起抑制作用,因此选用MS+NAA 0.3mg/L+BA 1.0mg/L为分化培养基,5个品种的再生率在38.6%与61.8%之间。无菌苗茎段在R1(MS+NAA 0.1mg/L)、R2(MS+IBA 0.1mg/L)和R3(MS+IAA 0.1mg/L)三种培养基中均能生根,但以R1培养基生根率最高(100%)。无菌苗生根后经炼苗移栽至河沙、珍珠岩和叶土的3种基质中,结果表明在珍珠岩中的成活率(78.7%)明显高于河沙和叶土。
     3 香石竹5个品种的遗传转化
     用农杆菌介导法对上述5个品种进行了遗传转化。实验表明:香石竹对潮霉素比较敏感,叶片分化选择压力为4-5mg/L。在转化过程中对预培养时间、根癌农杆菌菌液浓度、侵染时间、乙酰丁香酮浓度以及共培养时间等转化条件进行了摸索。将香石竹叶片在分化培养基上预培养2天,于根癌农杆菌菌液(OD_(600)值为0.6-0.9)侵染8-12min,在含100mmol/L的乙酰丁香酮的培养基上共培养3d,转移到选择培养基(MS+NAA 0.3mg/L+BA 1.0mg/L+Hyg 4mg/L+Cef 400mg/L)中培养,剔除
    
     华中农业大学博士学位毕业论文
    选择培养前两周分化出的腋芽,每3周换一次培养基。在此期间,抗性芽长至1 cm
    时切下转移到选择生根培养基(MS+NAA 0.1 mg/L十Hyg 4.0 mg几)中生根培养。
    不同品种抗性芽分化率在4.3%和11 .2%之间,
    4转基因植株的获得及检测
     比较四种提取香石竹基因组DNA的方法,其中改良SDS法所提DNA较纯,
    且拖带较少。抗性不定芽在选择生根培养基上生根率为48.3%,PCR扩增HPT基因
    表明,24.5%的抗性生根植株为阳性。Southem杂交证实,14.2%的抗性生根植株外
    源基因已整合到植物基因组中。共得到33株转化株系,其中30株为单拷贝,3株
    为两个拷贝。
    5不同T一DNA结构导入后对香石竹瓶插寿命及乙烯释放量的影响
     分析了4种T一DNA结构导入‘Master’、‘Mabel’和‘Yellow Star’3个香石竹
    品种17个转化株系瓶插寿命及部分株系乙烯释放量的测定结果。
     在转化‘Master’品种正义ACO基因的3株转化株系中,有l株瓶插寿命显著
    延长;在转化反义ACO基因的4株转化株系中,3株瓶插寿命显著延长;在转化正
    义重复ACO基因的2株转化株系瓶插寿命显著延长,抑制乙烯生成达90%以上;在
    转化反义重复ACO基因的3株转化株系中,瓶插寿命都显著延长,延长的时间较长
     (达12d以上),而且抑制乙烯生成达100%。
     以上结果表明,4种结构的T一DNA均能在一定程度上抑制内源基因的表达,相
    比之下,反义强于正义,重复基因结构强于单一基因结构。
    6转化同一T一DNA结构不同品种间的瓶插寿命比较。
     在转化‘Master’品种的n株系中有8株瓶插寿命得以显著延长,在转化Mabel’
    品种的3株系中有l株瓶插寿命得以显著延长,在转化‘Yelfow Star’只有1株,
    其瓶插寿命得以显著延长。
     转化同一T-DNA结构不同品种间的瓶插寿命有一定差异。在转化正义ACO基
    因的‘Master’品种3株系中有1株系瓶插寿命得以显著延长,‘Mabel’品种2株系
    瓶插寿命都未延长;在转化反义ACO基因的‘Master’品种的4株系中有3株系延
    长,‘Yellowst盯’品种1转化株系瓶插寿命延长;在转化正义重复ACO基因的
     ‘Master’品种的2株系瓶插寿命均达12d左右,‘Mabel’品种2株系有1株系瓶
    插寿命延长。
     另在同一株系的不同花朵之间瓶插寿命也存在着差异,可能是转化嵌合体所致。
As one of the major contributors and a commercial leader to the cut-flower market, carnation (Dianthus caryophyllus L.) is an important target for the breeding of new cultivars with novel characteristics. In conventional method of prolonging vase life of carnation cut flower, the substance containing Ag+ was used and this led to pollution of environment. In this study, ACC oxidase (AGO) gene genetic DNA was cloned from carnation cultivar 'America' genome. Four T-DNA structures of plant expression vectors of AGO gene were constructed and integrated into carnation cultivars 'Master', 'Mabel', 'Yellow Star', 'Opera' and 'Aicardi'. The vase lifeof transgenic cut flower was prolonged.
    1 Cloning of ACC oxidase gene of carnation and four constructions of its plant expression vectors
    A pair of primers was designed according to the 1-aminocyclopropone-l-carboxylic acid (ACC) oxidase gene sequence of carnation, and the primers were used to amplify the genomic DNA fragment of 1.2 kb by polymerase chain reaction (PCR) by taking genome DNA from carnation cutivar 'America' leaves as template. The PCR product was cloned into pMD18-T vector. Sequencing indicated that the cloned ACC oxidase gene consisted of 3 exons interrupted by 2 introns. Totally four T-DNA structures of plant expression binary vectors were constructed. Those were sense, antisense, direct repeated of sense and antisense.
    2 Establishment of efficient regeneration system from leaf of 5 carnation cultivars
    The regeneration system of carnation was established with the method of direct adventitious shoots inducing. The adventitious shoots were induced from leaf explants based on MS basal medium supplemented with 1 .0mg/L BA and 0.3mg/L NAA and its differentiation frequencies were between 38.6% and 61.8%. The age of leaf affects its differentiation frequency and AgNO3 in adventitious medium inhibits adventitious shoot inducing. The regenerated plants were rooted on MS medium containing 0.1mg/L NAA.
    3 Genetic transformation of carnation
    Taken the young leaf as explants, the Agrobacterium rwme/ac/ens-mediated genetic transformation system of carnation was established. A. tumefaciens strain LBA4404 harboring pMOGMON containing four T-DNA structures of ACO gene were used to
    
    
    transform 5 carnation cultivars. Leaf explants were pre-cultured on shoot-inducing medium for 2 days, then immersed in Agrobacteriwn suspension for 8-12 min. The co-cultivation was carried out on medium containing 1 00 mol/L acetosyringone (AS) for
    3 days. After that the transformants were obtained by transferring explants to selection medium supplemented with 4-5 mg/L hygromycin (Hyg) and 400mg/L cefotaxime (Cef). Some factors that affect the transformation frequency were compared. The regeneration frequencies on selection medium were between 4.3% and 11.2%.
    4 Identification of transgenic plants
    In four methods of DNA extraction, the modified SDS method was the best. 48.3 percent transformed plants rooted on rooting medium containing 4mg/L Hyg. And 24.5 percent of the PCR amplification of HPT gene was positive. Southern blot analysis demonstrated that 33 transformed plants, which was 14.2 percent of resistant rooting plants, were positive, and foreign gene were integrated into plant genome. 3 of the 33 transformed plants have two copies of foreign gene and the rest of transformed plants have single copy of foreign gene.
    5 Comparison of vase life and ethylene production of transgenic plant cut flowers with different T-DNA structures
    Vase life and ethylene production of 17 transgenic lines of 3 cultivars were analyzed. Vase life and ethylene production were different in transgenic lines with different T-DNA structures.
    Vase life of 5 direct repeat transgenic lines of 'Master' cultivar was all prolonged by about 6 days, and antisense direct repeat transgene produced only a negligible amount of ethylene during cut flower natural senescence. 3 lines vase life of 7 single transgenic lines of 'Master' cultivar did not change compared with control. This suggested that direct repeat transgene ind
引文
1.马小杰,闫先喜,张宪省.高等植物花发育的基因调控.山东农业大学学报,1995,26(2):262-272
    2.王仕玉,郭凤根,钟瑞芳.四种保鲜剂成分对香石竹切花保鲜效应的初探.云南农业大学学报,1995,10(3):213-217
    3.王关林,方宏均主编.植物基因工程原理与技术.北京,科学出版社,1998
    4.付水彩,孙传清,李自超等.农杆菌介导的抑制衰老的嵌合基因转化籼稻的研究.农业生物技术学报.2000,8(1):28-32
    5.包满珠.植物花青素基因的克隆及应用—文献综述.园艺学报,1997,24(3):279-284
    6.北京林业大学园林系花卉教研组.花卉学.北京,中国林业出版社,1990,544-548
    7.卢圣栋.现代分子生物学实验技术(第二版).北京,中国协和医科大学出版社,1999,69-231
    8.叶志彪.乙烯形成酶反义基因转化番茄及耐贮藏武品种的选育.[博士学位论文].武汉:华中农业大学图书馆,2000
    9.龙雅宜编著.切花生产技术.北京:金盾出版社,1994,66-68
    10.刘文萍.香石竹脱毒苗快繁技术.北方园艺,1997,5:63
    11.刘青林,陈俊愉.观赏植物花器官主要性状的遗传与改良.园艺学报,1998,25(1):81-86
    12.华志明.花发育的基因调控与花性状的改造.生物技术通报,1998,1:16-20
    13.孙雷心.首朵rDNA花在澳大利亚开放.生物技术通报,1996,1:18
    14.汤福强,吴有梅,刘愚等.麝香石竹花衰老过程中钙调蛋白含量变化与乙烯生物合成的关系.植物学报,1994,36(9):709-713
    15.余沛涛,杨跃平.根癌农杆菌在丝石竹上进行基因转化.上海农业科技,1997,13(4):17-20
    16.余迪求,邓庆丽,沈亚楠.金鱼草基因转化和转基因植株的再生.热带亚热带植物学报,1996,4(4):196-199
    17.吴乃虎,刁丰秋.植物转录因子与发育调控.科学通报,1998,43(20):2133-2138
    18.宋纯鹏编著.植物衰老生物学.北京:北京大学出版社,1998
    19.宋俊歧,邱并生,王荣,贺焰,赵长生,田波.通过表达ACC脱氨酶基因控制番茄果实的成熟.生物工程学报,1998,14(1):252-258
    20.张石宝,胡虹,李树云.花卉基因工程研究进展口:花型、花期、货架期.云南植物研究,2002,24(1):94-102
    21.张石宝,胡虹,李树云.花卉基因工程研究进展Ⅰ:花色.云南植物研究,2001,23(4):94-102
    22.张宝红,李秀兰,李凤莲.棉花组织培养中异常苗的发生与转化.植物学报,1996,38(11):845-852
    23.张建全,张金文.反义Aclnv基因转化马铃薯方法的研究.2002,37(2):127-138
    24.张鸿,傅爱根,王爱国.AgNO_3在植物离体培养中的作用及可能机制.植物生理学通讯,1997,33(5):376-379
    25.李宪利,袁志友,高东升.高等植物成花分子机理研究现状及展望.西北植物学报,2002,22(1):173-183
    26.汪政科,彭镇华.观赏植物基因工程研究进展.林业科学研究,2000,13(1):97-102
    27.沈成国编.植物衰老生理与分子生物学.北京:中国农业出版社,2001
    28.苏焕然,张丹,汪清,黄永芬.花卉基因工程研究进展.北方园艺,1996,4:26-28
    
    
    29.邵莉,李毅,杨美珠.1996,查尔酮合成酶基因对转基因植物花色和育种的影响.植物学报,38(7):517-524
    30.陈新建,刘国顺,陈占宽,郅玉宝,易明林,刘鸿先.乙烯生物合成途径及其相关基因工程的研究进展(综述).热带亚热带植物学报,2002,10(1):83-98
    31.周有院,张静.香石竹外植体直接分化成花芽的研究.植物生理学通讯.1991,27:421-423
    32.周音,张智奇,殷丽青,张建军.观赏植物基因工程研究进展及存在问题.上海农业学报,2000,(1):90-96
    33.孟繁静主编,植物发育的分子生物学.北京:中国农业出版社,2000
    34.林良斌,官春云,李恂,周小云,陈信波,Bt毒蛋白基因导入甘蓝型油菜获得转基因植株.湖南农业大学学报,1999,25(5):357-360
    35.林拥军.农杆菌介导的水稻基因转化研究.[博士学位论文].武汉:华中农业大学图书馆,2002
    36.林荣呈,陈龙清,包满珠.提高根癌农杆菌介导的香石竹遗传转化效率的研究.林业科学研究,2003,16(3):123-128
    37.林荣呈.根癌农杆菌介导的香石竹遗传转化研究.[硕士学位论文].武汉:华中农业大学图书馆,1999
    38.郑志亮.花卉作物的花色基因工程.北方园艺,1994,3:37-78
    39.金万梅,尹淑萍.转基因植物释放的风险性和转基因植物品安全性评价.西北农业学报,2002,11(4):127-131
    40.姜微波,Shimon M.香石竹花辦对乙烯的敏感性与蛋白质的合成.植物学报,1997a,39(11):991-997
    41.姜微波,Shimon M.香石竹花辦衰老过程中的蛋白质降解.园艺学报,1997b,24(4):369-372
    42.彦华,宋云,李羽云.查尔酮异构酶基因的克隆序列分析及在大肠杆菌中的表达.植物学报,1997,39(11):1030-1034
    43.赵云鹏,陈发棣,郭维明.观赏植物花色基因工程研究进展.植物学通报,2003,20(1):51-58
    44.赵定国,吴淑杭,章永骥.钾肥对康乃馨增产效果的研究.上海农业科技,1997,1:36-37
    45.郝贵霞,朱帧,朱之悌.豇豆蛋白酶抑制剂基因转化毛白杨研究.植物学报.1999,41(12):1276-1282
    46.徐玉冰,牛维和,刘继红.麝香石竹的花器官培养植株再生.植物生理学通讯.1986,3:42
    47.徐明慧主编.花卉病虫害防治.金盾出版社,1991,61-65
    48.顾红雅,瞿礼嘉,明小天,陈章良.植物基因与分子操作.北京:北京大学出版社,1995
    49.高俊平,孙自然,周山涛.月季切花真空预冷水分损失与补充的研究.园艺学报,1994,21(4):361-385
    50.黄敏仁,饶红宇.林木基因工程.见:王明庥主编.林木遗传育种学.北京:中国林业出版社,2001b,310-335
    51.傅荣昭,马江生,曹光诚.观赏植物色香形基因工程研究进展—文献综述.园艺学报,1995,22(4):381-385
    52.傅荣昭,刘敏,梁红健.通过根癌农杆菌介导法获得菊花转基因植株.植物生理学报,1998,24(1):72-76
    53.傅荣昭,孙勇如,贾士荣主编.植物遗传转化技术手册.北京,中国科学技术出版社,1994
    54.曾黎辉,吕柳新.木本果树遗传转化研究进展.果树学报,2002,19(3):191-198
    55.程业明,王玉民,刘国金,周波,姜虎生,陆静梅.植物基因工程在农业生产中的应用.吉林农业科学,2001,26(4):19-22
    
    
    56.蒋际谋,马福忠,薛球华.香石竹无土栽培营养液配方选择.福建果树,1997,2:17-18
    57.蒋细旺.根癌农杆菌介导的Bt与GNA基因转化菊花品种的研究.[博士学位论文].武汉:华中农业大学图书馆,2003
    58.谢永祥,黄鹏林.应用花粉管法于蝴蝶兰基因转殖之研究.中国园艺,1995,41(4):309-324
    59.谢永祥,黄鹏林.应用基因枪法于蝴蝶兰基因转殖之研究.中国园艺,1995,41(2):174-185
    60.韩玉芹.香石竹茎尖培养规模化繁殖技术.北方园艺,1997,4:31
    61.熊丽,桂敏,赵培飞.国外香石竹优良品种的引种及试种栽培.云南农业科技,1996,2:11-14
    62.滕年军,陈发棣.基因工程在花卉遗传育种改良中的应用研究.植物学通报,2002,19(5):538-545
    63.潘会堂,张启翔.花卉种质资源与遗传育种研究进展.北京林业大学学报,2000,22(1):81-86
    64.潭文澄,戴策刚编.观赏植物组织培养技术.北京:中国林业出版社,1995,181-191
    65. Adams D O,Yang S F.Ethylene biosynthesis: Identification of 1-aminocyclopropropane-1-carboxylic acid as an intermediate in the conversion of methionine to ethylene. Proc Natl Acad Sci USA. 1979, 76:170-174
    66. Adams D O, Yang S F. Methionine metabolism in apple tissue: implication of S-adenosynthionine as an intermediate in the conversion of methionine to ethylene. Plant Physiol,1977, 60:892-896
    67. Ahuja M R. Genetic engineering of forest trees. In: Jain S M, Minocha S C (Eds). Molecular Biology of Woody Plants, Volume 1. Kluwer Academic Publishers, Dordrecht, Netherlands, 1999, 31-50
    68. Ahuja M R. Genetic engineering of forest trees. In: .lain S M, Minocha S C (Eds). Molecular Biology of Woody Plants, Volume 1. Kluwer Academic Publishers, Dordrecht, Netherlands, 1999,31-50
    69. Albert H, Dale E C, Lee E, Ow D W. Site-specific intergration of DNA into wild-type and mutant Lox sites placed in the plant genome. Plant J, 1995, 7:649-659
    70. Andrew G F, Ravi S K, Peder Z, Maruxa M C, Marc S, Julie A. Functional genomic analysis of C.elegans chromosome I by systematic RNA interference. Nature, 2000; 408:325-330
    71. Angel S M. Consistent gene silencing in transgenic plants expressing a replicating potato virus X RNA. EMBO J, 1997, 16:3675-3684
    72. Assaad F F, Tucker K L, Signer E R. Epigenetic repeat-induced gene silencing (RIGS) in Arabidopsis. Plant Mol. Biol, 1993, 22:1067-1085
    73. Atkinson R G, Bolitho K M, Wright M A. Apple ACC Oxidase and polygatacturonase: ripening specific gene expression and promoter analysis in trans genie tomato. Plant Mol Biol, 1998, 38:449-460
    74. Ayub R, Guis M, Ben A M. Expressionb of ACC oxidase antisense gene inhibits ripening of cantaloupe melon fruits. Nature Biotechn, 1996,14:864-866
    75. Bae K M, Yu S N. Development of viral disease resistance in Dianthus caryophyllus by transformation of CarMV CP gene: I. Development of CarMV CP gene expression system for transformation. Journal of the Korean Society for Horticultural Science, 2002, 43 (4): 466-470
    76. Baker R, Phillips D J. Obtaining pathogen-free stock by shoot tip culture. Phytopathology, 1962,52:1242-1244
    
    
    77. Balague C. Watson C F, Turner A.J. Isolation of a ripening and wound-induced cDNA from Cucumis melo L. Encoding a protein with homology to the ethylene-forming enzyme. Eur. J.Biochem, 1993, 212(2): 27-34
    78. Bernstein E, Caudy A A, Hammond S M, Harmon G J. Role for a bidentate rebonuclease in the iniation step of RNA entergerence. Nature, 2001, 409:363-366
    79. Bolten G W, Nester E W, Gordon M P. Plant phyenolic compounds induce expression of the Agrobaterium tumefaciens loci needed for virulence. Science, 1986, 232:983-984
    80. Bovy A G, Agenent G C, Dons H J M, and Van Altvorst A C. Heterologous expression of the Arabidopsis etrl-1 allele inhibits the senescence of carnation flowers. Molecular. Breeding, 1999,4:301-308
    81. Bovy A G, Altvorst A C, Agenent G C. Genetic modification of the vase life of carnation [M].Acta Horticulture. Leuven Belgium, 1995,405:179-189
    82. Callahan A M, Morgens P H, Wright P. Comparison of pch313 (pTOM13 homolog) RNA accumulation during fruit softening and wounding of two phenotypically different peach cultivars.Plant Physiol, 1992, 100:482-488
    83. Cameron F H, Jennings P A. Inhibition of gene expression by a short sense fragment. Nucleic Acid Res, 1991,19:469-474
    84. Carolyn N C, Lemieux C, Jorgensen R. Introduction of a chimeric chatcone synthase gene into petunia results in reversible co-suppression of homogous gene in trans. Plant Cell, 1990,23:279-289
    85. Casanova E, Zuker A, Trillas M I Lluisa M, Alexander V. The rolC gene in carnation exhibits cytokinin-and auxin-like activities. Scientia Horticulturae, 2003, 97 (3): 321-331
    86. Chi G L, Barfield D G, Sim G E. Effect of AgNO3 and aminoethoxyvinylgycine on in vitro shoot and root organogenesis from seeding explants of recalcitrant Brassica geno-type. Plant Cell Reports, 1990, 9:195-198
    87. Chi G L, Gob H K L, Hoo K Y. Gus gene expression in Anthurium andreanum, Oncidium gower Ramsey and Brassolaelio cattliya Orange Glory after particle bombardment. Aeta Horticulturae,1998,461:379-383
    88. Cho M R, Kim J Y, Song C. Screening of carnation cultivars for resistance to Metoidogyne incognita. J of Nematoloy, 1996,28(14): 639-642
    89. Chuang C F, Meyerowitz E M. Specific and heritable genetic interference by double-stranded RNA in Arabidopsis thaliana. Proc Natl Acad Sci USA, 2000, 97:4985-4990
    90. Chuck G, Robbins T, Niljer C, Ralston E, Courtney-Gutterson N. Tagging and cloning of petunia flower color gene with the maize transposable element activator. Plant Cell, 1993, 5:371-378
    91. Codon A C, Lee Y S, Russo V E A. Novel pattern of DNA methylation in Nescrosyera erassa transgenic for the foreign gene hph. Nucleic Acids Research, 1997, 25(12): 2409-2416
    92. Coen E S, Meyerowitz E M. The war of the whorls: genetic interactions control flower development. Nature, 1991, 353 (1): 31-37.
    93. Coen E, Carpenter R, Doyle S. Floricauta: A homotic gene required for flower development in Antirrhinum majus. Cell, 1990, 63(6): 1311-1312
    94. Cogoni G, Macino G. Gene silencing in Neurospora crassa requires a protein homologous to RNA-dependent RNA polymerase. Nature, 1999, 339:166-169
    95. Cohen A, Meredith C P. Agrobaterium-mediated transformation of Lilium. Acta Horticulturae,1992, 325:611-618
    
    
    96. De Block M M, Brouwer D D, Terming P. Transformation of Brassica napus and Brassica oleracea Agrobacterium tumefaciens and the expression of the bar and neo gene in the transgenic plants. Plant Physiol, 1989,91 (2): 694-701
    97. De Groot M J A, Bundock P, Hooykaas P J J, Beijersbergen A G M. Agrobacterium tumefaciens-mediated transformation of filamentous fungi. Nat Biotechnol, 1998, 16:839-842
    98. De Jong J, Rademaker W, Monique F. Restoring adventitious shoot formation on Chrysanthemum leaf explants following cocultivation with Agrobacterium tumefaciens. Plant Cell, Tissue and Organ Culture, 1993, 32:263-270
    99. Deikman J L. Molecular mechanism of ethylene regilation of gene transcription physiology.Plantarum, 1997, 100(3): 561-566
    100. Demmink J F, Custers J B M, Ber gerrvet J H W. Gynogenesis to bypass crossing barriers between diploid and tetraploid Dianthus species. Acta Horticulturae, 1987, 216:343-344
    101. Dolgov S V, Mitiouchkina T Y, Skryabin K G. Agrobacterial transformation of chrysanthemum.Acta Horticulture, 1997,447:329-334
    102. Dong J G, Olaon D, Silverstone A. Sequence of a cDNA coding for a 1-aminocyclopropae-1-carboxylate oxidase homolog from apple fruit. Plant Physiol, 1992, 98(4): 1530-1531
    103. Dorry A, Maya K S, 1993. Expression of ethylene biosynthetic pathway mRNA is spatially regulated with carnation flower petals. Plant Physiol, 141(6): 663-669
    104. Dougherty W G, Parks T D. Transgenes and gene suppression: Telling us something new? Curr.Opin. Cell Biol., 1995, 7:5538-5542
    105. Ferro A J. Genetic control of ethylene biosynthesis in plants using S-adenosylmethionine hydrolase. 1995, United States Patent (NO: 5416250)
    106. Finnegan J, McElroy D. Transgene inactivation: plants fight back! Bio/Technology, 1994,12:883-888
    107. Fire A. Potent and specific genetic interference by double-stranded RNA Caneorhabditis elegans.Nature, 1998.391: 806
    108. Firoozabady E, Noriega C, Sondahl M R. Genetic transformation of rose (Rosa hybrida cv. Royalty) via Agrobacterium tumafaciens. In Vitro, 1991, 27:154-156
    109. Frey L, Janick J. Organogenesis in carnation. J Amer Soc Hort Sci, 1991, 116(6): 1108-1112
    110. Frey L, Saranga Y, Janick J. Somatic embryogenesis in carnation. Hort Science, 1992, 27:63-65
    111. Fukui Y, Tanaka Y, Kusumi T, Iwashita T, Nomoto K. A rationale for the shift in color towards blue in transgenic carnation flowers expressing the flavonoid 3',5'-hydroxylase gene.Phytochemistry (Amsterdam), 2003 63 (1): 15-23
    112. Gabrido G, Cano E A, Acosta M. Formation and growth in carnation cuttings: influencing of cold storage and auxin treatment. Scientia Horticulturae, 1998, 74(3): 219-231
    113. Godwin I, Todd G. The effect of Acetosyringone and pH on Agrobaterium-mediated transformation vary according to plant species. Plant Cell Reprots, 1991, 9:671-675
    114. Graves A CF, Goldman S L. Agrobaterium-mediated transformation of the monocot genus Gladilous: detection of expression of T-DNA encoded genes. J Bacteriol, 1987, 169:1745-1746
    115. Gregory J H, RNA interference. Nature, 2002,418:244-251
    116. Grierson D, Slater A, Speirs L. The appearance of polygalacturonase mRNA in tomato: one of a series of changes in gene expression during development and ripening. Planta, 1985,163:263-271
    117. Guo S & Kemphues K J. par-1, a gene required for estabishing polarity in C. elegans embryos,encodes a putative Ser/Thr kinase that is asymmetrically distributed. Cell, 1995, 81:611-614
    
    
    118. Hamilton A J, Brown S, Yuanhai H. A transgene with repeated DNA causes high frequency,post-transcriptional suppression of ACC-oxidase gene expression in tomato. Plant J. 1998, 15(6):737-746
    119. Hamilton A J, Lyett G W, Grierson D. Antisense gene that inhibit synthesis of hormone ethylene in transgenicn plants. Nature,1990, 346(6281): 284-287
    120. Hamilton C M, Frary A, Lewis C, Tanksley S D. Stable transfer of intact high molecular weight DNA into plant chromosomes. Proc Natl Acad Sci USA, 1996, 93: 9975-9979.
    121. Hamilton C M. A binary-BAC system for plant transformation with high-molecular-weight DNA.Gene, 1997, 200:107-116.
    122. Hammond S M, Bernstern E, Beach D, Harmon G J. An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosphila cells. Nature, 2000, 404:293-296
    123. Han Y, Grierson D. The influence of inverted repeats on the production of small antisense RNAs involved in gene silencing. Mol Genet Genomics, 2002, 267:629-635
    124. Heidman I, Eftemova N, Saedler H. A protocol for transformation and regeneration of Antirrhinum majus. Plant Journal, 1998, 13(5): 723-728
    125. Henzl M X, Christey M C, Mcnell D L. Agrobacterium rhizogenes mediated transformation of broccoli (Brassion olerucea L. var. italico) with an antisense ACC oxidase gene. Plant Sci Limer,1999, 143: 55-62
    126. Holdsworth M J, Bird C R, Ray J. Structure and expression of an ethylene-related mRNA from tomato. Nucl. Acid Res., 1987, 15:731-739
    127. Holford P, Hernandez N. Factors influencing of Antirrhinum majus with Agrobaterium tumefaciens. Plant Cell Reports, 1992, 11 : 86-90
    128. Holton T A, Cornish E C. Gentics and biochemistry of anthocyanin biosynthesis. Plant Cell, 1995,7:1071-1083
    129. Holton T A, Tanaka Y. Blue roses-a pigment of our imagination? Trend Biotechnol, 1994, 12:40-42
    130. Hooykaas G M S, Hooykaas P J J, Schilperoort R A. Expression of Ti plasmid genes in monocotyledonous plants infected with Agrobaterium tumefaciens. Nature, 1984, 311 : 763-764
    131. Horsch R B, Fry J E, Hoffman N L. A simple and general method for transferring genes into plant.Science, 1985, 227:1229-1231
    132. Huang F H, Li A Y. Effect of concentrantion of Acetosyringone and Agrobaterium tumefaciens on GUS gene transformation efficiency of Populus. In Vitro cell Dev. Biol. Plant, 1994, 30:67-68
    133. Hudak K A, Ghosh S, Duumbroff F B. Cytosolic catabolites of H~+-ATPase in carnation petal.Pyhtochemistry, 1997, 44(3): 371-376
    134. Iglesias V A, Moscone E A, Pepp I. Molecular and eytogenetic analyses of stably and unstably expressed transgene loci in tobacco. Plant Cell, 1997, 9:1251-1264
    135. Ihsam I, Fareha A, Mussarat J. Tissue culture studies for micropropagation of carnation (Dianthus caryophyllus L.). Pakistan J of Botany, 1995, 27(2): 411-415
    136. In J.C. Pech, A. Latche, and C. Balague (eds.). Cellular and Molecular Aspects of the Plant Hormone Ethylene. Kluwer Academic Publishers Dordrecht, 1993.The Netherlands, pp. 182-187.
    137. Johson P R, Ecker J R. The ethylene gas signal transduction pathway: a molecular perspective.Annu Rev Genet, 1998, 32: 227-254
    138. Jorgensen R A. Cosuppression, flower color patterns and metastable gene expression states.Science, 1995, 268:686-691
    
    
    139. Kathryn K. Stable transformation of Gladious using suspension cells and callus. J Amer Soc Hort Sci, 1995,120(2): 347-352
    140. Kende H. Ethylene biosynthesis. Annul Rev. Plant Physiol, 1993, 44:283-307
    141. Klee H J, Hayford M B, Kretzmer K A, Barry G F and Kishore G M. Control of ethylene synthesis by expression of a bacterial enzyme in transgenic tomato plants. Plant Cell, 1991, 11 (3): 1187-1193
    142. Kosugi Y, Waki K, Iwazaki Y. Senescene and gene expression of transgenic non-ethylene-producing carnation flowers. J. Japan. Soc. Hort. Sci. 2002, 71 (5): 638-642
    143. Larsen P B, Woodson, W R. Cloning and nucleotide sequence of a S-adenosylmethionine synthetase cDNA from carnation. Plant Physiol, 1991, 96: 997-999.
    144. Lavy M, Zuker A, Lewinsohn E, Larkov O, Ravid U, Vainstein A, Weiss D. Linalool and linalool oxide production in transgenic carnation flowers expressing the Clarkia breweri linalool synthase gene. Molecular Breeding, 2002, 9 (2): 103-111
    145. Lee H, Ahn H. Rapid mutiplication of carnation through somatic embrogenesis from flower bud-induced callous. J of the Korean Society for HortScience, 1997, 38(6): 771-775
    146. Lee T, Michele E,Huang E. Shoot regeneration from leaf explant of Shungiku. Plant Science,1997, 126:219-226
    147. Leedge-Plegt L M, van de Ven B C E. Transgenic lilies vir Pollen-mediated transformation. Acta Horticulturae, 1997, 430:529-530
    148. Lieberman M, Kunishi A, Mapson L W. Stimulation of ethylene production in apple tissue slices by methionine. Plant Physiol, 1966, 41:376-382
    149. Lieberman M, Mapson L W. Genesis and biogenesis of ethylene. Nature, 1964,204:343-345
    150. Liu Y G, Shirano Y, Fukaki H, Yanai Y, Tasaka M, Tabata S, Shibata D. Complementation of plant mutants with large genomic DNA fragments by a transformation-competent artificial chromosome vector accelerates positional cloning. Proc Natl Acad Sci USA, 1999, 96:6535-6540
    151. Lowe J M, Davey M R, Power J B, Blundy K S. A study of some factors affecting Agrobacterium transformation and plant regeneration of Dendrantherna grandiflora Tzvelev (syn.Chrysanthemum morifolium Ramat.). Plant Cell, Tissue and Organ Culture, 1993, 33(2):171-180
    152. Lu C Y, Nugent G, Wardley-Richardson T. Agrobaterium-mediated transformation of carnation (Dianthus caryophyllus L.). Bio/Technology, 1991, 9:864-868
    153. Lubomski M, Jerrzy M. In vitro propagation of pot carnation from stem internodes. Acta Horticulturae, 1989, 251 : 235-240
    154. Ma C, Mitra A. Intrinsic direct repeats generate consistent post-transcriptional gene silencing in tobacco. Plant J, 2002,31 (1): 37-49
    155. Marchant R, Power J B, Lucas J A, et al. Biolistic transformation of rose (Rosa hybrida L.).Annals of Botany, 1998,81 : 109-114
    156. Marx J. Interfering with gene expression. Science, 2000, 288:1370-1372
    157. Matzke M A, Matzke A J M. Gene interactions and epigenetic variation in transgenic plants. Dev.Genet, 1990, 11 : 214-223
    158. Meins F. RNA degradation and models for post-transcriptional gene silencing. Plant Molecular Biology, 2000, 43:261-273
    159. Memurchie E J, Mcglasson W B, Eaks I L. Treatment of fruit with prophylone give information about the biogenesis of ethylene. Nature, 1972, 237:235-236
    
    
    160. Messeguer J, Acconada M C, Mele E. Adventitious shoot regeneration in carnation (Dianthus caryophyllus L.). Scientia Horticulturae, 1993, 54:153-156
    161. Michael A J, Furze J M, Rhodes M J C and Burtin D. 1996 Molecular cloning and functional identification of a plant ornithine decarboxylase cDNA. Biochem. J. 314 241-248
    162. Miltelsten S O, Jakovleva L. A change of ploidy can modify epigenetic silencing. Proc Natl Acad Sci USA. 1996, 93:7114-7119
    163. Mitiouchkina T Y, Dolgov S V. Modification of chrysanthemum plant and flower architecture by rolC gene from Agrobacterium rhizogenes introduction. Acta Horticulturae. 2000, 508:163-169
    164. Mol J N M, Stuitje A, Van tier krol A. Genetic manipulation of floral pigmentation genes. Plant Mol Biol. 1989,13:287-294
    165. Murashige T, Skoog F. A revised medium for rapid growth and bioassays with tobacco cultures.Plant Physiol, 1962, 15:473-493
    166. Nagaraju V, Srinivas G S L, Sita G L. Agrobaterium-mediated genetic transformation in Gerbera hybrida. Current Science, 1998, 74(7): 630-634
    167. Nan X, Ng H H, Johnson C A. Transcriptional repression by the methyl CpC-binding protein MeCP_2 involves a histone deacetylase compler. Nature, 1998,393:386-389
    168. Napoli C, Lemieux C, Jorgensen R. Introduction of a chimeric chalcone synthase gene into Petunia results in reversible co-suppression of homologous gene in trans. Plant Cell, 1990,2:279-289
    169. Ngo H, Tschudi C, Gull K, Ullu E. Double-stranded RNA induces mRNA degradation in Trypanosoma brucei. Proc Natl Acad Sci USA, 1998, 95:14687-14692
    170. Nontaswatsri C, Fukai S, Touma T, Goi M. Comparisons of adventitious shoot formation from node and leaf explants of various carnation (Dianthus caryophyllus L.) cultivars. Journal of Horticultural Science & Biotechnology, 2002, 77 (5): 520-525
    171. Oeller P W, Wong L M, Taylor L P, Pike D A, Theoloris A. Reversible inhibition of tomato fruit senescence by antisense RNA. Science, 1991,254:437-439
    172. Olson D C, White J A, Edelman L. Differential expression of two genes for 1-aminocyclopropropane-1-carboxylic acid Synthase in tomato fruits. Natl Acad Sci USA, 1991,88:5340-5344
    173. Orlikowska T, Nowak E. Factors affecting transformation of Gerbera. Acta Horticulturae, 1997,447:619-621
    174. Oshita S, Seo Y, Kawagoe Y. Extension of vase life of cut carnation by structured water. Acta Horticulturae, 1996, 440:657-662
    175. Pal-Bhadra M, Bhadra U, Birchler J A. Cosuppression of nonhomologous transgenes in Drosophila involves naturally related endogenous sequences. Cell, 1999, 99:35-46
    176. Park K Y, Dory A, Woodson W R. Molecular cloning of an ACC synthase gene from senescing carnation flower petals. Plant Molecular Biology, 1992, 18:377-386.
    177. Peerbolte R, Leenhouts K, Hooykass-van Slogterent G M S, Wullems G J. Clone from a shooty tobacco crown gall tumor Ⅱ: irregular T-DNA structures and organzation T-DNA, methylation and conditional expression of opine genes. Plant Mol Biol, 1986, 7:285-299
    178. Pellegrineschi A, Damon J P, Valtorta N. Improvement of ornamental characters and fragrance production in lemon-scented geranium through genetic transformation by Agrobacterium rhizogenes. Bio/Technology, 1994, 12:64-68
    
    
    179. Petru E, Landa Z. Organogenesis in isolated carnation plant callus tissue cultivated in vitro.Biologia Plantarum, 1974, 16:450-453
    180. Rbinson K E P, Firoozabady E. Transformation of floricultural crops. Scientia Horticulturae.1993, 55:83-89
    181. Renou J P, Brochard P, Jalouzot R. Recovery of transgenic chrysanthemum (Dendranthema grandiflora Tzvelev) after hygromycin resistance selection. Plant Science, 1993, 89(2): 185-197
    182. Rodrigues-Zapata L C, Hernandez-Sotomayor S M T. Evidence of protein-tyrosine kinase in Catharanthus roseus roots transformation by Agrobaterium rhizogebes. Planta, 1998, 204(1):70-77
    183. Rottmann W H, Peter G E, Oeller P W. 1-aminocyclopropropane-1-carboxylic acid synthase in tomato is encoded by a mutigene family whose transcription is induced during fruit and floral senescene. J Mol Biol, 1991, 222:937-961
    184. Ruffoni B, Massabo F, Curir P. Adventive regeneration in cell colnies of carnation. Acta Horticulturae, 1990, 280:173-176
    185. Salamini F. Biotechnology and molecular biology in practical horticulture. Acta Horticulturae,2000, 520:17-42
    186. Sambrook J, Russell D W. Molecular Cloning: A Laboratory Manual, 3rd ed. Cold Spring Harbor Lab Press, 2001, 黄培堂等译.分子克隆实验指南.北京:科学出版社,2002
    187. Sanchez-Alvarado A, Newmark P A. Double-stranded RNA specifically disrupts gene expression during planarian regeneration. Proc Natl Acad Sci USA, 1999, 96:5049-5054
    188. Sato T, Oclier P W, Theologes A. The 1-aminocyclopropropane-1-carboxylic acid synthase of Cucurbica Purification ptoperties, expression in Escherchia Coli, and primary structure determination by DNA sequence analysis. J Biol Chem, 1991, 266:3752-3759
    189. Savin K L, Baidoette S C, Graham M W. Antisense ACC oxidase RNA delays carnation petal senescene. Hortscience, 1995, 30(5): 970-972
    190. Senior IJ. Uses of plant gene silencing, Biot. & Gen. Engi. Rev., 1998,15:79-119
    191. Serek M, Sisler E C, Reid M S. A volatile ethylene inhibitor improves the post-harvest life of potted roses. J Amer. Soc. Hort. Sci. 1994, 119: 572-577.
    192. Shaw J F, Chen H H, Tsai M F, Kuo C I, Huang L C. Extended flower longevity of Petunia hybrida plants transformed with boers, a mutated ERS gene of Brassica oleracea. Molecular Breeding, 2002, 9:211-216
    193. Sijen T, Wellink J, Hiriart J B, and van Kammen A. RNA-Mediated Virus Resistance: Role of Repeated Transgenes and Delineation of Targeted Regions. Plant Cell, 1996, 8:2277-2294
    194. Smith N A, Singh S P, Wang M B, Stoutjesdijk P A, Green A G, Waterhouse P M. Total silencing by intron-spliced hairpin RNAs. Science, 2000, 407:319-320
    195. Solomos T, Gros K C. Effects of hypoxia in respiration and onset of senescene in cut carnation flowers (Dianthus caryophyllus L.). Post-harvest Biology and Technology, 1997, 10(2): 145-153
    196. Spiker S, Thompson W F. Nuclear matrix attachment regions and transgene expression in plants.Plant Physiol, 1996, 110:15-21
    197. Stare M, Brain R, Kooter J. Posttranscriptional silencing of chalcone synthase in Petunia by inverted transgene repeats. Plant J, 1997a, 12:63-82
    198. Starn M, Mol N M J, Kooter J. The silencing of genes in transgenic plants. Ann. Of Botany, 1997b,79:3-12
    199. Tabara H, Griahok A, Mello C C. RNAi in C. elegans: Soaking in the genome sequence. Science,1998, 282:430-431
    
    
    200. Takasaki T, Hatakeyama K, Ojima K, Watanabe M, Toriyama K, Hinata K. Factors influencing Agrobaterium-mediated transformation of Brassica rapa L. Breeding Science, 1997, 47:127-134
    201. Tang X Y, Wang H, Brandt A S. Organization and structure of the ACC oxidase gene family from Petunia hybrida. Plant Mol Biol, 1993, 23:1151-1164
    202. Urban L A, Sherman J M, Moyer J W, Daub M E. High frequency shoot regeneration and Agrobacterium-mediated transformation of chrysanthemum (Dendranthema grandiflora). Plant Science, 1994, 98(1): 69-79
    203. Vainstein A, Fisher M, Ziv M. Applicability of reporter genes to carnation transformation.HortScience, 1993, 28(11): 1122-1124
    204. Vainstein A, Fisher M, Ziv Meira. Applicability of reporter genes to carnation transformation.HortScience, 1993, 28(11): 1122-1124
    205. Van Altvost A C, Koehorst H, Jong J, Bruinsma T T. Adventitious shoot formation from in vitro leaf explants of carnation (Dianthus caryophyllus L.). Scientia Horticulturae, 1992, 51:223-235
    206. Van Altvost A C, Koehorst H, Jong J. Transgenic carnation plants obtained by Agrobacterium tumefaciens-mediated transformation of petal explants. Plant Cell, Tissue and Organ Culture,1996, 169:169-173
    207. Van Altvost A C, Riksen T, Koehorst H. Shoot regernation and Agrobaterium-mediated transformation of carnation. Acta Horticulturae, 1995,420:92-94
    208. Van Der S, Van Wiemeersch L. Goodman H M. Cloning and sequence of two different cDNAs encoding 1-aminocyclopropropane-1-carboxylic acid synthase in tomato. Proc Natl Acad Sci USA,1990, 87:4859-4863
    209. Van Houdt H, Ingelbrecht I, Van Montagu M. Post-transcriptional silencing of neocnycin phosphotransferease Ⅱ transgene correlate with the accurralation unproductive RNAs and with increase cytosine methylation of 3' flanking region. Plant J, 1997, 12(2): 379-392
    210. Vaucheret H. Identification of a general silencer for 19S and 35S promoter in a transgenic tobacco plant: 90 bp of homology in the promoter sequence are sufficient for trans-inactivation. CR Acad Paris, 1993, 316:1471-1483
    211. Villabos N, Floral differentiation in carnation (Dianthus caryophyllus L.) from anthers cultivated in vitro. Phyton, 1981, 41:71-75
    212. Wang H, Woodson W R. A flower senescence related mRNA from carnation shares sequence similarity with fruit ripening-related mRNAs involved in ethylene biosynthesis. Plant Physiology,1991, 96: 1000-1001.
    213. Wang H, Woodson W R. Reversible inhibition of ethylene action and interruption of petal senescence in carnation flowers by norbornadiene. Plant Physiol, 1989, 89:434-438
    214. Wang H, Woodson W R. Nucleotide sequence of a cDNA encoding the ethylene-forming enzyme frorn Petunia corollas. Plant Physiology, 1992, 100 (4): 535-536.
    215. Wang M B, Waterhouse P M. High-efficiency silencing of a β-glucuronidase gene in rice is correlated with repetitive transgene structure but is independent of DNA methylation. Plant Molecular Biology, 2000, 43:67-82
    216. Wassenegger M, Heimes S, Riedel L. RNA-directed de novo methylation of genomic sequences in plants. Cell, 1994, 76:567-576
    217. Waterhouse P M, Graham M W, Wang M B. Virus resistance and gene silencing in plants can be induced by simultaneous expression of sense and antisense RNA. Proc Natl Acad Sci USA, 1998,95:13959-13964
    
    
    218. Wenck A R, Quinn M, Wherten R W, Pullman G, Sederoff R. High-efficiency Agrobacterium-mediated transformation of Norway spruce (Picea abies) and loblolly pine (Pinus taeda). Plant Mol Biol, 1999, 39:407-416
    219. Wesley S V, Helliwelll C A, Smith N A, Wang M B, Rouse D T, Liu Q, Gooding P S, Singh S P,Abbott D, Stoutjesdijk P A, Robinson S P, Gleave A P, Green A G and Waterhousel M. Construct design for efficient, effective and high-throughput gene silencing in plants. Plant Journal, 2001 27(6): 581-590
    220. Wilkinson J Q, Lanahan M B, Clark D G. A dominant mutant receptor from Arabidopsis confer ethylene insensitivity in heterologous. Nature Biotechn, 1997, 15:5444-5447
    221. Willmitzer, L; Depicker, A; Dhaese, P; De Greve, H; Hernalsteens, JP; Holsters, M; Leemans J,Otten L, Schroder J; Schroder G; Zambryski P; van Montagu M; Schell J. The use of Ti-plasmids as plant-directed gene vectors. Folia Biol (Praha), 1983, 29:106-114.
    222. Wilmink A, van de Ven B C E, Dons H J M. Expression of the Gus-gene in the monocot tulip after introduction by particle bombardment and Agrobacterium. Plant Cell Reports, 1992, 11:76-80
    223. Woodson W R, Goldsbrough P B. Genetic transformation of carnation using Agrobacterium tumefaciens. HortScience, 1989, 24:80-82
    224. Woodson W R, Lawton K A. Ethylene-induced gene expression in carnation petals. Plant Physiol,1998, 87:498-503
    225. Woodson W R, Park K Y, Drory A. Expression of ethylene biosynthetic pathway transcripts in senesing carnation flowers. Plant Physiol, 1992, 99:526-532
    226. Woodson W. R., Goldsbrough P.B. Genetic transformation of carnation using Agrobaterium tumefaciens. HortScience, 1989, 24:80-84
    227. Yamamoto K, Yokoo Y, Makimoto Y, Arima Y, Oshima K. Prolongation of the vase life of cut carnation flowers by treatment with a combination of cis-propenylphosphonic acid andα-aminoisobutyric acidishs. Acta Horticulturoe, 1992, 394:268-271
    228. Yang S F, Hoffrnan N E. Ethylene biosynthesis and its regulation in higher plants. Annu Rev Plant Physiol, 1984, 35:155-189
    229. Yantcheva A, Vlahova M, Antanassov A. Direct somatic embryogenesis and plant regeneration of carnation (Dianthus caryophyllus L.). Plant Cell Reports, 1998, 18:148-153
    230. Yip W K, Dong J G, Kenny J W. Characterization and sequencing of the nactive site of 1-aminocyclopropropane-1-carboxylic acid synthase. Natl Acad Sci USA, 1990, 87:7930-7934
    231. Yu S N, Bae K M. Development of viral disease resistance in Dianthus caryophyllus by ransformation of CarMV CP gene: Ⅱ. Plant transformation and expression of CarMV CP gene. Journal of the Korean Society for Horticultural Science, 2002, 43 (4): 471-475
    232. Zambryski P, Joos H, Genetello C, Leemans J, Van Montagu M, Schell J. Ti plasmid vector for the introduction of DNA into plant cells without alteration of their normal regeneration capacity. EMBO J, 1983, 2:2143-2150
    233. Zuker A, Ahroni A, Tzvi T, Hagit B, M Alexander V. Wounding by bombardment yields highly efficient Agrobacterium-mediated transformation of carnation (Dianthus caryophyllus L.). Molecular Breeding, 1999,5: 367-375
    234. Zuker A, Tzfira T, Ben-Meir H, Ovadis M, Shklarman E, Itzhaki H, Forkmann G, Martens S, Neta-Sharir I, Weiss D, Vainstein A. Modification of flower color and fragrance by
    
    antisense suppression of the flavanone 3-hydroxylase gene. Molecular Breeding, 2002, 9(1): 33-41
    235. Zuker A, Tzfira T, Scovel G, Ovadis M, Shklarman E, Itzhaki H, Vainstein A. RolC-transgenic carnation with improved horticultural traits: quantitative and qualitative analyses of greenhouse-grown plants, darner Soc Hort Sci, 2001, 126(1): 13-18
    236. Zurk A., Lchang P.E., Ahroni A. Transformation of carnation by microprojectile bombardment. Scientia Horticulture, 1995, 64:177-185

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700