用户名: 密码: 验证码:
碳化硅、蓝宝石与铜箔表面石墨烯的生长和表征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
石墨烯是一种新型碳单质新材料,因其独特的二维蜂窝状晶体结构及奇特的能带结构引起了人们越来越多的关注。石墨烯具有优异的力学特性,光学特性,热学特性与电学特性,可广泛应用在微电子学器件,超级电容器,光电器件及能源储存等领域。在有关石墨烯的研究中,高质量石墨烯的制备仍然是一关键问题,获得大尺寸,结构稳定,层数可控的石墨烯是石墨烯器件制作的前提。在目前的制备方法中,利用α-SiC单晶高温退火制备石墨烯、直接在合适的衬底上制备石墨烯与在非晶Cu箔上制备石墨烯引起了人们越来越多的关注,而目前这些方法制备的石墨烯晶体质量还比较低,其中的一些物理问题尚未得到解决。本论文利用SRPES、Raman与NEXAFS等手段研究了在SiC单晶、蓝宝石与Cu箔衬底上石墨烯的优化生长及形成机制。
     基于SiC单晶生长高质量石墨烯的需要,对在6H-SiC两个极性面形成石墨烯的机制进行深入探讨,并发展了一些在6H-SiC衬底上优化生长石墨烯的方法,分别为辅助C束流与辅助非晶Ni;发展了几种在蓝宝石绝缘衬底上直接制备石墨烯的方法,分别为在生长SiC缓冲层并高温退火、生长SiC和非晶Ni快速退火、高温下直接沉积C原子;利用提供固态C源的方式在铜箔上制备高质量的石墨烯,并优化了其中的生长条件,实现了石墨烯的层数可控生长及在衬底间的转移。
     主要的研究工作及其结果如下:
     1.6H-SiC单晶衬底上石墨烯的生长
     1)利用SRPES和LEED技术对具有不同极性面的6H-SiC(0001)与6H-SiC(0001)表面高温退火生长石墨烯的形成过程进行了原位研究。结果表明在两种极性面均制备出了外延石墨烯(EG)。对两种极性面形成的石墨烯对比性研究表明:Si面EG面内晶格呈各向同性而C面EG呈各向异性;si面EG与衬底存在较强的界面相互作用,受到衬底的影响较大,而C面EG与衬底相互作用较弱,受到衬底影响较小。Si面EG的形成温度比C面EG的形成温度高150℃左右,C面更易生长石墨烯且形成速度较快。Si面EG的平整度和均匀度要好于C面EG。
     2)研究了辅助C束流对6H-SiC的两极性面高温退火生长石墨烯的影响,结果表明辅助C束流对在6H-SiC两极性面上生长石墨烯的质量均具有改善作用,而且也能达到控制石墨烯层数的作用。在6H-SiC(0001)面辅助C束流的结果表明:辅助C束流降低了石墨烯的形成温度,在较低温度(800℃)下已经生长出了石墨烯,且石墨烯的晶体质量随着衬底温度的升高而升高。6H-SiC(0001)面辅助C束流的结果表明:辅助C束流需要合适的蒸发速率,蒸发速率太小或者太大都对石墨烯的质量改善作用不大。
     3)在覆盖有非晶Ni层的6H-SiC(0001)衬底上通过快速升温及快速降温的方法制备石墨烯,并研究了不同退火温度对石墨烯结晶质量的影响。结果表明,利用这种方法制备的石墨烯比直接高温退火的方法制备的石墨烯不但所需温度较低,而且晶体质量也得到提高,随着退火温度的增加,石墨烯的晶体质量先升高后降低,在800℃时获得了晶体质量最好的石墨烯。
     2.蓝宝石衬底上石墨烯的制备
     1)利用固源分子束外延(SSMBE)的方法在α-Al2O3(0001)衬底上外延生长出了结晶性能良好的6H-SiC薄膜,然后通过对之高温退火制备出了石墨烯。这种石墨烯具有和6H-SiC衬底单晶Si端面高温退火制备的石墨烯一样的AB堆垛结构。
     2)先在蓝宝石衬底上生长SiC缓冲层,然后再沉积非晶Ni,之后利用快速退火快速降温的方法制备石墨烯,并研究了SiC缓冲层的结晶质量对石墨烯的影响。结果表明我们利用这种方法在蓝宝石衬底上生长出了石墨烯,沉积非晶Ni对石墨烯的形成具有促进作用,而且先前在蓝宝石衬底上生长的SiC缓冲层的晶体质量对后面形成的石墨烯的晶体质量有重要影响,在蓝宝石衬底上形成的SiC晶体质量越好,形成的石墨烯质量也越高。
     3)利用直接沉积C原子的方法在蓝宝石衬底上生长石墨烯,结果表明我们利用这种方法在蓝宝石衬底上生长出了石墨烯。石墨烯的晶粒尺寸为12.2nm,层数约为2-3层。所生长的石墨烯和α-SiC的C极性面通过高温热退火方法制备的石墨烯一样具有乱层堆垛结构。
     3.Cu箔上石墨烯的制备
     1)在Cu箔衬底上通过直接沉积C原子的方法生长石墨烯。结果表明我们在Cu箔上生长出了结晶性能良好且而有序的石墨烯,其质量比利用此方法在蓝宝石与Si单晶上生长的石墨烯的质量更优异。
     2)研究了衬底温度对在Cu箔上利用沉积C原子的方法制备石墨烯的影响。结果表明衬底温度是在Cu箔上形成石墨烯的重要因素,石墨烯的晶体质量随着衬底温度的升高而提高,在Cu箔将近融化的时候得到晶体质量最好的石墨烯。
     3)在Cu箔衬底上探索了制备层数可控的石墨烯的方法,并尝试将石墨烯从Cu箔上转移到Si02/Si衬底上。结果表明我们可以利用沉积C原子的厚度来控制石墨烯的层数,并成功地将实现了石墨烯从Cu箔到Si02/Si衬底的转移。
Graphene, a new carbon material which was confirmed in2004, because of its unique two dimension honeycomb crystal structure and strange band structure, have attracted more and more attention recently. Graphene exhibits excellent optical, thermodynamic, mechanical and electrical properties and will be widely applied in many fields such as nano-electrical devices, super capacitors, photoelectric device, energy storage and so on. The preparation of the graphene with high quility is still a key challenge. In order to design the graphene devices, the graphene layers with large area, stable structure and constant layer number are seriously required. At present, several methods to prepare graphene have attracted more and more attention recently, such as annealing α-SiC at high temperature, preparing graphene layers on the suitable substrate, preparing graphene on the Cu foil substrate and so on. However, the graphene layers with these methods need to be improved and some physics problems have not yet been resolved. In this thesis, we have researched the optimization growth and formation mechanism of the graphene on the SiC substrate, Sapphire substrate and Cu foil substrate by SRPES、Raman and NEXAFS.
     In need to prepare graphene layers with high quality on the6H-SiC substrate, we have researched the growth process and formation mechanism of the graphene on the two polars of6H-SiC systemically, and developed several methods to improve the crystal quality of the graphene grown on the6H-SiC, including assistance of carbon flux and depositing Ni layer. Moreover, we have made use of three methods to prepare graphene on the sapphire substrate directly, including growing SiC thin film and annealing, growing SiC thin film and Ni layer then fast annealing, directly depositing carbon atoms at high temperature. In addition, we tried to supply solid carbon source to prepare high quality graphene layers on the Cu foil substrate and optimize the growing conditions, also we have developed the methods to control the layer number of the graphene on the Cu foil and to transfer the graphene layers to other substrate. The main work and results are listed as following:
     1. The growth of graphene on6H-SiC single crystal
     1) The formation processes of graphene fabricated by thermal decomposition of the6H-SiC (0001) and6H-SiC (0001) were in-situ investigated by Low energy electron diffraction (LEED) and synchrotron radiation photoelectron spectroscopy (SRPES). The results showed that graphene layers were produced finally on the two poplars. The comparisons studies indicated that Si terminated EG appeared highly oriented while C terminated EG anisotropy, and interface interaction similar to C-sp3bond of diamond existed on the Si terminated EG, the interaction between the epitaxial film and substrate was stronger, while on the C terminated EG there was no such interaction, the interaction between the epitaxial film and substrate was weaker. The formation temperature of Si-terminated EG was150℃higher that of C terminated EG. The.flatness of Si-terminated EG is better than that of C terminated EG.
     2) The effect of of assistance of carbon flux on the graphene grown on the6H-SiC (0001) and6H-SiC (0001) substrates were studied. Results indicated that with assistance of external carbon flux, we can obtain high quality graphene layers and could control the thickness of graphene layer. The results of6H-SiC (0001) showed that graphene can be grown at lower temperature(800℃) when carbon atoms were deposited, and the crystal quality of graphene improved with the substrate temperature increased. The results of6H-SiC (0001) indicated that assistance of carbon flux should be in appropriate evaporation rate.
     3) Few-layer graphene (FLG) has been prepared by thermal annealing of SiC crystal at low temperature by depositing Ni layer. The effect of annealing temperature on the graphenen crystal quality was also studied. The results revealed that this method would greatly decrease the required high temperature and improve the crystal quality of graphene. As the annealing temperature increased, the crystal quality of graphene first improved and then decreased, and the optimized temperature was800℃.
     2. The preparation of graphene on sapphire substrate
     1) SiC thin film was firstly grown on sapphire substrate by SSMBE and then annealed the sample at high temperature to prepare graphene layers. The results showed that we first prepared6H-SiC thin films with high quality and then got graphene layers finally. The prepared graphene films just like the graphene prepared by annealing6H-SiC (0001) and displayed AB stacking structure.
     2) SiC thin film was firstly grown on sapphire substrate, and next amorphous Ni layer was deposited on the surface, and then the samples were fast annealed and cooled to prepare graphene layers. The results showed that we have got the graphene layers on the sapphire using this method, and the crystal quality of the SiC buffer was critical to the final graphene layers.
     3) FLG has been grown on sapphire substrate by directly depositing carbon atoms in an ultrahigh vacuum (UHV) molecular beam epitaxy (MBE) chamber. The experimental results confirmed the formation of graphene layer. The mean domain size of graphene was around12.2nm and the layer number of the graphene films was estimated to be2-3. The grown graphene layers on sapphire substrate showed the turbostratic stacking structure, almost the same stacking structure as the FLG produced by annealing C-terminated a-SiC surface, which indicated that they may have similar behavior.
     4) The preparation of graphene on sapphire substrate
     1) Graphene had been grown on sapphire substrate by directly depositing carbon atoms. The experimental results showed that we prepared graphene films with high quality. The crystal quality was so high that it much better than those of graphene on the Si and sapphire single crystal prepared by the same method.
     2) The effect of substrate temperature on the growth of graphene film on Cu foil by directly depositing carbon atoms were investigated. The results indicated that the substrate temperature played an important role in the formation of graphene film. The crystal quality of the graphene improved as the substrate temperature increased and the best graphene was obtained when the Cu foil was melting.
     3) The methods to control the layer number of the graphene on the Cu foil and to transfer the graphene layers from Cu foil to SiO2/Si were explored. The experimental results showed that we could control the number of the graphene layer by depositing specified carbon atom layer, and we have successfully transferred the graphene layers from Cu foil to SiO2/Si.
引文
1. Kroto H W, Heath J R,OBrien S C,et al.1985.[J]. Nature,318:162-163.
    2. Iijima S.1991. [J]. Nature,354:56-58.
    3. Baughman RH, Zakhidov AA, de Heer WA.2002. [J]. Science,297:787.
    4. Gordon W.1984. [J].Phys. Rev. Lett.,53:2449-2452.
    5. Haldane F D M.1988. [J].Phys. Rev. Lett.,61:2015-2018.
    6. Novoselov KS, Geim AK, Morozov SV, et al.2004. [J]. Science,306:666-669.
    7. Morozov SV, Novoselov KS, Katsnelson MI, et al. Phys. Rev. Lett. [J].2008,100: 016602
    8. Tworzydlo J, Trauzettel B, Titov M et al.2006. [J]. Phys. Rev. Lett.96:246802.
    9. Balandin AA, Ghosh S, Bao WZ, et al.2008. [J]. Nano Lett.,8:902-907.
    10. Changgu Lee, Xiaoding Wei, Jeffrey W K et al.2007. [J]. Nature materials,6:183.
    11. Zhang Y B, Tan Y W, Stormer H L, et al.2005. [J]. Nature 438:201.
    12. Wang X, Zhi L, Mi II, et al.2008. [J]. Nano Letters,8(1):323-327.
    13. Simon P, Gogotsi Y.2008. [J]. Nature Materials,7:845-854.
    14. Mark H R, Claudia G R, Frank O et al.2011. [J]. Adv. Mater.,23,4471-4490.
    15. Wallace P R.1947. [J].Physical Review,71:62.
    16. Reich S, Maultzsch J, Thomsen C, Ordejon P.2002. [J]. Phys. Rev. B,66:622-634.
    17. Geim AK, Novoselov KS.2007. [J]. Nature materials,6:183.
    18. Wunsch B, Stauber T, Sols F, et al.2006. [J]. New Journal of Physics,8:318.
    19. Chung D L.2002. [J]. Journal Of Materials Science,37(8):1475-1489.
    20. Dresselhaus M S, Dresselhaus G.1981. [J]. Advances in Physics,30(2):139-326.
    21. McClure, J W.1963. [J]. American Journal Of Physics,31 (1):71.
    22. Aoki M, Amawashi H.2007. [J]. Solid State Communications,142(3):123-127.
    23. Guinea F, Neto A H C, Peres N M R.2006. [J]. Phys. Rev. B,73:245426.
    24. Lu C L, Chang C P, Huang Y C, et al.2006. [J]. Phys. Rev. B,73:140405.
    25. Partoens B, Peeters F M.2006. [J]. Phys. Rev. B,74:075404.
    26. Lee C, Wei X, Li Q, et al.2009. Phys. Status Solidi B,246:2562-2567.
    27. Kuzmenko A B, van Heumen E, et al.2008. [J]. Phys. Rev. Lett.100:117401.
    28. Casiraghi C. et al.2007. [J]. Nano Lett.7:2711-2717.
    29. Sun X. et al.2008. [J]. Nano Res.,1:203-212.
    30. Calizo I, Balandin AA, Bao W, et al.2007. [J]. Nano Lett.,9:2645-2649.
    31. Novoselov K S, Jiang Z, Zhang Y, et al.2007. [J]. Science,315:1379
    32. Katsnelson M I, Novoselov K S, Geim A K.2006. [J]. Nature Physics,2:620-625.
    33. Cheianov VV, Falko VI.2006. [J]. Phys.Rev. B.,74(4):041403.
    34. Klein O Z.1929. [J]. Phys.,53:157-165.
    35. Calogeracos A,2006. [J]. Nat. Phys.,2:579.
    36. Novoselov K S, McCam E, Mbrozov S V, et al.2006. [J]. Nat. Phys.,2:177-180
    37. Katsnelson M I, Novoselov K S.2007. [J]. Solid State Commun,143:3-13
    38. Heersche H B, Jarillo Herrerop, Oosting B, et al.2007. [J]. Nature,446:56-59.
    39. Schedin F, Geim A K, Morozov SV, et al.2007. [J]. Nat. Mater.,6:652-655.
    40. Sundaram R S, Navarro C G, Kern K, et al.2008. [J]. Adv. Mater.,20:3050-3053.
    41. Robinson J T, Perkins F K, Sheehan P E, et al.2008. [J]. Nano Lett.,8 (10):3137-3140.
    42. Wang Y, Shi Z Q, Huang Y, et al.2009. [J]. J Phys Chem C,113 (30):13103-13107.
    43. Stoller M D, Park S, Zhu Y, et al.2008. [J]. Nano Letters,8:3498-3502.
    44. Becerril H A, Mao J, Liu Z F, Stoltenberg R M, et al. ACS Nano,2008,2:463-479.
    45. Liu Z F, Liu Q, Huang Y, et al.2008. [J]. Adv Mater,2008,20:3924-3930.
    46. Liu Q, Liu Z F, Zhang X Y, et al.2009. [J]. Adv Funct Mater,2009,19:894-904.
    47. Wang X, Zhi L, Mi 11, et al.2008. [J]. Nano Letters,8(1):323-327.
    48. Xia F, Mueller T, Lin YM, et al.2009. [J]. Nature Nanotech,4:839-843.
    49. Chung K, Lee C H, Yi G C.2010. [J]. Science 330 655-657.
    50. Dimitrakakis G K, Tylianakis E, Froudakis G E.2008. [J]. Nano Lett,2008,8 (10): 3166-3170.
    51. Ataca C, Akturk E, Ciraci S.2009. [J]. Phys Rev B,79 (041406):124.
    52. Dahn J R, Zheng T, Liu Y H, et al.1995. [J]. Science,270:590-593.
    53. Yoo E, Kim J, Hosono E, et al.2008. [J]. Nano Lett.,8:2277-2282.
    54. Pan D, Wang S, Zhao B, et al.2009. [J]. Chem. Mater.,21:3136-3142.
    55. Liang X, Fu Z L, Chou S Y.2007. [J]. Nano Lett,2007,7:3840-3844.
    56. Yan J, Wei T, Shao B, et al.2009. [J]. Carbon,48:4872493.
    57. Liu Z, Robinson J T, Sun X M, et al.2008. [J]. J. Am. Chem. Soc.,130:10876-10877.
    58. Hernandez Y, Nicolosi V, Lotya M, et al.2008. [J]. Nature Nanotechnol.3:563.
    59. Liang Y T, Hersam M C.2010. [J]. J. Am. Chem. Soc.,132:17661.
    60. Sungjin Park, Rodney S. Ruoff.2010. [J]. Nat. Nanotechnol.,4:217.
    61. Li X L, Zhang G Y, Bai X D, et al.2008. [J]. Nat. Nanotechnol.,3:538.
    62. Tung V C, Allen M J, Yang Y, et al.2009. [J]. Nat. Nanotechnol.,4:25.
    63. Badami D V.1962. [J]. Nature,193:569.
    64. Van Bommel A J, Crombeen J E, Van Tooren A.1975. [J]. Surf. Sci.48:463.
    65. Varchon F, Feng R, Hass J, et al.2007. [J]. Phys. Rev. Lett,99:126805.
    66. Berger C, Song Z, Li T, et al.2004. [J]. Journal Physical Chemistry B,108:19912.
    67. Berger C, Song Z, Li T, et al.2006. [J]. Science,312:1191-1196.
    68. Editorial.2007. Nature Materials,6:169.
    69. Emtsev KV, Bostwick A, Horn K etal.2009. [J]. Nature material 8:203-207
    70. Emtsev KV, Speck F, Seyller T,2008. [J]. PHYSICAL B 77:155303
    71. Sutter PW, Flege J, Sutter E A.2008. [J]. Nature Mater.,7:406.
    72. Land T A, Miehely T, Behm R J, et al.1992. [J]. Surface Science,264:261-270.
    73. Gamo Y, Nagashima A, et al.1997. [J]. Surface Science,374:61-64.
    74. Starr D E, Pazhetnov E M, et al.2006. [J]. Surface Science,600:2688-2695.
    75. Kim K S, Zhao Y, Jang H et al.2009. [J]. Nature,457:706-710.
    76. Li X S, Cai W W, An J, etal.2009. [J]. Science,324:1312-1314.
    77. 胡耀娟,金娟,张卉等.2010.[J].物理化学学报,26(8):2073-2086.
    78. Subrahmanyam K S, Panchakarla L S, Govindaraj A, et al.2009. [J]. J. Phys. Chem. C, 113(11):4257.
    79. Qian H L, Negn F, Wang C R, et al.2008. [J]. J. Am. Chem. Soc.,130(52):17970.
    80. Jiao L Y, Zhan g L, Wang X R, Dian G, et al.2009. [J]. Nature,458:877.
    81. Cardona M, Ley L.1978. Photoemission in Solids Ⅰ[M], Berlin,1978.
    82. Cardona M, Ley L.1978. Photoemission in Solids Ⅱ [M], Berlin,1979.
    83. 徐彭寿,潘国强.2009.同步辐射应用基础[M].合肥:中国科学技术大学出版社.
    84. 马礼敦,杨福家,2001.同步辐射应用概论[M].上海:复旦大学出版社.
    85. 权田俊一著,方永勋译.1981.分子束外延入门[M].北京:国防工业出版社.
    86. Cho AY.1969. [J]. Surf. Sci.,17:494.
    87. 刘金峰.2007.SiC薄膜的SSMBE生长及其结构表征.[博士].合肥:中国科学技术大学.
    88. 吴自勤,王兵.2001.薄膜生长[M].北京:北京科学出版社.
    89. 薛增泉,吴全德,李洁.1991.薄膜物理[M],电子工业出版社.
    90. 王力衡,黄云添,郑海涛.1991.薄膜技术[M],清华大学出版社.
    91. 王科范,刘金锋,邹崇文,等.2005.[J].真空科学与技术学报,25:75-78.
    92. 刘洪图.2003.半导体材料物理.[M].合肥:中国科技大学出版社.
    93. 陈可明,金高龙.1989.[J].物理学报,39(12):1937-1944
    94. 程光煦.2001.拉曼布里渊散射.[M].北京:科学出版社.
    95. 朱自莹,顾仁教,陆天虹.1998.拉曼光谱在化学中的应用.[M].沈阳:东北大学出版社.
    96. 张勇,叶安培,闻丞.2010.[J].光学学报,2:491-496.
    97. 王瑞,郝凤欢,等.2010.[J].激光与光电子学进展,47:1-10.
    98. Wang Z L, Tian Z Q.2010. [J]. Nature.3:392.
    99. 韦世强,谢亚宁,徐法强,等.2002.[J].同步辐射XAFS实验站及其应用,物理,31:40.
    100. 吴忠华,王德武,蒋海音等.1997.[J].物理学进展.17(3):250-264.
    101. 唐军.2011.博士毕业论文.[M].合肥:中国科学技术大学.
    102. Masri Pierre.2002. [J].Surf. Sci. Rep.48:1-51.
    103. de Heer W A, Berger C, Ruan M, et al.2011. [J]. Proc Natl Acad Sci U S A. 108(41):16900-5.
    104. 郝跃,彭军,杨银堂.2000.碳化硅宽带隙半导体技术.[M].北京:科学出版社.
    105. Fissel A.2003. [J]. Phy. Rep.,379:149.
    106. Lebedev A A.2006. [J].Semicond. Sci. Technol.,21:R17.
    107. Davis Robert F., Kelner Galina, Shur Michael, et al.1991. [J].Proc. IEEE 79(5):677.
    108. 徐现刚,胡小波,王继扬等.2003.[J].人工晶体学报,32:540.
    109. Ulrich Starke.2003. Atomic Structure of SiC Surfaces. [M]. Berlin:Springer Publisher.
    110. Hass J, de Heer W A, Conrad E H.2008. [J]. J. Phys.:Condens. Matter 20:323202.
    111. Starke U, Riedl C.2009. [J]. J. Phys.:Condens. Matter,21:134016.
    112. Mizokawa Y, Miyasato T, Nakamura S, et al.1987. [J]. J. Vac. Sci. Technol. A,5:2809.
    113. Peneluas J, Ouerghi A, Lucot D, et al.2009. [J]. Phys. Rev. B,79:033408.
    114. Santucci S, Di Nardo S, Lozzi L, et al.1995. [J]. Journal of Electron Spectroscopy and Related Phenomena,76:623-628.
    115. Langer T, Pfunr H, Schumacher H W, et al.2009. [J]. Appl. Phys. Lett.,94:112106.
    116. Tang J, Liu Z L, Kang C Y, et al.2009. [J]. Chin. Phys. Lett.26:088101.
    117. Ni Z H, Chen W, Fan XF, et al.2008. [J]. Phys. Rev. B 77:115416.
    118. Johansson L I, Fredrik Owman, Per Martensson, et al.1999. [J]. Phys. Rev. B,53:13803.
    119. Algdal J, Balasubramanian T, Breitholtz M, et al.2007. [J].Surface Science,601:1167.
    120. Taisuke Ohta, Aaron Bostwick, McChesney J L, et al.2007. [J].Phys. Rev. Lett.,98: 206802.
    121. Chen W, Xu H, Liu L.2005. [J]. Surf. Sci.596:176.
    122. Forbeaux I, Themlin J M, Charrier A, et al.2000. [J]. Applied Surface Science 162:406.
    123. Johansson L I, Glans P A, Hellgren N.1998. [J]. Surface Science,405:288.
    124. C. Faugeras, A. Nerriere, M. Potemski, A. Mahmood, E. Dujardin, C. Berger, W. A. de Heer, Appl. Phys. Lett.92, (2008) 011914
    125. Forbeaux I, Themlin J M, Debever J M.1999. [J]. Surface Science 442:9.
    126. Park C H, Cheong B Ch, Lee K H, et al.1994. [J]. Phys. Rev. B,49:4485.
    127. Glenn G J, Brenda L V, Joseph L, et al.2009. [J]. Nano Letters,9:2605.
    128. 唐军,刘忠良,康朝阳等.2010.[J].物理化学学报.1(26):253-258.
    129. Rohil J, Hundhausen M, Emtsev K V.2008. [J]. Appl Phys Lett,92:01918.
    130. Ferralis N, Maboudian R, Carraro C.2008. [J]. Phys. Rev. Lett.,101:156801.
    131. Ferrari A C, Meyer J C, Scardaci V.2006. [J]. Phys. Rev. Lett.,97:187401
    132. Batson P E.1993. [J]. Phys. Rev. B,48:2608.
    133. Abbas M, Wu ZY, Zhong J, et al.2005. [J]. Appl Phys Lett,87:051923.
    134. Xie X N, Wang H Q, Wee A T S, et al.2001. [J]. Surface Science,478:57-71.
    135. Kubler L, Ait-Mansour K, Diani M, et al.2005. [J]. Phys. Rev. B,72:115319.
    136. Yu Q K, Lian J, Siriponglert S, et al.2008. [J]. Appl. Phys. Lett.,93:113103.
    137. Obraztsova E A, Osadchy A V, Obraztsova E D,et al.2008. [J]. Phys. Status Solidi B 245:2055.
    138. Kisoda K, Kamoi N, Hasuike H, et al.2010. [J]. Appl. Phys. Lett.97:033108.
    139. Al-Temimy A, Riedl C, Strake U.2009. [J]. Appl. Phys. Lett.95:231907.
    140. Hackley J, Ali D, DiPasquale J, et al.2009. [J]. Appl. Phys. Lett.95:133114.
    141. Andrea C F, Robertson J.2004. Raman Spectroscopy In Carbons:from Nanotubes to Diamond [M]. London:Royal Society.
    142. Gupta A, Chen G, Joshi P, et al.2006. [J]. Nano. Lett.,6(12):2667.
    143. Malarda L M, Pimentaa M A, Dresselhaus G, et al.2009. [J]. Phys. Rep.,473:51.
    144. Cancado L G, Takai K, Enoki K et al.2008. [J]. Carbon 46:272.
    145. Ni Z H, Wang Y Y, Ting Y, et al.2008. [J]. Nano Res,1:273291.
    146. Cancado L G, Takai K, Enoki K et al.2006. [J]. Appl. Phys. Lett.,88:163106.
    147. Kang C Y, Tang J, Liu Z L, et al.2011. [J]. Chin. Phys. Lett.,28:118101.
    148. Yoneda T, Shibuya M, Mitsuhara K, et al.2010. [J]. Surface Science 604:1509-1515.
    149. Juang Z Y, Wu C Y, Lo C W, et al.2009. [J]. Carbon 2009;47:2026-31.
    150. 王崇鲁.1983.白宝石单晶[M].天津:天津科技出版社.
    151. Cheng L, Steckl A J, Scofield J D, et al.2003. [J]. Journal of Microelectromechanical Systems,12:797-803.
    152. 郑海务.2006.博士毕业论文.[D].中国科学技术大学:72-83.
    153. 许小亮,施朝淑.2000.[J].物理学进展,20:356-369.
    154. Saddow S E, Mynbaeva M, Smith M C D, et al.2001. [J]. Applied Surface Science, 184:72-76.
    155. Brizard C, Rolland G, Laugier F.1993. [J]. Journal of Applied Crystallography,26:570-573.
    156. Hofmann M, Zywietz A.1994. [J]. Phys.Rev.B,50:13401-13411.
    157. Zgheib Ch, Forster Ch, Wei H P,et al.2004. [J]. Thin Solid Films,455:183-186.
    158. 卢文壮,左敦稳,王珉等.2004.[J].人工晶体学报,33(1):13-17.
    159. Rohrl J, Hundhausen M, Emtsev K.2008. [J]. Appl. Phys. Lett.,92:201918.
    160. Zekentes K, Papaioannou V, Pecz B et al.1998. [J]. J. Cryst. Growth,157:392-399.
    161. Liu Z L, Liu J F, Ren P, et al.2008. [J]. Applied Surface Science,254:3207-3210.
    162. 刘忠良,刘金锋,任鹏等.2008.[J].真空科学与技术学报,4:992-995.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700