用户名: 密码: 验证码:
晚期糖基化修饰诱导β_2微球蛋白聚集及其毒性机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
透析相关性淀粉样疾病是经过长期血液透析后,出现的一种以渐进性丧失行动能力为临床特征、关节和骨骼及内脏出现由β2微球蛋白(β2M)形成的淀粉样纤维为病理特征的非神经性疾病。国内外已对β2M形成纤维做了很多实验研究,但它在体内形成淀粉样纤维的机制及其在透析相关性疾病中的病理学作用至今仍不清楚。透析相关性疾病还涉及到一些其它因素的存在,目前从透析相关性疾病病变组织中的淀粉样纤维分离得到的p2M主要是经晚期糖基化修饰过的β2M,然而糖基化修饰在β2M的错误折叠和聚集中起到的作用并不清晰。我们研究了晚期糖基化修饰诱导β2M发生聚集的分子机制。SDS-PAGE实验结果表明,糖基化试剂D-核糖很快与β2M发生反应,并对其晚期糖基化修饰,进而生成二聚体、三聚体及更高分子量的聚集体。MALD-TOF质谱实验结果显示,糖基化3天的β2M分子量与未被修饰的β2M分子量相比增加了803Da,表明此时约有6个核糖分子因修饰而连接到一个β2M分子上了,同时糖基化过程中有大量的二聚体合三聚体生成。荧光和Western bolt实验证实了在糖基化过程中生成了晚期糖基化终产物。总之,我们发现D-核糖能快速晚期糖基化修饰的β2M,晚期糖基化修饰诱导β2M发生聚集,生成具有ThT结合特性的聚集体。该聚集体具有明显的蛋白酶解抗性。
     接着我们对糖基化修饰诱导p2M生成的聚集体的细胞毒性进行了研究。该聚集体对人神经瘤母细胞SH-SY5Y及正常人包皮成纤细胞FS-2具有很高的细胞毒性,而且这种细胞毒性具有浓度依赖性:随着糖基化孵育时间的增加,糖基化β2M聚集体生成得越多,细胞毒性也越强。Annexin-V FITC和PI双染流式细胞技术检测到该聚集体诱导的凋亡和坏死的细胞比例远远高于对照及正常细胞组中的凋亡和坏死细胞的比例,Hoechst33342荧光染色结果也证实了糖基化p2M聚集体能诱导SH-SY5Y细胞凋亡。1.0mM抗氧化剂N-乙酰半胱氨酸处理能清除胞内活性氧簇(ROS),从而阻止该聚集体诱导的SH-SY5Y及FS-2细胞的凋亡,显示糖基化β2M聚集体发挥细胞毒性遵循胞内ROS介导的机制。总之,我们发现糖基化修饰诱导β2M生成的聚集体具有蛋白酶解抗性和很高的细胞毒性,诱导细胞生成胞内ROS,进而诱导细胞发生凋亡。由于生成的聚集体具有蛋白酶解抗性,一旦其在体内形成,就会存在很长时间,同时该聚集体具有很高的细胞毒性,会对人体所造成较大的伤害,因此晚期糖基化修饰的p2M生成的聚集体可能是透析相关性淀粉样纤维疾病发病的因素之一。
     我们使用大分子拥挤试剂Ficoll70和dextran70来模拟生理拥挤环境,研究了大分子拥挤对β2M错误折叠的影响。我们的实验结果表明,大分子拥挤显著促进了β2M形成淀粉样纤维的成核步骤和延伸步骤,分别表现为成核时间的极大缩短和延伸速率的明显增加。大分子拥挤也明显抑制了成熟β2M淀粉样纤维的解聚,而且这种抑制效果对大分子拥挤试剂具有浓度依赖性,相同浓度的Ficoll70和dextran70的抑制效果则几乎相同。这表明生理拥挤环境中,p2M更容易发生错误折叠,而且生成的淀粉样纤维结构更加稳定更不易解聚,因此p2M所处的生理拥挤环境(如血清和骨滑液)在β2M形成淀粉样纤维的进程中起到重要的作用,因此我们在研究透析相关淀粉样疾病发病机理时也需要考虑生理拥挤环境这一重要因素。
β2-Microglobulin (β2M) modified with advanced glycation end products (AGEs) is a major component of the amyloid deposits in hemodialysis-associated amyloidosis (HAA). Although glycated P2M is found as a major component of the amyloid deposits in HAA, the effect of glycation on the misfolding and aggregation of β2M has not been studied so far. D-ribose, present in all living cells and blood, is not only an efficient glycating agent, but also an essential component for energy production in the human body. Here we examine the molecular mechanism of aggregate formation of HAA-related ribosylated β2M in vitro. We find that glycating agent D-ribose interacts with human β2M to generate AGEs which form aggregates in a time-dependent manner. The molecular mass of ribosylated β2M monomer incubated for3days increased up to12,694Da. The extra803Da indicated that about6ribose groups were bound to β2M on average, compared with that of the native P2M. Ribosylated β2M molecules are highly oligomerized compared with unglycated β2M, and have a granular morphology. Furthermore, we demonstrated that ribosylated β2M aggregates could not be digested by trypsin and showed increased resistance to PK. Therefore, once glycated β2M aggregates have formed, they are difficult to be degraded by proteases and can persist in human tissues for a long period.
     Next, we employed MTT reduction assay to measure the cytotoxicity of ribosylated β2M to human SH-SY5Y neuroblastoma cells and human foreskin fibroblast FS2cells. Because glycated β2M is the major component of the amyloid deposits in HAA, we tried to define the cytotoxic role of ribosylated β2M aggregates. Our data demonstrate that ribosylated P2M aggregates are highly toxic to both SH-SY5Y cells and FS2cells and induce intracellular reactive oxygen species (ROS). Presence of the antioxidant N-acetylcysteine (1.0mM) attenuated intracellular ROS and prevented cell death induction in both SH-SY5Y and FS2cells, indicating that the cytotoxicity of ribosylated β2M aggregates depends on a ROS-mediated pathway in both cell lines. In other words, D-ribose reacts with β2M and induces the ribosylated protein to form granular aggregates with high cytotoxicity through a ROS-mediated pathway. In the light of the higher cytotoxicity of ribosylated β2M aggregates than unglycated β2M aggregates, once glycated β2M aggregates have formed, they can persist in human tissues for a long time period and can be more harmful to cells than unglycated β2M aggregates, emphasizing the need for lowering circulating glycated β2M levels in dialysis patients. These findings suggest that ribosylated β2M aggregates could contribute to the dysfunction and death of cells and could play an important role in pathogenesis of β2M-associated diseases such as HAA.
     Finally, we investigated the effects of macromolecular crowding agents, Ficoll70and dextran70, on the depolymerization of amyloid fibrils at pH7.5, as well as on fibril formation by P2M at an acidic pH, using thioflavin T binding assays, transmission electron microscopy and circular dichroism. On the one hand, depolymerization of β2M amyloid fibrils formed by β2M was inhibited by Ficoll70and dextran70in a dose-dependent way. On the other hand, macromolecular crowding dramatically accelerated amyloid formation by monomeric β2M at an acidic pH. A sigmoidal equation has been used to fit these kinetic data, yielding lag times and apparent rate constants for the growth of fibrils of β2M. These biochemical data indicate that macromolecular crowding significantly accelerated the nucleation step of P2M fibril formation. The above results suggest that crowded physiological environment could enhance the deposition of β2M amyloid fibrils in vivo, possibly by accelerating the formation of β2M amyloid fibrils and inhibiting depolymerization of β2M amyloid fibrils at the same time.
引文
梁毅.(2010),结构生物学,北京:科学出版社第二版.
    斯佩克特,戈德曼,莱因万德,黄培堂.(2001),细胞实验指南,北京:科学出版社.
    孙缅恩、杜冠华.晚期糖基化终产物的病理意义及其机制.中国药理学通报2002,18,246-249.
    邹承鲁.结构生物学的时代已经开始.科技导报.1995,04,7-11.
    周筠梅.蛋白质的错误折叠与疾病.生物化学与生物物理进展.2000,27,579-584.
    Amano, S.,Kaji, Y.,Oshika, T. Advanced glycation end products in human optic nerve head.BrJ.Ophthalmol,2001,85,52-55.
    Andronesi, O. C, von Bergen, M., Biernat, J., Seidel, K., Griesinger, C, Mandelkow, E., Baldus, M. Characterization of Alzheimer's-like paired helical filaments from the core domain of tau protein using solid-state NMR spectroscopy. J. Am. Chem. Soc. 2008,130,5922-5928.
    Anfinsen, C. B., Haber, E., Sela, M.& White, Jr. F. H. The kinetics of formation of native ribonuclease during oxidation of the reduced polypeptide chain. Proc. Natl. Acad. Sci. U. S. A.1961,47,1309-1314.
    Athanasou, N. A., Puddle, B. and Sallie, B. Highly sulfated glycosaminoglycans in articular cartilage and other tissues containing beta-2-microglobulin amyloid deposits. NephrolDial Transplant.1995,10,1672-1678.
    Baldwin, R.L. Protein folding,match speed and stability. Nature.1994,369,183-184.
    Bellotti, V., Gallieni, M., Giorgetti, S. and Brancaccio, D. Dynamic of beta-2-microglobulin fibril formation and reabsorption:the role of proteolysis. Semin. Dial 2001,14,117-122.
    Bellotti, V., Stoppini, M., Mangione, P., Sunde, M., Robinson, C, Asti, L., Brancaccio, D. and Ferri, G Beta-2-microglobulin can be refolded into a native state from ex vivo amyloid fibrils. Eur. J. Biochem.1998,258,61-67.
    Bhattacharjee, R. N., Park, K. S., Kumagai, Y., Okada, K., Yamamoto, M., Uematsu, S., Matsui, K., Kumar, H., Kawai, T., Iida, T.,Akira, S. VP1686, a Vibrio type III secretion protein, induces toll-like receptor-independent apoptosis in macrophage through NF-kB Inhibition. J. Biol. Chem.2006,281,36897-36904.
    Bjorkman, P. J., Saper, M. A., Samraoui, B., Bennett, W. S., Strominger, J. L. and Wiley, D. C. Structure of the human class I histocompatibility antigen, HLA-A2. Nature 1987,329,506-512.
    Carrio, M. M., Villaverde, A. Role of molecular chaperones in inclusion body formation. FEBS. Lett.2003,537,215-221.
    Chanard, J., Bindi, P., Lavaud, S., Toupance, O., Maheut, H., and Lacour, F. Carpal tunnel syndrome and type of dialysis membrane. B.m.j.1989,298,867-868.
    Chattopadhyay, M., Durazo, A., Sohn, S. H., Strong, C. D., Gralla, E. B., Whitelegge, J. P., and Valentine, J. S. Initiation and elongation in fibrillation of ALS-linked superoxide dismutase. Proc. Natl. Acad. Sci. USA.2008,105,18663-18668.
    Chen L, Wei Y, Wang X, He R. D-Ribosylated Tau forms globular aggregates with high cytotoxicity. Cell. Mol. Life. Sci.2009,66,2559-2571.
    Chen L, Wei Y, Wang X, He R. Ribosylation rapidly induces alpha-synuclein to form highly cytotoxic molten globules of advanced glycation end products. PloS. One.2010, 5,e9052.
    Chiti, F., Dobson, C. M. Protein misfolding, functional amyloid, and human disease. Annu. Rev. Biochem.2006,75,333-366.
    Cuervo, A. M., Stefanis, L., Fredenburg, R., Lansbury, P. T., Sulzer, D. Impaired degradation of mutant alpha-synuclein by chaperone-mediated autophagy. Science 2004,305,1292-1295.
    Danesh, F. and Ho, L. T. Dialysis-related amyloidosis:history and clinical manifestations. Semin. Dial.2001,14,80-85.
    Davison, A. M. beta 2-microglobulin and amyloidosis:who is at risk? Nephrol. Dial. Transplant.1995,10,48-51.
    Diaz-Nido, J., Wandosell, F., Avila, J. Glycosaminoglycans and beta-amyloid, prion and tau peptides in neurodegenerative diseases. Peptides 2002,23,1323-1332.
    Dill KA, Chan HS. From Levinthal to pathways to funnels. Nature Struct Biol.1997, 4,9-10.
    Dobo, A., Kaltashov, I. A. Detection of multiple protein conformational ensembles in solution via deconvolution of charge-state distributions in ESI MS. Anal. Chem.2001, 73,4763-4773.
    Dobson, C. M., Ellis, R. J. Protein folding and misfolding inside and outside the cell. EMBO J.1998,17,5251-5254.
    Dobson, C. M. The structural basis of protein folding and its links with human disease. Philos. Trans. R Soc. Lond. B Biol. Sci. 2001,356,133-145.
    Dobson, C. M. Protein folding and misfolding. Nature 2003,426,884-890.
    Dobson, C. M. Principles of protein folding, misfolding and aggregation. Semin. Cell Dev. Biol.2004,15,3-16.
    Dumoulin, M., Kumita, J. R., Dobson, C. M. Normal and aberrant biological self-assembly:insights from studies of human lysozyme and its amyloidogenic variants. Acc. Chem. Res.2006,39,603-610.
    Eichner, T., Kalverda, A. P., Thompson, G S., Homans, S. W., and Radford, S. E. Conformational conversion during amyloid formation at atomic resolution. Mol. Cell.2011,41,161-172.
    Ellis, R. J. Macromolecular crowding:an important but neglected aspect of the intracellular environment, Curr.Opin.Struct.Biol.2001,11,114-119.
    Engen, J. R., Smith, D. L. Investigating the higher order structure of proteins. Hydrogen exchange, proteolytic fragmentation, and mass spectrometry. Methods Mol. Biol.2000,146,95-112.
    Englander, S. W., Kallenbach, N. R. Hydrogen exchange and structural dynamics of proteins and nucleic acids. Q. Rev. Biophys.1983,16,521-655.
    Esposito, G, Michelutti, R.,Verdone, G,Viglino, P., Hernandez, H., Robinson, C.V., Amoresano, A., Dal Piaz, R, Monti, M., Pucci, P., Mangione, P., Stoppini, M., Merlini, G, Ferri, G and Bellotti,V. Removal of the N-terminal hexapeptide from human beta-2-microglobulin facilitates protein aggregation and fibril formation. Protein. Sci. 2000,9,831-845.
    Ferrari G, Yan CY, Greene LA. N-acetylcysteine (D-and L-stereoisomers) prevents apoptotic death of neuronal cells. J. Neurosci.1995,15,2857-2866.
    Floege, J. and Ehlerding, G Beta-2-microglobulin-associated amyloidosis. Nephron 1996,72,9-26.
    Fowler, D. M., Koulov, A. V., Alory-Jost, C, Marks, M. S., Balch, W. E., Kelly, J. W. Functional amyloid formation within mammalian tissue. PLoS. Biol.2006,4,e6.
    Fridman,E.A. Advanced glycosylated end products and hyperglycemia in the pathogenesis of diabetic complications. Diabetes.Care.1999,22,65-71.
    Fulton, A. B. How crowded is the cytoplasm? Cell 1982,30,345-347.
    Garcia-Garcia, M., Argiles, Gouin-Charnet, A., Durfort, M., Garcia-Valero, J. and Mourad, G. Impaired lysosomal processing of beta-2-microglobulin by infiltrating macrophages in dialysis amyloidosis. Kidney. Int.1999,55,899-906.
    Garlick RL, Mazer JS, Higgins PJ, Bunn HF. Characterization of glycosylated hemoglobins. Relevance to monitoring of diabetic control and analysis of other proteins. J. Clin. Invest.1983,71,1062-1072.
    Gejyo, F., Homma, N., Suzuki, Y. and Arakawa, M. Serum levels of beta-2-microglobulin as a new form of amyloid protein in patients undergoing long-term hemodialysis. N. Engl. J. Med.1986,314,585-586.
    Gharibyan, A. L., Zamotin, V., Yanamandra, K., Moskaleva, O. S., Margulis, B. A., Kostanyan, I. A., Morozova-Roche, L. A. Lysozyme amyloid oligomers and fibrils induce cellular death via different apoptotic/necrotic pathways. J. Mol. Biol.2007, 365,1337-1349.
    Giorgetti S, Raimondi S, Cassinelli S, Bucciantini M, Stefani M, Gregorini G, Albonico G, Moratti R, Montagna G, Stoppini M, Bellotti V.beta2-Microglobulin is potentially neurotoxic, but the blood brain barrier is likely to protect the brain from its toxicity. Nephrol. Dial. Transplant.2009,24,1176-1181.
    Giorgetti S, Raimondi S, Pagano K, Relini A, Bucciantini M, Corazza A, Fogolari F, Codutti L, Salmona M, Mangione P, Colombo L, De Luigi A, Porcari R, Gliozzi A, Stefani M, Esposito G, Bellotti V, Stoppini M Effect of tetracyclines on the dynamics of formation and destructuration of beta2-microglobulin amyloid fibrils. J. Biol. Chem. 2011,286,2121-2131.
    Goldsbury, C, J. Kistler, et al. Watching amyloid fibrils grow by time-lapse atomic force microscopy. J. Mol. Biol.1999,285,33-39.
    Gonzalez C, Farias G, Maccioni RB. Modification of tau to an Alzheimer's type protein interferes with its interaction with microtubules. Cell. Mol. Biol.1998, 44,1117-1127.
    Gorevic, P. D., Munoz, P. C., Casey, T. T., DiRaimondo, C. R., Stone, W. J., Prelli, F. C, Rodrigues, M. M., Poulik, M. D. and Frangione, B. Polymerization of intact beta-2-microglobulin in tissue causes amyloidosis in patients on chronic hemodialysis. Proc. Natl. Acad. Sci. U.S.A.1986,83,7908-7912.
    Gosal, W. S., A. H. Clark, et al. Fibrillar beta-lactoglobulin gels:Part 1-3. Fibril formation and structure. Biomacromolecules 2004,5,2408-3248.
    Gosal, W. S., Morten, I. J., Hewitt, E. W., Smith, D. A., Thomson, N. H., and Radford, S. E. Competing pathways determine fibril morphology in the self-assembly of beta2-microglobulin into amyloid.J. Mol. Biol.2005.351,850-864.
    Grandhee SK, Monnier VM.Mechanism of formation of the Maillard protein cross-link pentosidine. Glucose, fructose, and ascorbate as pentosidine precursors. J.BiolChem.1991,266,11649-11653.
    Hamada, D.& Dobson, C. M. A kinetic study of beta-lactoglobulin amyloid fibril formation promoted by urea. Protein. Sci.2002,11,2417-2426.
    Hatters, D. M., Minton, A. P., Howlett, G J. Macromolecular crowding accelerates amyloid formation by human apolipoprotein C-II. J. Biol. Chem.2002,277, 7824-7830.
    Hong, D. P., Gozu, M., Hasegawa, K., Naiki, H. and Goto, Y. Conformation of beta-2-microglobulin amyloid fibrils analyzed by reduction of the disulfide bond../. Biol. Chem.2002,277,21554-21560.
    James PE, Lang D, Tufnell-Barret T, Milsom AB, Frenneaux MP.Vasorelaxation by red blood cells and impairment in diabetes:reduced nitric oxide and oxygen delivery by glycated hemoglobin. Circ. Res.2004,94,976-983.
    Jimenez, J. L., Guijarro, J. I., Orlova, E., Zurdo, J., Dobson, C. M., Sunde, M., Saibil, H. R. Cryo-electron microscopy structure of an SH3 amyloid fibril and model of the molecular packing. EMBO. J.1999,18,815-821.
    Jones, S., Manning, J., Kad, N. M., and Radford, S. E. Amyloid-forming peptides from beta2-microglobulin-Insights into the mechanism of fibril formation in vitro. J. Mo.l Bio.l 2003,325,249-257.
    Jones, S., Smith, D. P. and Radford, S. E. Role of the N-and C-terminal strands of beta-2-microglobulin in amyloid formation at neutral pH. J.Mol. Biol.2003,330, 935-941.
    Kad, N. M, Myers, S. L., Smith, D. P., Smith, D. A., Radford, S. E. and Thomson, N. H. Hierarchical assembly of beta-2-microglobulin amyloid in vitro revealed by atomic force microscopy. J. Mol. Biol.2003,330,785-797.
    Kad, N. M., Thomson, N. H., Smith, D. P., Smith, D. A. and Radford, S. E. Beta-2-microglobulin and its deamidated variant, N17D form amyloid fibrils with a range of morphologies in vitro. J. Mol. Biol.2001313,559-571.
    Kazama, J. J., Yamamoto, S., Takahashi, N., Ito, Y, Maruyama, H., Narita, I., and Gejyo, F. Abeta-2M-amyloidosis and related bone diseases. J.Bone. Miner. Metab. 2006,24,182-184.
    Kelly, J. W. The alternative conformations of amyloidogenic proteins and their multi-step assembly pathways. Curr. Opin. Struct. Biol.1998,8,101-106.
    Kiffin, R., Christian, C, Knecht, E., Cuervo, A. M. Activation of chaperone-mediated autophagy during oxidative stress. Mol. Biol. Cell 2004,15,4829-4840.
    Kim, YJ, Nakatomi, R, Akagi, T, Hashikawa, T, Takahashi, R.Unsaturated fatty acids induce cytotoxic aggregate formation of amyotrophic lateral sclerosis-linked superoxide dismutase 1 mutants. J.Biol.Chem.2005,280,21515-21521.
    Konermann, L., Douglas, D. J. Acid-induced unfolding of cytochrome c at different methanol concentrations:electrospray ionization mass spectrometry specifically monitors changes in the tertiary structure. Biochemistry 1997,36,12296-12302.
    Konermann, L., Douglas, D. J. Equilibrium unfolding of proteins monitored by electrospray ionization mass spectrometry:distinguishing two-state from multi-state transitions. Rapid. Commun. Mass Spectrom.1998,12,435-442.
    Koo, E. H., Lansbury, P. T., Jr., Kelly, J. W. Amyloid diseases:abnormal protein aggregation in neurodegeneration. Proc. Natl. Acad. Sci. U. S. A.1999,96, 9989-9990.
    Kuhla, B., Haase, C, Flach, K., Luth, H. J., Arendt, T., and Munch, G. Effect of pseudophosphorylation and cross-linking by lipid peroxidation and advanced glycation end product precursors on tau aggregation and filament formation. J. Biol. Chem.2007,282,6984-6991.
    Kuznetsova, I. M., Stepanenko, O. V., Turoverov, K. K., Zhu, L., Zhou, J. M., Fink, A. L., Uversky, V. N. Unraveling multistate unfolding of rabbit muscle creatine kinase. Biochim. Biophys. Acta.2002,1596,138-155.
    Lashuel, H. A., Hartley, D., Petre, B. M., Walz, T. and Lansbury, P. T., Jr. Neurodegenerative disease:amyloid pores from pathogenic mutations. Nature 2002, 418,291.
    Ledesma MD, Bonay P, Colaco C, Avila J (1994) Analysis of microtubule-associated protein tau glycation in paired helical filaments. J.Biol. Chem 1994,269, 21614-21619.
    Lee, D., Park, C. W., Paik, S. R., and Choi, K. Y. The modification of alpha-synuclein by dicarbonyl compounds inhibits its fibril-forming process. Biochim. Biophys. Acta.2009,1794,421-430.
    Lee, Y. H., Chatani, E., Sasahara, K., Naiki, H., and Goto, Y A comprehensive model for packing and hydration for amyloid fibrils of beta2-microglobulin. J.Biol.Chem. 2009,284,2169-2175.
    Levinthal, C. Are there pathways for protein folding? J. Chim. Phys.1968,65,44-45.
    Liang, Y, Du, F., Sanglier, S., Zhou, B. R., Xia, Y, Van Dorsselaer, A., Maechling, C, Kilhoffer, M. C, and Haiech, J., Unfolding of rabbit muscle creatine kinase induced by acid. A study using electrospray ionization mass spectrometry, isothermal titration calorimetry, and fluorescence spectroscopy. J. Biol. Chem.,2003,278,30098-30105.
    Linke, R. P., Hampl, H., Bartel-Schwarze, S. and Eulitz, M. Beta-2-microglobulin, different fragments and polymers thereof in synovial amyloid in long-term hemodialysis. Biol. Chem. Hoppe. Seyler.1987,368,137-144.
    Majeski, A. E., Dice, J. F. Mechanisms of chaperone-mediated autophagy. Int. J. Biochem. Cell Biol.2004,36,2435-2444.
    Mastrangelo, I. A., M. Ahmed, et al. "High-resolution atomic force microscopy of soluble Abeta42 oligomers." J. Mol. Biol.2006,358,106-19.
    McParland, V. J., Kad, N. M., Kalverda, A. P., Brown, A., Kirwin-Jones, P., Hunter, M. G., Sunde, M. and Radford, S. E. Partially unfolded states of beta-2-microglobulin and amyloid formation in vitro. Biochemistry 2000,39,8735-8746.
    Mendez DL, Jensen RA, McElroy LA, Pena JM, Esquerra RM.The effect of non-enzymatic glycation on the unfolding of human serum albumin. Arch. Biochem. Biophys.2005,444,92-99.
    Minton, A. P. Influence of macromolecular crowding upon the stability and state of association of proteins:predictions and observations. J.Pharm. Sci.2005,94, 1668-1675.
    Miranker, A., Robinson, C. V., Radford, S. E., Aplin, R. T., Dobson, C. M. Detection of transient protein folding populations by mass spectrometry. Science 1993, 262,896-900.
    Miyata, T., Oda, O., Inagi, R., Iida, Y., Araki, N., Yamada, N., Horiuchi, S., Taniguchi, N., Maeda, K., and Kinoshita, T. beta 2-Microglobulin modified with advanced glycation end products is a major component of hemodialysis-associated amyloidosis. J. Clin. Invest.1993,92,1243-1252.
    Miyata, T., Inagi, R., Iida,Y., Sato, M.,Yamada, N., Oda, O., Maeda, K. and Seo, H. Involvement of beta-2-microglobulin modified with advanced glycation end products in the pathogenesis of hemodialysis-associated amyloidosis. Induction of human monocyte chemotaxis and macrophage secretion of tumor necrosis factor-alpha and interleukin-1. J. Clin. Invest.1994,93,521-528.
    Morgan, C. J., Gelfand, M., Atreya, C., and Miranker, A. D. Kidney dialysis-associated amyloidosis:a molecular role for copper in fiber formation. J. Mol. Biol.2001,309,339-345.
    Morita, H., Cai, Z., Shinzato, T., David, G., Mizutani, A., Itano, N., Habuchi, H., Yoneda, M., Maeda, K. and Kimata, K. Glycosaminoglycans in dialysis-related amyloidosis. Contrib. Nephrol.1995,112,83-89.
    Mosmann, T., Rapid colorimetric assay for cellular growth and survival:application to proliferation and cytotoxicity assays. J. Immunol. Methods.1983,65,55-63.
    Motomiya, Y., Ando, Y., Haraoka, K., Sun, X., Iwamoto, H., Uchimura, T. and Maruyama, I.. Circulating level of alpha2—macroglobulin/ beta-2-microglobulin complex in hemodialysis patients. Kidney. Int.2003,64,2244-2252.
    Mo, Z.Y., Zhu, Y.Z., Zhu, H.L., Fan, J.B., Chen, J., Liang, Y., Low micromolar zinc accelerates the fibrillization of human tau via bridging of Cys-291 and Cys-322, J. Biol. Chem.2009,284,34648-34657.
    Munishkina, L. A., Cooper, E. M., Uversky, V. N., and Fink, A. L. The effect of macromolecular crowding on protein aggregation and amyloid fibril formation, J.Mol.Recognit.2004,17,456-464.
    Myers, S. L., Jones, S., Jahn, T. R., Morten, I. J., Tennent, G A., Hewitt, E. W., and Radford, S. E. A systematic study of the effect of physiological factors on beta2-microglobulin amyloid formation at neutral pH. Biochemistry 2006,45, 2311-2321.
    Naiki, H., Hashimoto, N., Suzuki, S., Kimura, H., Nakakuki, K. and Gejyo, F. Establishment of a kinetic model of dialysis-related amyloid fibril extension in vitro. Amyloid-Int. J. Exp. Clin. Invest.1997,4,223-232.
    Naiki, H., Higuchi, K., Matsushima, K., Shimada, A., Chen, W. H., Hosokawa, M., Takeda, T. Fluorometric examination of tissue amyloid fibrils in murine senile amyloidosis:use of the fluorescent indicator, thioflavine T. Lab. Invest.1990,62, 768-773.
    Necula M, Kuret J. Pseudophosphorylation and glycation of Tau protein enhance but do not trigger fibrillization in vitro. J.Biol.Chem,2004,279,49694-49703.
    Nguyen-Simonnet, H., Vincent, C, Gauthier, C, Revillard, J. P. and Pellet, M. V. Turnover studies of human beta-2-microglobulin in the rat:evidence for a beta-2-microglobulin-binding plasma protein. Clin. Sci. (Lond) 1982,62,403-410.
    Nielsen, L., Khurana, R., Coats, A., Frokjaer, S., Brange, J., Vyas, S., Uversky, V. N., and Fink, A. L. Effect of environmental factors on the kinetics of insulin fibril formation:elucidation of the molecular mechanism. Biochemistry 2001,40, 6036-6046.
    Niwa, T. Beta2-Microglobulin dialysis amyloid and its formation:role of 3-deoxyglucosone and advanced glycation end products. Nephron 1997,76,373-391.
    Odani, H., Oyama, R., Titani, K., Ogawa, H. and Saito, A. Purification and complete amino acid sequence of novel beta-2-microglobulin. Biochem. Biophys. Res. Commun. 1990,168,1223-1229.
    Ohashi, K., Hara, M., Kawai, R., Ogura, Y, Honda, K., Nihei, H. and Mimura, N. Cervical discs are most susceptible to beta-2-microglobulin amyloid deposition in the vertebral column. Kidney. Int.1992,41,1646-1652.
    Ohishi, H., Skinner, M., Sato-Araki, N., Okuyama, T., Gejyo, F., Kimura, A., Cohen, A. S. and Schmid, K. Glycosaminoglycans of the hemodialysis-associated carpal synovial amyloid and of amyloid-rich tissues and fibrils of heart, liver, and spleen. Clin. Chem.1990,36,88-91.
    Ohhashi, Y., Hagihara, Y, Kozhukh, Q, Hosbino, M., Hasegawa, K., Yamaguchi, I., Naiki, H. and Goto, Y. The intrachain disulfide bond of beta-2-microglobulin is not essential for the immunoglobulin fold at neutral pH, but is essential for amyloid fibril formation at acidic pH. J. Biochem (Tokyo).2002.131,45-52.
    Olivieri G, Baysang G, Meier F, Muller-Spahn F, Stahelin HB, Brockhaus M, Brack C.N-acetyl-L-cysteine protects SHSY5Y neuroblastoma cells from oxidative stress and cell cytotoxicity:effects on beta-amyloid secretion and tau phosphorylation. J.Neurochem.2001,76,224-233.
    Ono, K. and Uchino, F. Formation of amyloid-like substance from beta-2-microglobulin in vitro. Role of serum amyloid P component:a preliminary study. Nephron 1994,66,404-407.
    Ozawa, D., Yagi, H., Ban, T., Kameda, A., Kawakami, T., Naiki, H., and Goto, Y. Destruction of amyloid fibrils of a beta2-microglobulin fragment by laser beam irradiation. J.Biol.Chem.2009,284,1009-1017.
    Pamer, E. and Cresswell, P. Mechanisms of MHC class I-restricted antigen processing. Annu. Rev. Immunol.1998,16,323-358.
    Pavone B, Bucci S, Sirolli V, Merlini G, Del Boccio P, Di Rienzo M, Felaco P, Amoroso L, Sacchetta P, Di Ilio C, Federici G, Urbani A, Bonomini M. Beta2-microglobulin causes abnormal phosphatidylserine exposure in human red blood cells. Mol. Biosyst.2011,7,651-658.
    Pepys, M. B., Hawkins, P. N., Booth, D. R., Vigushin, D. M., Tennent, G A., Soutar, A. K., Totty, N., Nguyen, O., Blake, C. C, Terry, C. J., et al. Human lysozyme gene mutations cause hereditary systemic amyloidosis. Nature 1993,362,553-557.
    Pepys, M. B., Herbert, J., Hutchinson, W. L., Tennent, G A., Lachmann, H. J., Gallimore, J. R., Lovat, L. B., Bartfai, T., Alanine, A., Hertel, C., Hoffmann, T., Jakob-Roetne, R., Norcross, R. D., Kemp, J. A., Yamamura, K., Suzuki, M., Taylor, G W., Murray, S., Thompson, D., Purvis, A., Kolstoe, S., Wood, S. P., Hawkins, P. N. Targeted pharmacological depletion of serum amyloid P component for treatment of human amyloidosis. Nature 2002,417,254-259.
    Platt, G W., McParland, V. J., Kalverda, A. P., Homans, S. W. and Radford, S. E. Dynamics in the unfolded state of beta-2-microglobulin studied by NMR. J. Mol. Biol. 2004,346,279-294.
    Pramanik, B. N., Bartner, P. L., Mirza, U. A., Liu, Y. H., Ganguly, A. K. Electrospray ionization mass spectrometry for the study of non-covalent complexes:an emerging technology. J. Mass Spectrom.1998,33,911-920.
    Radford, S. E., Dobson, C. M. From computer simulations to human disease: emerging themes in protein folding. Cell 1999,97,291-298.
    Raj, D.S.C., Choudhury, D., Welbounme, T.C. Advanced Glycation End Products:A Nephrologist's perspective. American.Journal.of Kindery. Diseases.2000,35, 365-380.
    Ramstrom, H., Sanglier, S., Leize-Wagner, E., Philippe, C, Van Dorsselaer, A., Haiech, J. Properties and regulation of the bifunctional enzyme HPr kinase/phosphatase in Bacillus subtilis. J. Biol. Chem.2003,278,1174-1185.
    Relini, A., Canale, C., De Stefano, S., Rolandi, R., Giorgetti, S., Stoppini, M., Rossi, A., Fogolari, F., Corazza, A., Esposito, G, Gliozzi, A., and Bellotti, V. Collagen plays an active role in the aggregation of beta2-microglobulin under physiopathological conditions of dialysis-related amyloidosis. J.Biol.Chem.2006,281,16521-16529.
    Relini, A., De Stefano, S., Torrassa, S., Cavalleri, O., Rolandi, R., Gliozzi, A., Giorgetti, S., Raimondi, S., Marchese, L., Verga, L., Rossi, A., Stoppini, M., and Bellotti, V. Heparin strongly enhances the formation of beta2-microglobulin amyloid fibrils in the presence of type I collagen. J.Biol.Chem.2008,283,4912-4920.
    Riccardi, C, Nicoletti, I., Analysis of apoptosis by propidium iodide staining and flow cytometry. Nat. Protoc.2006,1,1458-1461.
    Rowland, L.P. and Shneider, N.A. Amyotrophic lateral sclerosis. N. Engl. J. Med. 2001,344,1688-700.
    Ross, C. A., Poirier, M. A. Opinion:What is the role of protein aggregation in neurodegeneration? Nat. Rev. Mol. Cell Biol.2005,6,891-898.
    Ruggiero-Lopez,D., Lecomte,M., Moinet, G Reaction of metformin with dicarbonyl compounds, possible implication in the inhibition of advanced glycation end product formation. Biochemical.Pharmacology.1999,58,1765-1773.
    Rumbley,J.,Hoang,L.and Englander,S.W. An amino acid code for protein folding. Proc.Natl.Acad.Sci.U.S.A.2001,98,105-112.
    Sawaya, M. R., Sambashivan, S., Nelson, R., Ivanova, M. L, Sievers, S. A., Apostol, M. I., Thompson, M. J., Balbirnie, M., Wiltzius, J. J., McFarlane, H. T., Madsen, A., Riekel, C, Eisenberg, D. Atomic structures of amyloid cross-beta spines reveal varied steric zippers. Nature 2007,447,453-457.
    Saper, M. A., Bjorkman, P. J. and Wiley, D. C. Refined structure of the human histocompatibility antigen HLA-A2 at 2.6 A resolution. J. Mol. Biol.1991,219, 277-319.
    Sebekova, K., Blazicek, P., Syrova,D. Circulating advanced glycation end product levers in rats rapidly increase with acute renal failure. Kidney. Int.2001,59,58-62.
    Shaklai N, Garlick RL, Bunn HF (1984) Nonenzymatic glycosylation of human serum albumin alters its conformation and function. J.Biol.Chem.1984,259,3812-3817.
    Shibata, N., Hirano, A., Kato, S., Nagai, R., Horiuchi, S., Komori, T., Umahara, T., Asayama, K., and Kobayashi, M. Advanced glycation endproducts are deposited in neuronal hyaline inclusions:a study on familial amyotrophic lateral sclerosis with superoxide dismutase-1 mutation. Acta. Neuropathol.1999,97,240-246.
    Shtilerman, M. D., Ding, T. T., and Lansbury, P. T., Jr. Molecular crowding accelerates fibrillization of alpha-synuclein:could an increase in the cytoplasmic protein concentration induce Parkinson's disease? Biochemistry 2002,41,3855-3860.
    Silveira JR, Raymond GJ, Hughson AG, Race RE, Sim VL, Hayes SF, Caughey B.The most infectious prion protein particles. Nature 2005,437,257-261.
    Simoneau S, Rezaei H, Sales N, Kaiser-Schulz G, Lefebvre-Roque M, Vidal C, Fournier JG, Comte J, Wopfher F, Grosclaude J, Schatzl H, Lasmezas CI.In vitro and in vivo neurotoxicity of prion protein oligomers. PLoS. Pathog.2007,3,e125.
    Smith, D. P. and Radford, S. E. Role of the single disulphide bond of beta-2-microglobulin in amyloidosis in vitro.Protein. Sci.2001,10,1775-1784.
    Smith, R. D., Loo, J. A., Edmonds, C. G, Barinaga, C. J.& Udseth, H. R. New Developments in Biochemical Mass Spectrometry:Electrospray Ionization. Anal. Chem.1990,62,882-899.
    Snow, A. D., Bramson, R., Mar, H., Wight, T. N. and Kisilevsky, R. A temporal and ultrastructural relationship between heparan sulfate proteoglycans and AA amyloid in experimental amyloidosis. J. Histochem. Cytochem.1991,39,1321-1330.
    Smith, D. P., and Radford, S. E. Role of the single disulphide bond of beta(2)-microglobulin in amyloidosis in vitro. Protein. Sci.2001,10,1775-1784.
    Sogbein, O. O., Simmons, D. A., Konermann, L. Effects of pH on the kinetic reaction mechanism of myoglobin unfolding studied by time-resolved electrospray ionization mass spectrometry. J. Am. Soc. Mass Spectrom.2000,11,312-319.
    Stefani, M., Dobson, C. M. Protein aggregation and aggregate toxicity:new insights into protein folding, misfolding diseases and biological evolution. J. Mol. Med.2003, 81,678-699.
    Stefani M. Biochemical and biophysical features of both oligomer/fibril and cell membrane in amyloid cytotoxicity. Febs. J.2007,277,4602-4613.
    Stefani M. Structural polymorphism of amyloid oligomers and fibrils underlies different fibrillization pathways:immunogenicity and cytotoxicity. Curr.Protein. Pept. Sri.2010,11,343-354.
    Sundin, D. P., Cohen, M, Dahl, R., Falk, S. and Molitoris, B. A. Characterization of the beta-2-microglobulin endocytic pathway in rat proximal tubule cells. Am. J. Physiol.1994,267, F380-389.
    Takahashi,M., Oikawa,M., Nagano,A. Effect of age and menopause on serum concentrations of pentosidine.and advanced glycation end product. J.Gerontology: Medical.Science.2000,55,137-140.
    Tan, S. Y, Pepys, M. B. Amyloidosis. Histopathology 1994,25,403-414.
    Taylor, R. C, Cullen, S. P., Martin, S. J. Apoptosis:controlled demolition at the cellular level. Nat. Rev. Mol. Cell Biol.2008,9,231-241.
    Thomas, P. J., Qu, B. H., Pedersen, P. L. Defective protein folding as a basis of human disease. Trends Biochem. Sci.1995,20,456-459.
    Uversky, V. N., E, M. C., Bower, K. S., Li, J., and Fink, A. L. Accelerated alpha-synuclein fibrillation in crowded milieu, FEBS.Lett.2002,515,99-103.
    van den Berg, B., Ellis, R. J., and Dobson, C. M. Effects of macromolecular crowding on protein folding and aggregation. Embo. J.1999,18,6927-6933.
    van den Berg, B., Wain, R., Dobson, C. M., and Ellis, R. J. Macromolecular crowding perturbs protein refolding kinetics:implications for folding inside the cell. Embo. J. 2000,19,3870-3875.
    van Horssen, J., Wilhelmus, M. M, Heljasvaara, R., Pihlajaniemi, T., Wesseling, P., de Waal, R. M., Verbeek, M. M. Collagen ⅩⅧ:a novel heparan sulfate proteoglycan associated with vascular amyloid depositions and senile plaques in Alzheimer's disease brains. Brain Pathol.2002,12,456-462.
    van Ypersele de Strihou, C., Jadoul, M., Malghem, J., Maldague, B., and Jamart, J. Effect of dialysis membrane and patient's age on signs of dialysis-related amyloidosis. The Working Party on Dialysis Amyloidosis. Kidney.Int.1991,39,1012-1019.
    Vermes, I., Haanen, C., Steffens-Nakken, H., Reutelingsperger, C. A novel assay for apoptosis:flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescein labelled annexin V. J. Immunol. Methods.1995,184, 39-51.
    Vitek MP, Bhattacharya K, Glendening JM, Stopa E, Vlassara H, Bucala R, Manogue K, Cerami A. Advanced glycation end products contribute to amyloidosis in Alzheimer disease. Proc. Natl. Acad. Sci. U.S.A.1994,91,4766-4770.
    Warrick, J. M., Chan, H. Y., Gray-Board, G. L., Chai, Y., Paulson, H. L., Bonini, N. M. Suppression of polyglutamine-mediated neurodegeneration in Drosophila by the molecular chaperone HSP70. Nat. Genet.1999,23,425-428.
    Wei Y, Chen L, Chen J, Ge L, He RQ.Rapid glycation with D-ribose induces globular amyloid-like aggregations of BSA with high cytotoxicity to SH-SY5Y cells. BMC. Cell.Biol.2009,10,1-15.
    White, A. A. and Panjabi, M. M. The basic kinematics of the human spine. A review of past and current knowledge.Spine 1978,3,12-20.
    Winzor, D. J., and Wills, P. R. Molecular crowding effects of linear polymers in protein solutions. Biophys. Chem.2006,119,186-195.
    Wolynes PG, Onuchic JN, Thirumalai D. Navigating the folding routes. Science 1995, 267,1619-23.
    Xue WF, Hellewell AL, Gosal WS, Homans SW, Hewitt EW, Radford SE.Fibril fragmentation enhances amyloid cytotoxicity. J. Biol. Chem.2009,284,34272-34282.
    Yamaguchi, I., Hasegawa, K., Takahashi, N., Gejyo, F. and Naiki, H. Apolipoprotein E inhibits the depolymerization of beta-2-microglobulin-related amyloid fibrils at a neutral pH. Biochemistry 2001,40,8499-8507.
    Yamamoto, S., Hasegawa, K., Yamaguchi, I., Tsutsumi, S., Kardos, J., Goto, Y, Gejyo, F. and Naiki, H. Low concentrations of sodium dodecyl sulfate induce the extension of beta-2-microglobulin-related amyloid fibrils at a neutral pH. Biochemistry.2004b, 43,11075-11082.
    Yamamoto, S., Yamaguchi, I., Hasegawa, K., Tsutsumi, S., Goto, Y, Gejyo, F. and Naiki, H. Glycosaminoglycans enhance the trifluoroethanol-induced extension of beta-2-microglobulin-related amyloid fibrils at a neutral pH. J.Am. Soc. Nephrol. 2004a,15,126-133.
    Zhang, Z., Post, C. B., Smith, D. L. Amide hydrogen exchange determined by mass spectrometry:application to rabbit muscle aldolase. Biochemistry 1996,35,779-791
    Zhang, Z., Smith, D. L. Determination of amide hydrogen exchange by mass spectrometry:a new tool for protein structure elucidation. Protein Sci.1993,2, 522-531.
    Zhou, Z., Fan, J.B., Zhu, H.L., F. Shewmaker, Yan, X., Chen, X., Chen, J., Xiao, GF., Guo, L., Liang, Y, Crowded cell-like environment accelerates the nucleation step of amyloidogenic protein misfolding, J. Biol. Chem.2009,284,30148-30158.
    Zimmerman, S. B., and Minton, A. P. Macromolecular crowding:biochemical, biophysical, and physiological consequences. Annu.Rev.Biophys.Biomol.Struct. 1993,22,27-65.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700