用户名: 密码: 验证码:
肌原纤维蛋白的氧化程度对谷氨酰胺转移酶催化交联作用的影响及其机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微生物谷氨酰胺转移酶(MTG)可催化蛋白中谷氨酰胺和赖氨酸残基发生酰基转移反应,使蛋白之间发生交联,进而改善蛋白的功能性质,现已被应用于肉制品加工中以提高产品的品质。然而,MTG在实际应用中存在产品质量不稳定的问题。鉴于氧化引起的蛋白结构变化可能改变MTG可利用底物的含量(例如氧化引起的结构展开会暴露更多的谷氨酰胺和赖氨酸底物),本研究假设羟自由基氧化能够改变MTG催化交联反应,从而改变肌原纤维蛋白(MFP)的功能性质。以期通过探索蛋白氧化与MTG交联反应之间的关系,为肉制品加工品质改善提供理论依据。
     本研究以猪肌原纤维蛋白(MFP)或肌球蛋白为研究对象,经羟自由基产生体系(FeCl3/抗坏血酸/H_2O_2,pH6.25)氧化后进行MTG交联(E:S=1:20),观察MFP或肌球蛋白的氧化对MTG交联反应的影响。主要研究内容包括:(1)氧化引起的MFP结构变化对MTG催化交联程度的影响;(2)MFP氧化对MTG催化交联后二级结构及交联部位(肌球蛋白亚片段,如S1、S2、Rod、HMM和LMM)的影响;(3)肌球蛋白氧化对MTG交联后异肽键(-CONH-)形成以及特定交联位点的影响;(4)在影响肉制品加工的常见因素条件(不同盐浓度和温度)下,MFP的氧化对MTG交联反应程度和功能性质的影响。
     通过研究在高盐条件(0.6mol/L NaCl)下氧化引起的MFP结构变化与MTG交联程度之间的关系,发现蛋白氧化过程中结构展开、蛋白聚集和氨基酸修饰是同时存在的,且MTG的交联程度受优势方的影响。相对于未氧化MFP的交联程度11.6%,轻度氧化MFP(1mmol/L H_2O_2)中结构展开占优势,暴露更多可利用的谷氨酰胺和赖氨酸底物,导致交联程度提高至27.6%;而深度氧化MFP(5和10mmol/LH_2O_2)中蛋白聚集和氨基酸修饰占优势,使得部分可利用的谷氨酰胺和赖氨酸残基被遮蔽或被氧化,导致交联程度低至9.6%。
     通过CD和FTIR光谱进一步测定了在高盐条件(0.6mol/L NaCl)下MFP氧化对MTG催化交联后二级结构的影响,发现氧化和MTG交联均导致MFP解螺旋,MTG交联引起的ɑ-螺旋变化与氧化程度相关:轻度氧化(0.1–1mmol/LH_2O_2)>未氧化>深度氧化(5–20mmol/L H_2O_2)。同时借助胰凝乳蛋白酶将MFP中的肌球蛋白水解为不同片段(S1/Rod和HMM/LMM),观察氧化对MTG交联部位的影响。结果表明,对于未氧化肌球蛋白,MTG主要交联部位为S1;对于因轻度氧化而结构展开的肌球蛋白(0.1–1mmol/L H_2O_2),所有片段的交联概率均增加,但S1仍是重点交联部位;对于因过度氧化(5–20mmol/LH_2O_2)而聚集的肌球蛋白,S2是重点交联部位。
     将MFP中的主要蛋白—肌球蛋白提纯,观察高盐条件下肌球蛋白氧化对MTG交联程度、交联部位和交联位点的影响,并与MFP进行比较。ε(γ-G)L测定结果表明轻度氧化肌球蛋白(1mmol/L H_2O_2)的反应程度为87.6%,显著高于(P<0.05)未氧化蛋白的64.7%和过度氧化蛋白(200mmol/L H_2O_2)的33.8%,交联程度的趋势与MFP相似。氧化肌球蛋白的交联部位与MFP也大体相似:对于未氧化肌球蛋白,交联部位主要为S1;对于轻度氧化肌球蛋白,Rod和S1交联概率均增加,S1仍是重点交联部位;过度氧化肌球蛋白因无法严格水解为特定片段(S1/Rod或HMM/LMM)而无法判断其交联部位。此外,与过度氧化的肌球蛋白不同的是,未氧化和轻度氧化的肌球蛋白经MTG交联后会生成不易水解为S1和Rod的聚集物。通过MALDI-TOF/TOF MS找到了该聚集物中两个可能的交联位点:由肌球蛋白头部789–794(IQAQAR)肽段中的790谷氨酰胺残基与800–804(IEFKK)肽段中的803赖氨酸残基交联所形成的IQ(IEFKK)AQAR,以及由肌球蛋白头部560–567(SNNFQKPR)肽段中的565赖氨酸残基与肌球蛋白尾部1872–1875(LQLK)肽段中的1872谷氨酰胺残基交联所形成的SNNFQK(LQLK)PR。
     将MFP在三种盐浓度(0.15、0.45和0.6mol/L NaCl)下进行氧化,随后在三种温度(4、15和30°C)下进行交联,观察在常见的肉制品加工条件下氧化对MTG交联反应以及后续凝胶性能的影响。发现在上述所有条件下,氧化MFP的交联程度几乎均高于未氧化MFP,且随着盐浓度和温度的增加而升高。例如,15°C高盐2h氧化样品的交联程度为46.8%,高于相同条件下未氧化样品的31.6%,远远高于15°C低盐2h氧化样品的27.2%以及4°C高盐2h氧化样品的18.2%。MFP的氧化对MTG交联后凝胶性能的影响主要通过凝胶强度和动态流变学进行测定,结果表明,高盐氧化样品经4°CMTG处理后凝胶强度的增加量(92.6%–120.3%)大于未氧化样品(79.0%),然而提高温度等过度交联条件反而不利于凝胶网络结构的形成。在两种交联温度(4和15°C)下,低盐氧化样品经MTG处理后凝胶强度的增加量均小于未氧化样品。动态流变学测定结果表明两种盐浓度的氧化MFP经MTG处理后最终储能模量的变化幅度均大于未氧化MFP的。可见,高盐MFP的氧化是一个辅助MTG提高蛋白功能性质的有效手段。
     总之,本课题研究了MFP氧化对MTG催化交联反应(交联程度、交联部位和交联位点)的影响,并通过MFP的凝胶性能进行了验证,阐明了MFP氧化对MTG交联的影响机理,为解决MTG实际应用中出现的问题提供了理论依据,以利于制定应对策略。
Microbial transglutaminase (MTG) has been applied cmmerically to improve the texturalproperties of meat products for its catalysis of protein cross-linking through acyl transferreaction between glutamine and lysine residues. However, the quality of meat productsprocessed with MTG is often found variable. Based on the structural changes of MFP induedby oxidation may alter the content of avaliable MTG substrates (e.g. protein unfoldinginduced by oxidation can cause the exposure of more glutamine and lysine residues), ahopothesis that radical stress affects the cross-linking catalysis of MTG was tested. Theultimate goal of the study is to produce scientific evidence that supports the understanding ofthe relationship between protein structural modification and MTG-mediated cross-linking foroptimized quality of processed meats.
     Myofibrillar protein (MFP) and myosin were oxidatively stressed in a hydroxylradical-generating system (FeCl3/ascorbic acid/H_2O_2, pH6.25) with different H_2O_2concentrations and then subjected to MTG (E:S=1:20). With this general oxidizing system,four individual experiments were performed to investigate:(1) effects of MFP oxidation onthe cross-linking degree of MTG catalysis;(2) effects of MFP oxidation on secondarystructure and cross-linking location (myosin subfragments as S1, S2, rod, LMM, HMM) inMFP after MTG catalysis;(3) effects of myosin oxidation on isopeptide bond (-CONH-)formation and the specific mass spectrometry-verified cross-linking sites after MTG catalysis;(4) effects of MFP oxidation on MTG cross-linking degree and functionality of MFP undercommon factors influencing the manufacture of meat products (different salt concentrationsand temperatures).
     The relationship between structure changes of oxidized MFP and MTG cross-linkingdegree at high salt concentration (0.6mol/L NaCl) was studied. The results showed thatprotein unfolding, polymerization and the modification of amino acid residues coexistedduring oxidation. The degree of MTG cross-linking was dependent on dominant factors. Fornonoxidized MFP, the cross-linking degree was11.6%. For mildly oxidized MFP (1mmol/LH_2O_2), protein unfolding was the main facor, which promoted MTG cross-linking reactionbecause of the exposure of more available glutamine and lysine substrates.The cross-linkingdegree of mildly oxidized MFP was improved to27.6%. For deeply oxidized MFP (5and10mmol/L H_2O_2), polymerization and the modification of amino acid residues dominated, whichblocked MTG cross-linking reaction because of reburying or modifying of many availableglutamine and lysine residues. The cross-linking degree of deeply oxidized MFP was as lowas9.6%.
     The effect of protein oxidation at high salt concentration (0.6mol/L NaCl) on thesecondary structure of MFP when treated with MTG was determined by CD and FTIR. Theuncoiling of MFP occurred when subjected to either oxidation or MTG cross-linking. Thechange of ɑ-helix induced by MTG was related to oxidation degree: mild oxidation (0.1–1mmol/L H_2O_2)>nonoxidation>advanced oxidation (5–20mmol/L H_2O_2). The influence ofprotein oxidation on the cross-linking location of MTG was studied using chymotrypsinthrough digesting myosin into different fragments (S1/Rod and HMM/LMM). The results indicated that the main cross-linking location of nonoxidized myosin was S1. For unfoldedmyosin caused by mild oxitaion (0.1–1mmol/L H_2O_2), every fragment was the target of MTG,especially S1. For polymerized myosin caused by excessive oxidation (5–20mmol/L H_2O_2),S2played an important role in MTG cross-linking.
     Myosin was purified to study the cross-linking degree, cross-linking location andcross-linking sites of differently oxidized myosin and to compare with those of MFP. Theε(γ-G)L result showed that the cross-linking degree of mildly oxidized myosin (1mmol/LH_2O_2) was87.6%, which was significantly higher (P<0.05) than nonoxidized (64.7%) andexcessively oxidized myosin (200mmol/L H_2O_2,33.8%). The trend of cross-linking degreewas similar with that of MFP. The cross-linking location of oxidized myosin was also similarwith that of MFP: for nonoxidized myosin, the main cross-linking position was S1; for mildlyoxidized myosin, both Rod and S1were easily oxidized, in which S1was the main one; thecross-linking location of excessively oxidized myosin can not be obtained since it can not bedigested strictly into specific fragments (S1/Rod or HMM/LMM). Unlike excessivelyoxidized myosin, an aggregate which can not be digested into S1and Rod was founed innonoxidized and mildly oxidized myosin. Two possible cross-linked peptides were founed inthis aggregate by MALDI-TOF/TOF MS: IQ(IEFKK)AQAR was formed throughcross-linking between the790glutamine of peptide789–794(IQAQAR) and the803lysine ofpeptide800–804(IEFKK) in myosin head; SNNFQK(LQLK)PR was formed throughcross-linking between the565lysine of peptide560–567(SNNFQKPR) in myosin head andthe1872glutamine of peptide1872–1875(LQLK) in myosin tail.
     MFP was oxidized at three salt concentrations (0.15,0.45and0.6mol/L NaCl) andsubsequently cross-linked at three temperatures (4,15and30°C), and then the effect ofprotein oxidation on the MTG cross-linking and gelation was studied. At all saltconcentrations and temperatures, the cross-linking degree of almost all oxidized MFP washigher than the nonoxidized, and increased with elevated salt concentration and temperature.For example, the cross-linking degree of2h-oxidized sample at0.6mol/L NaCl was46.8%when treated with MTG at15°C, higher than the31.6%of nonoxidized sample. It was alsohigher than the27.2%of the corresponding sample at0.15mol/L NaCl and15°C as well asthe18.2%of the corresponding sample at0.6mol/L NaCl and4°C. The effect of proteinoxidation on the gelation of MFP when treated with MTG was determined by gel strength anddynamic rheology. Gels formed by oxidized MFP at0.6mol/L NaCl (92.6%–120.3%) werenotably stronger (P<0.05) than that of nonoxidized protein gels (79.0%) when treated withMTG at4°C. However, excessive cross-linking treatment (e.g. improving temperature) washarmful to the network structure of gels. The improvement of gel strength caused by MTGcross-linking at4and15°C in MFP oxidized at0.15M NaCl was lower than the nonoxidized.The final storage modulus change of oxidized MFP at both salt concentrations when treatedwith MTG was higher than the nonoxidized. Therefore, the oxidation of MFP at high saltconcentration was a good method to improve the quality of meat products when treated withMTG.
     In summary, the effect of oxidation on the MTG-catalyzed of MFP and myosincross-linking (degree, location, and site) was studied, and then verified by protein gelation. The mechanism of MTG catalysis influenced by protein oxidation was clarified, whichprovided a theoretical basis to explain the problems occurring in situ and to develop strategiesto over the problem when MTG is used as a meat processing aid.
引文
1.孟彬,王小乔,张静,等.中国肉制品发展趋势[J].肉类工业,2011,364(8):6-8.
    2. Ziegler G R, Foegeding E A. The gelation of proteins[J]. Adv Food Nutr Res,1990,34:231-237.
    3. Kuraishi C, Yamazaki K, Susa Y. Transglutaminase: its utilization in the food industry[J]. Food Res Int,2001,17(2):221-246.
    4. Yokoyama K, Nio N, Kikuchi Y. Properties and applications of microbial transglutaminase[J]. ApplMicrobiol Biotechnol,2004,64(4):447-454.
    5. Chikuni K, Tanabe R, Muroya S, et al. Comparative sequence analysis of four myosin heavy chainisoforms expressed in porcine skeletal muscles: sequencing and characterization of the porcine myosinheavy chain slow isoform[J]. Anim Sci J,2002,73(4):257-262.
    6. Ahhmed A M, Kawahara S, Ohta K, et al. Differentiation in improvements of gel strength in chicken andbeef sausages induced by transglutaminase[J]. Meat Sci,2007,6(3):455-462.
    7. Parkington J K, Xiong Y L, Blanchard S P, et al. Chemical and functional properties of oxidativelymodified beef heart surimi stored at2°C[J]. J Food Sci,2000,65:428-433.
    8. Baron C P, Kjaersg rd I V H, Jessen F, et al. Protein and lipid oxidation during frozen storage of rainbowtrout (Oncorhynchus mykiss)[J]. J Agric Food Chem,2007,55:8118-8125.
    9. Santé-Lhoutellier V, Engel E, Aubry L, et al. Effect of animal (lamb) diet and meat storage on myofibrillarprotein oxidation and in vitro digestibility[J]. Meat Sci,2008,79:777-783.
    10. Xiong Y L. Structure function relationships of muscle proteins[C]. In: Damodaran S, Paraf A, Eds. FoodProteins and Their Applications. New York: Marcel Dekker,1997.341-392.
    11. Yates L D, Greaser M L, Huxley H E. Quatitative determination of myosin and actin in rabbit skeletalmuscle[J]. J Mol Biol,1983,168(1):123-141.
    12. Choi Y M, Kim B C.2009. Muscle fiber characteristics, myofibrillar protein isoforms, and meat quality [J].Livestock Sci,122(2-3):105-118.
    13. Strehler E E, Strehler-Page M A, Perriard J C, et al. Complete nucleotide and encoded amino acid sequenceof a mammalian myosin heavy chain gene: Evidence against intron-dependent evolution of the rod[J]. JMol Biol,1986,190:291-317.
    14. Galluzzo S J, Regenstein J M. Role of chicken breast muscle proteins in meat emulsion formation: myosin,actin and synthetic actomyosin[J]. J Food Sci,1978,43(6):1761-1765.
    15.杨速攀,彭增起.肌原纤维蛋白凝胶研究进展[J].河北农业大学学报,2003,26(5):160-162-166.
    16. Samejima K, Ishioroshi M, Yasui T. Relative roles of the head and tail portions of the molecule inheat-induced gelation of myosin[J]. J Food Sci,1981,46:1412-1418.
    17. Yamamoto K. Electron microscopy of thermal aggregation of myosin[J]. J Biochem,1990,108:896-898.
    18. Tazawa T, Kato S, Katoh T, et al. Role of neck region in the thermal aggregation of myosin[J]. J AgricFood Chem,2002,50:196-202.
    19. Sharp A, Offer G. The mechanism of formation of gels from myosin molecules[J]. J Sci Food Agric,1992,58:63-73.
    20. Chan J K, Gill T A, Paulson A T. Thermal aggregation of myosin subfragments from cod and herring[J]. JFood Sci,1993,58(5):1057-1061.
    21. Xiong Y L, Blanchard S P, Ooizumi T, et al. Hydroxyl radical and ferryl-generating systems promote gelnetwork formation of myofibrillar protein[J]. J Food Sci,2010,75:215-221.
    22. Smyth A B, Smith D M, O’Neill E Disulfide bonds influence the heat-induced gel properties of chickenbreast muscle myosin[J]. J Food Sci,1998,63:584-588.
    23. Ando H, Adachi M, Umeda K, et al. Purification and characteristics of a novel transglutaminase derivedfrom microorganisms[J]. Biol Chem,1989,53:2613-2617.
    24. Ho M L, Leu S Z, Hsieh J F, et al. Technical approach to simplify the purification method andcharacterization of microbial transglutaminase produced from St. ladakanum[J]. J Food Sci,2000,65:76-80.
    25. Suzuki S, Izawa Y, Kobayashi K, et al. Purification and characterization of novel transglutaminase fromBacillus subtilis spores[J]. Biosci Biotechnol Biochem,2000,64:2344-2351.
    26. de Barros Soares L H, Assmann F, Záchia Ayub M A. Purification and properties of a transglutaminaseproduced by a Bacillus circulans strain isolated from the Amazon environment[J]. Biotechnol ApplBiochem,2003,37:295-299.
    27. Taguchi S, Arakawa K, Yokoyama K, et al. Overexpression and purification of microbialpro-transglutaminase from Streptomyces cinnamoneum and in vitro processing by Streptomycesalbogriseolus proteases[J]. J Biosci Bioeng,2002,94:478-481.
    28. Kikuchi K, Date M, Yokoyama K, et al. Secretion of active-form Streptoverticillium mobaraensetransglutaminase by Corynebacterium glutamicum: processing of the pro-transglutaminase by a cosecretedsubtilisin-like protease from Streptomyces albogriseolus[J]. Appl Environ Microbiol,2003,69:358-366.
    29. Date M, Yokoyama K, Umezawa Y, et al. High level expression of Streptomyces mobaraensistransglutaminase in Corynebacterium glutamicum using a chimeric pro-region from Streptomycescinnamoneus transglutaminase[J]. J Biotechnol,2004,110:219-226.
    30. Lin Y S, Chao M L, Liu C H, et al. Cloning and expression of the transglutaminase gene fromStreptoverticillium ladakanum in Streptomyces lividans[J]. Process Biochem,2004,39:591-598.
    31. Motoki M,Seguro K. Transglutaminase and its use for food processing[J]. Trends Food Sci Technol,1998,9(5):204-210.
    32. Cui L, Zhang D, Huang L, et al. Stabilization of a new microbial transglutaminase from Streptomyceshygroscopicus WSH03-13by spray drying[J]. Process Biochem,2006,41(6):1427-1431.
    33. Zhang D, Wang M, Do G, et al. Surfactant protein of the Streptomyces subtilisin inhibitor family inhibitstransglutaminase activation in Streptomyces hygroscopicus[J]. J Agric Food Chem,2008,56(9):3403-3408.
    34. Cui L, Du G, Zhang D, et al. Thermal stability and conformational changes of transglutaminase from anewly isolated Streptomyces hygroscopicus[J]. Bioresour Technol,2008,99(9):3794-3800.
    35. Folk J E, Chung S I. Molecular and catalytic properties of transglutamases[J]. Adv Enzymol,1973,38:109-191.
    36. Ikura K, Yoshikawa M, Sasaki R, et al. Incorporation of amino acids into food proteins bytransglutaminase[J]. Agric Biol Chem,1981,45:2587-2592.
    37. Motoki M, Nio N. Crosslinking between different food proteins by transglutaminase[J]. J Food Sci,1983,48:561-566.
    38. Nonaka M, Tanaka H, Okiyama A, et al. Polymerization of several proteins by Ca2+-independenttransglutaminase derived from microorganisms[J]. Agric Biol Chem,1989,53:2619-2623.
    39. DeBacker-Royer C, Traore F, Meunier J C. Purification and properties of factor XIII from humanplacenta[J]. Int J Biochem,1992,24:91-97.
    40. Sakamoto H, Kumazawa Y, Kawajiri H, et al ε-(γ-Glutamyl)lysine crosslink distribution in foods asdetermined by improved method[J]. J Food Sci,1995,60:416-419.
    41. Hassan A B, Osman G A, Babiker E E. Effect of chymotrypsin digestion followed by polysaccharideconjugation or transglutaminase treatment on functional properties of millet proteins[J]. Food Chem,2007,10:
    42. De Jong G A H, Koppelman S J. Transglutaminase catalyzed reactions: impact on food applications[J]. JFood Sci,2002,67(8):2798-2806.
    43. Traore F, Meunier J C. Crosslinking activity of placental F XIIIa on whey proteins and caseins [J]. J AgricFood Chem,1992,40(3):399-402.
    44. Matsumura Y, Chanyongvorakul Y, Kumazawa Y, et al. Enhanced susceptibility to transglutaminasereaction of ɑ-lactalbumin in the molten globule state[J]. Biochim Biophys Acta,1996,1292(4):69-76.
    45. Toda H, Folk J E. Determination of protein-bound glutamine[J]. Biochim Biophys Acta,1969,175:427-430.
    46. Aboumahmoud R, Savello P. Crosslinking of whey protein by transglutaminase[J]. J Dairy Sci,1990,73(2):256-263.
    47. Motoki M, Nio N. Crosslinking between different food proteins by transglutaminase[J]. J Food Sci,1983,48(2):561-566.
    48. Alexandre M C, Popineau Y, Viroben G, et al. Wheat gamma gliadin as substrate for bovine plasma factorXIII[J]. J Agric Food Chem,1993,41(11):2208-2214.
    49. Lorand L, Lockridge O M, Campbell L K, et al. Transamidating enzymes: II. A continuous fluorescentmethod suited for automating measurements of factor XIII in plasma[J]. Anal Biochem,1971,44(1):221-231.
    50. Ikura K, Yoshikawa M, Sasaki R, et al. Use of transglutaminase: reversible blocking of amino groups insubstrate protein for a high yield of specific products[J]. Agric Bio Chem,1984,48(9):2347-2354.
    51. Larre C, Kedzior Z M, Chenu M G, et al. Action of transglutaminase on an11S seed protein (pea legumin):influence of the substrate conformation[J]. J Agric Food Chem,1992,40(7):1121-1126.
    52. Faergemand M, Murray B S, Dickinson E. Cross-linking of milk proteins with transglutaminase at theoil-water interface[J]. J Agric Food Chem,1997,45(7):2514-2519.
    53. F rgemand M, Qvist K B. Functional properties of enzymatically cross-linked milk proteins-cross-linkingof β-lactoglobulin[M]. Structure and Functionality of Food Products. Poland: Congres Mragowo,1998.53-54.
    54. Ahhmed A M, Kuroda R, Kawahara S, et al. Dependence of microbial transglutaminase on meat type inmyofibrillar proteins cross-linking[J]. Food Chem,2009,112:354-361.
    55. Katayama K, Chin K B, Yoshihara S, et al. Microbial transglutaminase improves the property of meatprotein and sausage texture manufactured with low-quality pork loin[J]. Asian-Aust J Anim Sci,2006,19:102-108.
    56. Christensen B M, Sorensen E S, Hojrup P. Localization of potential transglutaminase cross-linking sites inbovine caseins[J]. J Agric Food Chem,1996,44(7):1943-1947.
    57. Milkowski A, Sosnicki A A, inventors. Kraft Foods Inc., assignee. Method for treating PSE meat withtransglutaminase[P]. US patent,5928689.1999-07-27.
    58. Nielsen G S, Petersen B R, M ller A J. Impact of salt, phosphate and temperature on the effect of atransglutaminase (F XIIIa) on the texture of restructured meat[J]. Meat Sci,1995,41(3):293-299.
    59. Kuraishi C, Sakamoto J, Soeda T. The usefulness of transglutaminase for food processing. biotechnologyfor improved foods and flavors[C]. In: Takeoka G R, Teranishi R, Williams P J, Kobayashi A(eds).Biotechnology for improved foods and flavors. ACS symposium series.1996.637:29-38.
    60. Hong G P, Chin K B. Effects of microbial transglutaminase and sodium alginate on cold-set gelation ofporcine myofibrillar protein with various salt levels[J]. Food Hydrocolloids,2010,24(4):444-451.
    61. Sun X D, Arntfield S D. Gelation properties of chicken myofibrillar protein induced by transglutaminasecrosslinking[J]. J Food Eng,2011,107(2):226-233.
    62. Hong G P, Min S G, Chin K B. Emulsion properties of pork myofibrillar protein in combination withmicrobial transglutaminase and calcium alginate under various pH conditions[J]. Meat Sci,2012,90(1):185-193.
    63. Han M, Zhang Y, Fei Y, et al. Effect of microbial transglutaminase on NMR relaxometry andmicrostructure of pork myofibrillar protein gel[J]. Eur Food Res Technol,2009,228(4):665-670.
    64. Desmond E. Reducing salt: a challenge for the meat industry[J]. Meat Sci,2006,74:188-196.
    65. Blaustein M P, Leenen F H H, Chen L, et al. How NaCl raises blood pressure: a new paradigm for thepathogenesis of salt-dependent hypertension[J]. Am J Physiol Heart Circ Physiol,2012,302(5):H1031-H1049.
    66. Strazzullo P, D’Elia L, Kandala N B, et al. Salt intake, stroke, and cardiovascular disease: meta-analysis ofprospective studies[J]. BMJ,2009,339: b4567.
    67. Kuraishi C, Sakamoto J, Yamazaki K, et al. Production of restructured meat using microbialtransglutaminase without salt or cooking[J]. J Food Sci,1997,62(3):488-490.
    68. Canto A C, Lima B R C, Suman S P, et al. Physico-chemical and sensory attributes of low-sodiumrestructured caiman steaks containing microbial transglutaminase and salt replacers[J]. Meat Sci,2014,96(1):623-632.
    69. Martínez B, Miranda J M, Franco C M, et al. Evaluation of transglutaminase and caseinate for a novelformulation of beef patties enriched in healthier lipid and dietary fiber[J]. LWT-Food Sci Technol,2011,44(4):949-956.
    70. Ooizumi T, Xiong Y L. Biochemical susceptibility of myosin in chicken myofibrils subjected to hydroxylradical oxidizing systems[J]. J Agric Food Chem,2004,52:4303-4307.
    71. Lund M N, Larnetsch R, Hviid M S, et al. High-oxygen packaging atmosphere influences protein oxidationand tenderness of porcine longissimus dorsi during chill storage[J]. Meat Sci,2007,77(3):295-303.
    72. Park D, Xiong Y L. Oxidative modification of amino acids in porcine myofibrillar protein isolates exposedto three oxidizing systems[J]. Food Chem,2007,103:607-616.
    73. Xiong Y L, Mullins O E, Stika J F, et al. Tenderness and oxidative stability of post-mortem muscles frommature cows of various ages[J]. Meat Sci,2007,77:105-113.
    74. Frederiksen A M, Lund M N, Andersen M L, et al. Oxidation of porcine myosin by hypervalent myoglobin:The role of thiol groups[J]. J Agric Food Chem,2008,56(9):3297-3304.
    75. Straadt I K, Rasmussen M, Young J F, et al. Any link between integrin degradation and water-holdingcapacity in pork?[J] Meat Sci,2008,80(3):722-727.
    76. Xiong Y L, Park D, Ooizumi T. Variation in the cross-linking pattern of porcine myofibrillar proteinexposed to three oxidative environments[J]. J Agric Food Chem,2009,57:153-159.
    77. Lund M N, Heinonen M, Baron C P, et al. Protein oxidation in muscle foods: A review[J]. Mol Nutr FoodRes,2011,55:83-95.
    78. Srinivasan S, Xiong Y L. Gelation of beef heart surimi as affected by antioxidants[J]. J Food Sci,1996,61:707-711.
    79. Liu Z, Xiong Y L, Chen J. Protein oxidation enhances hydration but suppresses water-holding capacity inporcine longissimus muscle[J]. J Agric Food Chem,2010,58(19):10697-10704.
    80. Berlett B S, Stadtman E R. Protein oxidation in aging,disease,and oxidative stress[J]. J Biol Chem,1997,272(33):20313-20316.
    81. Xiong Y L. Protein oxidation and implications for muscle foods quality[C]. In: Decker E A, Faustman C,Lopez-Bote C J, Eds. Antioxidants in muscle foods. New York: Wiley,2000.85-111.
    82. Stadtman E R. Protein oxidation and aging[J]. Free Radical Res,2006,40(12):1250-1258.
    83. Stadtman E R, Levine R L. Free radical-mediated oxidation of free amino acids and amino acid residues inproteins[J]. Amino Acids,2003,25:207-218.
    84. Estévez M. Protein carbonyls in meat systems: A review[J]. Meat Sci,2011,89:259-279.
    85. Lund M N, Luxford C, Skibsted L H, et al. Oxidation of myosin by heme proteins generates myosinradicals and protein cross-links[J]. Biochem J,2008,410:565-574.
    86. stdal H, Skibsted L H, Andersen H J. Formation of long-lived protein radicals in the reaction betweenH2O2-activated metmyoglobin and other proteins[J]. Free Radic Biol Med,1997,23:754-761.
    87. Baron C P, Andersen H J. Myoglobin-induced lipid oxidation. A review[J]. J Agric Food Chem,2002,50:3887-3897.
    88. Levine R L. Mixed-function oxidation of histidine residues[J]. Methods Enzymol,1984,107:370-376.
    89. Skibsted L H, Mikkelsen A, Bertelsen G,in: Shahidi F (Ed.), Flavour of Meat, Meat Products and Seafoods(2nd Ed.), Blackie Academic&Professional, Glasgow,1998.217-256.
    90. Estévez M, Ollilainen V, Heinonen M. Analysis of protein oxidation markers alpha-aminoadipic andgamma-glutamic semialdehydes in food proteins using liquid chromatography (LC)-electrospray ionization(ESI)-multistage tandem mass spectrometry (MS)[J]. J Agric Food Chem,2009,57:3901-3910.
    91. Ganh o R, Morcuende D, Estévez M. Tryptophan depletion and formation of alpha-aminoadipic andgamma-glutamic semialdehydes in porcine burger patties with added phenolic-rich fruit extracts[J]. J AgricFood Chem,2010,58:3541-3548.
    92. Garrison W M. Reaction mechanisms in radiolysis of peptides,polypeptides, and proteins[J]. Chem Rev,1987,87(2):381-398.
    93. Uchida K, Kato Y, Kawakishi S. A novel mechanism for oxidative damage of prolyl peptides induced byhydroxyl radicals[J]. Biochem Biophys Res Commun,1990,169:265-271.
    94. Pacifici R E, Kono Y, Davies K J A. Hydrophobicity as the signal for selective degradation of hydroxylradical-modified hemoglobin by the multicatalytic proteinase complex, proteasome[J]. J Biol Chem,1993,268:15404-15411.
    95. Liu G, Xiong Y L. Electrophoretic pattern,thermal denaturation and in vitro digestibility of oxidizedmyosin[J]. J Agric Food Chem,2000,48(3):624-630.
    96. Davies M J, Dean R T. Radical-mediated protein oxidation[M]. Oxford: Oxford Science Publications,2003.267-306.
    97. Stadtman E R,Berlett B S. Fenton chemistry revisited: amino acid oxidation[J]. Basic Life Sci,1988,49:131-136.
    98. Requena J R, Chao C C, Levine R L, et al. Glutamic and aminoadipic semialdehydes are the main carbonylproducts of metal-catalyzed oxidation of proteins[J]. Proceedings of the National Academy of SciencesUSA,2001,98(1):69-74.
    99. Feeney R E, Blankenhorn G, Dixon B F. Carbonyl-amine reactions in protein chemistry[J]. Adv ProteinChem,1975,29:135-203.
    100. Akagawa M, Suyama K. Amine oxidase-like activity of polyphenols. Mechanism and properties[J]. Eur JBiochem,2001,268(7):1953-1963.
    101. Uchida K, Stadtman E R. Covalent attachment of4-hydroxynonenal to glyceraldehydes-3-phosphatedehydrogenase: A possible involvement of intra-and inter-molecular cross-linking reaction[J]. J Biol Chem,1993,268:6388-6393.
    102. Burcham P C, Kuhan Y T. Introduction of carbonyl groups into proteins by the lipid peroxidation productmalondialdehyce[J]. Biochem Biophys Res Commun,1996,220(3):996-1001.
    103. Damodaran S, Agyare K K. Effect of microbial transglutaminase treatment on thermal stability andpH-solubility of heat-shocked whey protein isolate[J]. Food Hydrocolloid,2013,30(1):12-18.
    104. Prinsze C, Dubbelman T M, Van S J. Protein damage, induced by small amounts of photodynamicallygenerated singlet oxygen or hydroxyl radicals[J]. Biochim Biophys Acta,1990,1038(2):152-157.
    105. Van Steveninck J, Dubbelman T M A R. Photodynamic intramolecular crosslinking of myoglobin[J].Biochim Biophys Acta,1984,791(1):98-101.
    106. Kamin-Belsky N, Brillon A A, Arav R, et al. Degradation of myosin by enzymes of the digestive system:comparison between native and oxidatively cross-linked protein[J]. J Agric Food Chem,1996,44:1641-1646.
    107. Srinivasan S, Hultin H O. Chemical, physical, and functional properties of cod proteins modified by anonenzymic free-radical-generating system[J]. J Agric Food Chem,1997,45:310-320.
    108. Decker E A, Xiong Y L, Clavert J T, et al. Chemical,physical and functional properties of oxidized turkeywhite muscle myofibrillar proteins[J]. J Agric Food Chem,1993,41:186-189.
    109. Liu G, Xiong Y L. Thermal transitions and dynamic gelling properties of oxidatively modified myosin,β-lactoglobulin,soy7S globulin and their mixtures[J]. J Sci Food Agric,2000,80:1728-1734.
    110. Xiong Y L, Decker E A, Robe G H, et al. Gelation of crude myofibrillar protein isolated from beef heartunder antioxidative conditions[J]. J Food Sci,1993,58:1241-1244.
    111. Ooizumi T, Xiong Y L. Identification of cross-linking site(s) of myosin heavy chains in oxidatively stressedchicken myofibrils[J]. J Food Sci,2006,71(3):196-199.
    112. Levine R L, Garland D, Oliver C N, et al. Determination of carbonyl content in oxidatively modifiedprotiens[J]. Methods Enzymol,1990,186:464-477.
    113. Liu G, Xiong Y L, Butterfield D A. Chemical,physical,and gel-forming properties of oxidized myofibrillar,whey,and soy protein isolates[J]. J Food Sci,2000,65:811-818.
    114. Thannhauser T W, Konishi Y, Scheraga H A. Analysis for disulfide bonds in peptides and proteins[J].Methods Enzymol,1987,143:115-119.
    115. Wells J A, Werber M M, Yount R G. Inactivation of myosin subfragment one by cobalt(II)/cobalt(III)phenanthroline complexes.2. Cobalt chelation of two critical SH groups[J]. Biochem,1979,18:4800-4805.
    116. Park D, Xiong Y L, Alderton A L. Concentration effects of hydroxyl radical oxidizing systems onbiochemical properties of porcine muscle myofbrillar protein[J] Food Chem,2006,101:1239-1246.
    117. Wright D J, Leach L B, Wilding P. Differential scanning calorimetric studies of muscle and its constituentproteins[J]. J Sci Food Agric,1977,28:557-564.
    118. Babiker E E. Effect of transglutaminase treatment on the functional properties of native andchymotrypsin-digested soy protein[J]. Food Chem,2000,70:139-145.
    119. Huff-Lonergan E, Mitsuhashi T, Parrish Jr F C,et al. Sodium dodecyl sulfate-polyacrylamide gelelectrophoresis and western blotting comparisons of purified myofibrils and whole muscle preparations forevaluating titin and nebulin in postmortem bovine muscle[J]. J Anim Sci,1996,74:779-785.
    120. Corrêa D H A, Ramos C H I. The use of circular dichroism spectroscopy to study protein folding,form andfunction[J]. Afr J Biochem Res,2009,3(5):164-173.
    121. Chapleau N, Mangavel C, Compoint J P, et al. Effect of high-pressure processing on myofbrillar proteinstructure[J]. J Sci Food Agric,2004,:
    122. Zhou N E, Kay C M, Hodges R S. Disulfide bond contribution to protein stability: Positional effects ofsubstitution in the hydrophobic core of the two-stranded alpha-helical coiled-coil[J]. Biochem,1993,32(12):3178-3187.
    123. B cker U, Ofstad R, Christine H, et al. Salt-Induced changes in pork myofibrillar tissue investigated byFT-IR microspectroscopy and light microscopy[J]. J Agric Food Chem,2006,54:6733-6740.
    124. Jackson M, Mantsch H H. The use and misuse of FTIR spectroscopy in the determination ofprotein-structure[J]. Crit Rev Biochem Mol Biol,1995,30:95-120.
    125. Jackson M, Choo L P, Watson P H,et al. Beware of connective-tissue proteins: Assignment andimplications of collagen absorptions in infrared-spectra of human tissues[J]. Biochim Biophys Acta,1995,1270:1-6.
    126. Sokrates G. Infrared and Raman Characteristic Group Frequencies[M]. Tables and Charts,3rd ed.;Chichester: John Wiley&Sons Ltd.,2001.
    127. Chu H L, Liu T Y, Lin S Y. Effect of cyanide concentrations on the secondary structures of protein in thecrude homogenates of the fish gill tissue[J]. Aquat Toxicol,2001,55:171-176.
    128. Sun W, Zhao Q, Zhao M,et al. Structural evaluation of myofibrillar proteins during processing ofcantonese sausage by raman spectroscopy[J]. J Agric Food Chem,2011,59(20):11070-11077.
    129. Ramirez-Suarez J C, Xiong Y L, Wang B. Transglutaminase cross-linking of bovine cardiac myofibrillarproteins and its effect on protein gelation[J]. J Muscle Foods,2001,12(2):85-96.
    130. Wang S F, Smith D M. Dynamic rheological properties and secondary structure of chicken breast myosinas influenced by isothermal heating[J]. J Agric Food Chem,1994,42:1434-1439.
    131. Sakamoto H, Kumazawa Y, Kawajiri H, et al. ε-(γ-Glutamyl)lysine crosslink distribution in foods asdetermined by improved method[J]. J Food Sci,1995,60(2):416-420.
    132. Benjakul S, Visessanguan W, Pecharat S. Suwari gel properties as afected by transglutaminase activatorand inhibitors. Food Chem,2004,85:91-99.
    133. Jacob C, Holme A L, Fry F H. The sulfinic acid switch in proteins[J]. Organ and Mol Chem,2004,2:1953-1956.
    134. Claiborne A, Miller H, Parsonage D, et al. Protein-sulfenic acid stabilization and function in enzymecatalysis and gene regulation[J]. FASEB J,1993,7:1483-1490.
    135. Roepstorff P, Fohlman J. Proposal for a nomenclature for sequence ions in mass spectra of peptides[J].Biomed Mass Spectrom,1984,11:601.
    136. Biemann K, Stephen A M. Mass spectrometric determination of the amino acid sequence of peptides andproteins[J]. Mass Spectrom Rev,1987,6(1):1-75.
    137. Offer G, Trinick J. On the mechanism of water holding in meat: The swelling and shrinking ofmyofibrils[J]. Meat Sci,1983,8:245-281.
    138. Xiong Y L, Lou X, Wang C, et al. Protein extraction from chicken myofibrils irrigated with variouspolyphosphate and NaCl solutions [J]. J Food Sci,2000,65:96-100.
    139. Wright D J, Wilding P. Differential scanning calorimetric study of muscle and its proteins: Myosin and itssubfragments [J]. J Sci Food Agric,1984,35:357-372.
    140. Liu Z, Xiong Y L, Chen J. Morphological examinations of oxidatively stressed pork muscle and myofibrilsupon salt marination and cooking to elucidate the water-binding potential[J]. J Agric Food Chem,2011,59:13026-13034.
    141. Wilding P, Hedges N, Lillford P J. Salt-induced swelling of meat: The effect of storage time,pH,ion-typeand concentration[J]. Meat Sci,1986,18:55-75.
    142. Lin T M, Park J W. Solubility of salmon myosin as affected by conformational changes at various ionicstrengths and pH[J]. J Food Sci,1998,63:215-218.
    143. Liu Z, Xiong Y L, Chen J. Identification of restricting factors that inhibit swelling of oxidized myofibrilsduring brine irrigation[J]. J Agric Food Chem,2009,57:10999-11007.
    144. Gomez-Guillen M C, Sarabaia A I,Solas M T,et al. Effect of microbial transglutaminase of the functionalproperties of megrim (Lepidorhombus boscii) skin gelatin[J]. J Sci Food Agric,2001,81:665-673.
    145. Jongjareonrak A, Benjakul S, Visessanguan W, et al Characterization of edible flms from skin gelatin ofbrown stripe, red snapper and big eye snapper[J]. Food Hydrocolloids,2006,20:492-501.
    146. Sun X D, Holley R A. Factors influencing gel formation by myofibrillar proteins in muscle foods[J]. CompRev Food Sci Food Saf,2011,10:33-51.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700