用户名: 密码: 验证码:
泥蚶高通量转录组分析及生长相关基因的克隆与表达研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
泥蚶(Tegillarca granosa)俗称血蚶,是江、浙、闽沿海居民喜食的海鲜佳品,是我国传统四大养殖贝类之一,也是我国滩涂贝类养殖的主要对象。近年来,随着泥蚶人工育苗技术的突破和规模化养殖技术的成熟,泥蚶养殖业呈快速发展趋势,产生了巨大的经济效益和社会效益。然而,与之不相适宜的是,目前泥蚶分子遗传基础薄弱、基因组序列信息匮乏、遗传育种工作刚刚起步,严重影响功能基因开发的进程和分子育种实践的开展。为此,本研究利用新一代高通量454测序技术对泥蚶不同组织器官和不同发育阶段样品进行转录组测序,通过对高质量序列的拼接组装和基因注释,发掘与生长、营养代谢、繁殖、抗病等主要经济性状相关的候选基因,为后续开展功能基因研究和分子育种实践提供有价值信息;利用RACE和RT-PCR技术,对泥蚶生长调控基因Smad3、BMP7、ERK2、GRB2和蛋白质代谢基因LAP3进行基因克隆和表达分析,研究它们与生长的密切关系,筛选可作泥蚶良种选育的候选基因;从泥蚶转录组中批量开发和验证SSR分子标记,为群体遗传分析、遗传连锁图谱构建、生长性状主效QTLs的精确定位等研究提供有力工具。主要结果和结论如下:
     1.基于454GS FLX高通量测序的泥蚶转录组分析
     应用454高通量测序技术,对泥蚶4个组织和3个发育阶段样品进行了转录组测序,获得了1170337条高质量序列,通过序列拼接得到17940个重叠群(isotig)和131980个单拷贝序列(singleton),isotig平均长度达到934bp,测序深度为5.6倍。对泥蚶拼接得到的isotig与Swiss-prot、Nr等公共蛋白质数据库比对,通过GO注释对基因进行分类,KEGG注释了解基因间的联系和生物体的生化代谢网络。从注释的基因中鉴别出大量调控泥蚶肌肉、上皮、神经、纤维等的生长因子及受体,找到了与生长相关的TGFβ信号通路、MAPK信号通路中的多个重要基因;查找到大量与生长、发育、繁殖和免疫等生产相关的候选基因,为后续开展功能基因研究和分子育种实践有重要价值。在泥蚶转录组中,发现血红素合成过程中的大部分关键酶,推测贝类血红蛋白合成的基本过程可能与脊椎动物十分相似。另外,从泥蚶转录组中检测到6338个SSR和20038个SNP候选标记,为分子标记的大规模开发提供了重要资源。
     2.利用泥蚶转录组序列大量开发微卫星标记,并研究其引物在毛蚶中的通用性
     EST文库筛查法是目前大量开发微卫星标记的重要方法,具有方法简便、花费低廉等优点。本研究从泥蚶454转录组测序得到的大量isotig和singleton序列中搜索到6338个SSR位点,可用于大规模开发SSR标记。在3828条isotig序列里,共检测到138条适合设计引物的序列,扩增得到81个稳定扩增的位点,这些位点在泥蚶奉化群体中进行多态性检测,共扩增出242个等位基因,各位点的等位基因数为2~9个,平均每个位点产生3.90个等位基因,观测杂合度为0.040~1.000,期望杂合度为0.040~0.844,多态信息含量为0.038~0.806。33个SSR来自注释基因序列,对这些基因的准确定位有很大帮助。用62对泥蚶多态性SSR引物在毛蚶中进行了通用性验证,结果有22对成功扩增,16对表现为多态,这些多态位点可作为毛蚶和泥蚶的通用性标记。
     3.泥蚶Smad3基因的克隆与表达分析
     Smad3是TGF-β通路的重要成员,可将信号分子从细胞表面受体传导至细胞核,是重要的生长调控因子。利用RACE技术扩增得到泥蚶Smad3基因2341bp的cDNA全长,编码423个氨基酸。蛋白质功能域分析表明,Tg-Smad3含有两个保守功能域MH1和MH2。氨基酸序列比对发现,它与脊椎动物的同源性达到80%以上,说明Tg-Smad3氨基酸序列十分保守。RT-PCR结果表明,Tg-Smad3在泥蚶各成体组织都有表达,其中足和血液中表达量最高,可能与细胞增殖和免疫过程有关;在早期发育阶段,Tg-Smad3的表达量呈逐渐升高的趋势,在D形幼虫时期表达量最高,推测其参与贝壳的形成过程。
     4.泥蚶BMP7基因的克隆与表达分析
     BMP7也是TGF-β通路中的重要成员,在生物体内具有重要且广泛的生物功能,参与骨骼的生长、代谢,调节细胞的分化、增殖和凋亡,并在生殖系统的生长、发育中发挥重要作用。本研究克隆得到Tg-BMP7基因的cDNA全长,开放阅读框为1275bp,编码425个氨基酸。功能域预测表明,Tg-BMP7是一个糖蛋白,包含由29个氨基酸组成的信号肽,3个二硫键,并有一个TGF-β家族信号。RT-PCR结果显示,Tg-BMP7在成贝外套膜和鳃中表达量高;在早期发育阶段中,D形幼虫期的表达量显著高于原肠胚、担轮幼虫和幼贝,推测Tg-BMP7可能参与贝壳的形成过程,并具有组织分化、调控胚胎生长发育等生理功能。
     5.泥蚶ERK2基因的克隆与表达分析
     ERK2是MAPK家族重要的反应激酶系统,主要参与调控细胞生长、分化和细胞周期调控等生理功能。泥蚶ERK2基因cDNA全长1673bp,编码359个氨基酸,功能域预测找到一个丝氨酸/苏氨酸蛋白激酶的活性区域,这是ERK家族蛋白的特征性区域。氨基酸序列比对和系统进化分析发现,Tg-ERK2蛋白与脊椎动物的同源性达到80%以上,说明该基因十分保守,可能功能与脊椎动物有类似之处。RT-PCR结果表明,Tg-ERK2在泥蚶各组织、各个发育阶段都有表达,说明Tg-ERK2功能强大,参与到多种生命活动中去;相对而言,Tg-ERK2在泥蚶成体的血液中表达量最高;而在早期发育阶段中表达量逐渐升高,D形幼虫期达到最高,这可能与此期细胞分化加剧、神经细胞形成较多有关。
     6.泥蚶GRB2基因的克隆与表达分析
     GRB2蛋白是一个重要的接头分子,参与细胞内各种受体激活后的下游调节,调控细胞的增殖和分化。Tg-GRB2基因全长1275bp,编码236个氨基酸。Tg-GRB2蛋白包含3个功能域,1个SH2和2个SH3,这是GRB2发挥生理功能的活性区域。Tg-GRB2在泥蚶不同组织中的表达量由大到小依次为:血液>足>鳃>外套膜>闭壳肌>内脏团;在早期发育阶段中,GRB2基因在原肠胚、担轮幼虫、D形幼虫中均有较高的表达量,原因可能是随着胚胎发育过程的进行,细胞分裂速度加快,生命活动旺盛,信号传导需要较多的接头蛋白
     7.泥蚶蛋白质代谢基因LAP3的克隆与表达分析
     LAP3是M17类蛋白家族的一员,在细胞成熟、细胞生长、调节损伤防御、维持细胞动态平衡方面发挥重要作用。Tg-LAP3基因全长为1590bp,编码530个氨基酸,包括Peptidase_M17超家族序列的N-端结构域(41-174bp)和Peptidase_M17催化结构域(209-522bp),缺失HEXXH锌结合体motif,充分证明了该蛋白为LAP3蛋白。RT-PCR结果表明,Tg-LAP3在足中表达量最高,而在早期发育阶段中表达量逐渐升高,D形幼虫期达到最高,在幼贝中表达量最低。
The blood clam, Tegillarca granosa, is one of the most popular commercially-important maricultural shellfish which is extensively cultured for seafood along thesouthern coastline of China, especially in Zhejiang province and Jiangsu Province. Inrecent years, with the technological breakthroughs of artificial breeding andlarge-scale farming, the aquaculture industry of T. granosa presented the trend ofrapid development, resulting in a huge economic and social benefits. Despite theeconomic value and research importance, knowledge of genetics and genome in T.granosa has been largely limited, and breeding work has just begun up to date. As aneconomically important aquacultural species, the lack of genomic resources would beunfavorable to understand the genetic mechanisms that involved in the growth,reproduction and immunity. In order to develop molecular resources and expeditegene discovery, we have undertaken454pyrosequencing of diverse cDNA libraries tofirst produce a comprehensive transcriptome for the blood clam T. granosa. Ourresults are as follows.
     1. Transcriptomic analysis for T. granosa using454pyrosequencing
     De novo assembly and transcriptomic analysis for T. granosa were conducted using454GS FLX technology.1,170,337quality-filtered and trimmed reads were obtainedfrom1,190,945raw reads and then assembled into17,940transcripts and131,981singletons, with5.6×sequencing depth. Average length of the assembled transcriptswas934bp, and33.6%of the transcripts were longer than1,000bp. More than9,000unique protein-coding genes were identified from a variety of developmental stagesand adult tissues based on sequence similarities with known protein databases. By GOannotation and KEGG pathway mapping, functional annotation of the unigenesrecovered diverse biological functions and processes. Of which, a lot of candidategenes and signal pathways putatively involved in growth and Hb synthesis wereidentified. Furthermore,6,338single nucleotide polymorphisms (SNPs) and20,038simple sequence repeats (SSRs) were also detected. In conclusion, A considerableamount of promising candidate genes potentially involved in growth and Hb synthesiswere identified, and are considered as an invaluable genetic resource for functional analysis and further production improvement.
     2. Characterization of polymorphic EST-SSR markers in T. granosaand their cross-amplification in Scapharca subcrenata
     EST-SSR is one of important methods to isolate microsatellite loci, which issimple and low cost chices. Next-generation sequencing technologies provide anexcellent opportunity to mining large numbers of EST-SSR markers quickly andcost-effectively for non-model organisms. Here we isolated and characterized62polymorphic EST-SSR markers in the blood clam, Tegillarca granosa, from the ESTsgenerated by454sequencing. The number of alleles for the62SSR markers in25individuals varied from2to9, with an average of3.90alleles per locus. The observedheterozygosity ranged from0.040to1.000, while the expected heterozygosity variedfrom0.040to0.844. Polymorphic information content ranged from0.038to0.806.Interspecific transferability of the62markers revealed that16were polymorphic inScapharca subcrenata, resulting in a transferability rate of25.81%. To our knowledge,this is the first report on the survey of SSR transferability in blood clams. These novelpolymorphic EST-SSR markers should be particularly useful for further investigationof population and conservation genetics.
     3. The full length cDNA cloning and gene expression analysis of Tg-Smad3
     Smad3could conduct the TGF--β signaling from cell surface to nucleus andpalys important crucial roles on singling transduction. By RACE method, the fulllength of cDNA is2341bp, encoding423amino acids. The amino sequences ofTg-Smad3is very conservatice with functional domains MH1and MH2,and sharedmore than80%homology with verbrate. By RT-PCR,Tg-Smad3were detected in alltissues, and tissues of blood and foot showed higher expression, and the Tg-Smad3expression with development of embryos, which implied that Tg-Smad3playedimportant role on embryo development. All of results suggested that Tg-Smad3mighthave functions of controlling growth, immune and shell formation.
     4. Cloning and expression of BMP7gene from T. granosa
     BMP7, a member of TGF-β pathway, was involved in many importantbiological functions, such as bone skeletal growth, metabolism and regulating celldifferention, proliferation and apoptosis. Additionally, BMP7plays important role onanimal reproductive system and embryo development. The full length of Tg-BMP7has a ORF fragment of1275bp, encoding425amino acids. Tg-BMP7was a glycoprotein that contains a signal peptide of29amino acids, three disulfide bonds,and a TGF-beta family signaling, which fully suggested that Tg-BMP7was a memberof the TGF-beta family. The results obtained by RT-PCR implied that Tg-BMP7wasshowed higher expression levels in the gills and mantle, relatively high expression inD-larval stage, suggesting that the Tg-BMP7was may be involved in the formationof the shell, tissue differentiation, regulation of embryonic growth and development.
     5. Gene cloning and expression of ERK2from T. granosa
     ERK2, extRACEllular signal-regulated protein kianse, an important member ofMAPK, is mainly involved in the regulation cell growth, differentiation and cell cycleregulation. By studying Tg-ERK2, it may lay solid foundation to investigate themechanism of TGF-β pathway. The full length of Tg-ERK2was1673bp encoding359amio acids. One functional domain,a serine/threonine protein kinase active sitewas found, which is the characteristic region of the ERK family proteins. By aminoacid sequence alignment and constructing phylogenetic tree, Tg-ERK2shared morethan80%homology with vertebrate, which indicated that the gene is veryconservative and may have similiar function with vertebrate. The results of RT-PCRshowed that Tg-ERK2was detected in all tissues and developmental stages, indicatingthat the function of Tg-ERK2was powerful to participate in various life activities.
     6. Gene cloning and expression of GRB2from T. granosa
     GRB2, growth factor receptor-bound protein2, is an important adaptor involvedin a variety of receptor activator of intRACEllular. It plays important roles inregulation of cell proliferation and differentiation. The full length of Tg-GRB2was1275bp, encoding236amino acids. There were three functional domains in Tg-GRB2protein, one SH2and two SH3, which were active region of physiological function.Tissue-specific expression of the Tg-GRB2showed an trend of blood> Foot> gill>mantle> adductor muscle> visceral mass, and developmental stage-specificexpression of the Tg-GRB2suggested that the Tg-GRB2had the function ofpromoting embryonic development, cell differentiation.
     7. Cloning and expression of metabolism gene LAP3from T. granosa
     LAP3, leucine aminopeptidase, one of the M17family of proteins, play animportant role in cell maturation, cell growth, regulating injury defense andmaintenance of cell dynamic equilibrium. In this study, the full length of Tg-LAP3gene was1590bp encoding530amino acids, including the sequence of Peptidase_M17superfamily N-terminal domain (41-174) and Peptidase_M17catalytic domain (209-522). By RT-PCR, we investigated the tissue anddevelopmental specific expression to study the roles of leucine aminopeptidase inphysical activity. The results suggested that LAP3played important role in embryodevelopment,promoting cell growth and metabolism. The study of Tg-LAP3couldlay theoretical foundation for protein metabolism studies and provide a guidance forfine varieties breeding of T. granosa.
引文
1.包柳郁,牛忠英,陈健,等.人牙胚发育过程中Smad3的表达变化及其意义[J].牙体牙髓牙周学杂志,2001,11(4):216-218.
    2.程晓凤,黄福江,刘明典,等.454测序技术开发微卫星标记的研究进展[J].生物技术通报,2011,8:82-90.
    3.程萱,徐晓玲,沈善祥,等.小鼠Smad3基因的克隆及其在小鼠组织中的表达[J].中国生物化学与分子生物学报,2002,18(1):14-18.
    4.方梅霞,周晓宁,沈栩,王亚军,聂庆华,张细权.猪繁殖候选基因ERK2的电子克隆与生物信息学分析.广东农业科学,2009,10:11-15.
    5.方梅霞,张伟,等.猪繁殖候选基因ERK2的克隆、表达及基因多态性分析[J].中国农业科学,2011,44(1):210~217.
    6.高应东,王书奎.亮氨酸氨肽酶的种类及临床应用[J].国际检验医学杂志,2010,31(12):1408-1410.
    7.顾晓英,曾庆国,尤仲杰,等.泥蚶(Tegillarca granosa)6个微卫星引物的分离和鉴定[J].海洋与湖沼,2008,39(6):661-664
    8.贺静静,李晔,李太武,等.泥蚶(Tegillarca granosa) cDNA文库的构建及铁结合蛋白基因(Ferritin)序列分析[J].海洋与湖沼,2009,40(3):289-95.
    9.陆朝福,朱立煌.植物育种中分子标记辅助选择[J].生物工程进展,1995,15:11-17.
    10.李慧娟,亓海刚,李莉,等.长牡蛎17个fosmid-SSR标记的开发与分析[J].水产学报,2011,35(10):1463-1467.
    11.李松伟,李晔,李成华,等.泥蚶(Tegillarca granosa)精氨酸激酶的基因克隆与表达[J].海洋与湖沼,2011,42(1):119-123
    12.李太武,李成华,宋林生,等.5个泥蚶群体遗传多样性的RAPD分析[J].生物多样性,2003,11(2):118-124
    13.李新枝,蔡佩玲,牟林春.基因功能研究的方法[J].四川解剖学杂志,2007,15(1):57-59.
    12.卢建,余应年,徐仁宝著.受体、信号转导系统与疾病[M].第1版.山东科学技术出版社,2001:249-254.
    14.刘志鸿,张士璀,杨爱国,等.毛蚶血细胞形态观察及吞噬性能研究[J].高技术通讯,2003,13(10):94-96.
    13.聂庆华,方梅霞,李伟民,等.鸡pATGL基因的电子克隆及比较基因组分析[J].华南农业大学学报,2008,29(2):94-98.
    15.潘沙芳,李太武,苏秀榕.泥蚶血细胞耐饥饿及抗菌力特性的研究[J].水产科学,2007,26(1):22-25.
    16.邱建武,郭薇,申丽娟. p38MAPK在肝细胞癌中的研究进展[J].世界华人消化杂志,2009,16(5):503-509.
    17.石耀华,洪葵,郭希明,等.马氏珠母贝EST微卫星的筛选[J].水产学报,2008,32(2):174-181.
    18.孙长森,林志华,董迎辉,等.泥蚶(Tegillarca granosa)主要经济性状遗传参数的估算[J].海洋与湖沼,2010,41(6):907-913.
    19.王海霞,朱大海. Smad及其结合蛋白在TGFβ信号传导中的功能[J].遗传,2003,25(4):479-483.
    20.汪青,包永波,林志华,等.5种水产动物血红细胞形态显微观察比较及进化分析[J].海洋科学,2011,35(10):69-74.
    21.吴琼,孙超,陈士林,等.转录组学在药用植物研究中的应用[J].世界科学技术,2010,12(3):457-462.
    22.王殊,王杉,祝学光.细胞外信号调节激酶及其上游激酶在人乳腺癌发生发展中的意义[J].中华外科杂志,2002,40(3):171-174.
    23.谢剑萍,张振平,印湖莲.细胞外信号调节激酶系统(ERKs)在正常发育大鼠视皮层基因表达的研究[J].神经解剖学杂志,2001,17(4):309-314.
    24.解家松,许婷,刘玮,等.泥蚶金属硫蛋白的鉴定、原核重组表达及其组织细胞分布[J].中国水产科学,2011,18(5):955-964
    25.许春进,刘华,陈玉龙,等.转化生长因子1基因和细胞外信号调节激酶在胃癌中的表达和意义[J].胃肠病学和肝病学杂志,2002,11(3):245-248.
    26.徐建勇,陈松林.牙鲆肌肉生长抑制素(MSTN)基因克隆[J].水产学报,2008,32(4):497-506
    27.徐义平,孙开练,杨桂梅,等.温州乐清湾三个泥蚶群体遗传多样性的初步研究[J].上海水产大学学报,2006,15(2):234-238.
    26.徐勇.MAPK家族与糖尿病并发症[J].国外医学分子生物学分册,2000,22(4):215-217.
    28.姚韩韩,董迎辉,林志华,等.泥蚶4个快速生长家系的遗传变异分析[J].水产学报,2011,35(3):350-357
    29.姚韩韩,林志华,董迎辉,等.海洋经济贝类遗传图谱的相关研究进展[J].水产科学,2010,29(03):178-183
    30.杨宁,陈增海,栾怡,等.骨形态发生蛋白的研究进展[J].山东大学学报(医学版),2004,42(2):244-248.
    31.曾庆国,林志华,尤仲杰.泥蚶(Tegillarca granosa)GT微卫星位点的筛选和性质鉴定[J].海洋与湖沼,2008,39(2):174-177.
    32.战爱斌.栉孔扇贝(Chlamys farreri)微卫星分子标记的筛选和应用.中国海洋大学
    33.赵浩斌,彭扣,王玉凤,等.鱼类肌肉生长抑制素研究进展[J].水生生物学报,2006,30(2):227-231
    34.朱东丽,董迎辉,林志华,等利用微卫星标记对文蛤4个壳色花纹品系的遗传分析[J].水产学报,2011,26(2):202-209.
    35. Acosta J, Carpio Y, Borroto I. et al. Myostatin gene silenced by RNAi show a zebrafish giantphenotype [J]. J Biotechnol.,2005,119(4):324-331
    36. Akalal DB, Bottenstein JE, Lee SH, et al. Aplysia mollusk-derived growth factor is a mitogenwith adenosine deaminase activity and is expressed in the developing central nevous system.Molecular Brain Research,2003,117:228-236
    37. Alec MC, Tracy MS, Ryuichi S et al. Mammalian Grb2Regulates Multiple Steps inEmbryonic Development and Malignant Transformation. Cell,1998,95:793-903.
    38. Albiston AL, Ye S&Chai SY. Membrane bound members of the M1family:more thanaminopeptidases [J]. Protein Pept Lett,2004,11,491-500.
    39. Ali Mottazavi, Williams BA, McCue K, et al. Mapping and quantifying mammalian37.transcriptomes by RNA-seq. Nature Methods,2008,5(7):621-628.
    40. Amaury H, Pascal F, Charles C. Gene structure and expression of cg-ALR1, a type Ⅰactivin-like receptor from the bivalve mollusk Crassostrea gigas. Gene,2002,301:21-30.
    41. Armstrong SP, Caunt CJ, McArdle CA. Gonadotropinreleasing hormone and protein kinase Csignaling to ERK: spatiotemporal regulation of ERK by docking domains and dual-specificityphosphatases [J]. Molecular Endocrinology,2009,23(4):510-519.
    42. Bao YB, Lin ZH. Generation, annotation, and analysis of ESTs from hemocyte of bloody clam,Tegillarca granosa [J]. Fish&Shellfish Immunology,2010,29:740-746.
    43. Bao YB, Wang Q, Liu HM. Lin ZH. A small HSP gene of bloody clam (Tegillarca granos)involved in the immune response against Vibrio parahaemolyticus and lipopolysccharide[J].Fish&Shellfish Immunology,2011,30:729-733.
    44. Bar-Sagi D, Rot in D, Batzer A, et al. SH3domains direct cellular localizat ion of signalingmolecules [J]. Cell,1993,74(1):83-91.
    45. Bianco R, Melisi D, Ciardiello F, et al. Key cancer cell signal transduct ion pathways astherapeu t ic targets [J]. Eur J Cancer,2006,42(3):290-294.
    46. Binladen J, Gilbert MT, Bollback JP, Panitz F, Bendixen C, et al. The use of coded PCRprimers enables high-throughput sequencing of multiple homolog amplification products by454parallel sequencing. PLoS ONE.2007,2: e197.
    47. Blanca J, Ca izares J, Roig C, Ziarsolo P, Nuez F, Picó B. Transcriptome characterization andhigh throughput SSRs and SNPs discovery in Cucurbita pepo (Cucurbitaceae). BMCGenomics,2011,12:104.
    48. BouLton TG,YancopoμLos GD,Gregory JS,et al.An insuLin-stimu-lated protein kinade similarto yeast kinases involved in cell cycle control[J].Sciences,1990,249(49):64-67.
    49. BouLton T G, Nye S H,RobbinsDJ, et al.ERKs:a family of p rotein serine/threonine kinasesthat are activated and tyrosine pHospHorylated in response to insuLin and NGF[J]. Cell,1991,65(4):663-675.
    50. Cappiello M, Alterio V, Amodeo P, et al. Metal ion substitution in the catalytic site greatlyaffects the binding of sulfhydyl-congtaining compounds to leucyl aminopetidase [J].Biochemistry,2006,45(10):3226-3234.
    51. Chao WS, Gu YQ, Pautot VV et al. Leucine aminopeptidase RNAs, proteins, and activitiedincrease in response to water deficit, salinity, and the wound signals systemin, methyljasmonate, and abscisic acid[J].Plant Physiol,1999,120:979-992.
    52. Chen L,,Xie L P, Xiong X H, et al.2005.Cloning and characterization of a novel G proteinbeta-subunit of pearl oyster(Pinctada fucata),and its interaction sites with calmodulin.Comparative Biochemistry and Physiology B-Biochemistry&Molecular Biology,142(2):142-152.
    53. Chiancone E, Boffi A. Structural and thermodynamic aspects of cooperativity in thehomodimeric hemoglobin from Scapharca inaequivalvis [J]. Biophysical Chemistry,2000,86(2-3):173-178.
    54. Ciccarelli F D, Doerks T, von Mering C, et al. Toward automatic reconstruction of a highlyresolved tree of life[J].Science,2006,311:1283-1287.
    55. Clark M, Thorne MA, Vieira FA, Cardoso JC, Power DM, et al. Insight into shell depositionin the Antarctic bivalve Laternula elliptica: gene discovery in the mantle transcriptome using454pyrosequencing. BMC Genomics,2010,11:362.
    56. Castillo J, Codina M, Martinez ML, et al. Metabolic and mitogenic effects of IGF-1andinsulin on muscle cells of rainbow trout [J]. Am J Physiol Regul Integr Comp Physiol,2004,286(5):935-941
    57. Cohen S,Savage CR. Recent studies on the chemistry and biology of epithelial growth factor[J]. Recent Prog Horm Res,1974,30(2):551-556.
    58. Collin, R. The effects of mode of development on phylogeography and population structure ofNorth Atlantic Crepidula (Gasteropoda: Calyptraeidae). Molecular Ecology,2001,10:2249-
    2262.
    59. Conesa A, G tz S. Blast2GO: A Comprehensive Suite for Functional Analysis in PlantGenomics. Int J Plant Genomics,2008:619-832.
    60. Craft JA, Gilbert JA, Temperton B, et al. Pyrosequencing of Mytilus galloprovincialis cDNAs:Tissue-specific expression patterns. Plosone,2010,5: e8875
    61. Dennler S,Huet S.Gauthier JM.A shoft amino.acid sequence in MHl donmin is responsiblefor functional differences between Smad2and Smad3. Oncogene,1999,18(8):1643-1648.
    62. Donald K M, Day A J, Smerdon G R,et al. Quantifacation of gene transcription and enzymeactivity for functionally important proteolytic enzymes during early development in thepacific oyster Crassostrea gigas[J].Comparative Biochemistry and Physiology Part B,2003,136:383-392.
    63. Downward J. The GRB2/Sem-5adaptor protein [J]. FEBS Lett,1994,338(2):113-117.
    64. Duran C, Appleby N, Edwards D and Batley J. Molecular Genetic Markers: Discovery,Applications, Data Storage and Visualisation. Current Bioinformatics,2009,4:16-27.
    65. Fan H Y, Liu Z L, Shimada M, Sterneck E, Johnson P F, Hedrick S M, Richards J S.MAPK3/1(ERK1/2) in ovarian granulosa cells are essential for female fertility. Science,2009,324(5929):890-891.
    66. Feng ZP, Zhang Z, Van Kesteren RE, Straub VA, Jin K, et al. Transcriptome analysis of thecentral nervous system of the mollusc Lymnaea stagnalis BMC Genomics,2009,10:451.
    67. Fry MJ, Panayotou G, Booker GW, et al. New insights into prot ein-tyrosine kinase receptorsignaling complexes [J]. Protein Sci,1993,2(11):1785-1797.
    68. Gambacurta A, Basili P, Ascoli F. Scapharca inaequivalvis A and B miniglobin genes:promoter activity of the5' flanking regions and in vivo transcription [J]. Gene,2000,255(1):75-81.
    69. Gambacurta A, Piro M C, Ascoli F. Cooperative homodimeric hemoglobin from Scapharcainaequivalvis cDNA cloning and expression of the fully functional protein in E. coli[J].Federation of European Biochemical Societies Letters,1993.330(1):90-94.
    70. G tz S, García-Gómez JM, Terol J, Williams TD, Nagaraj SH, et al. High-throughputfunctional annotation and data mining with the Blast2GO suite. Nucleic Acids Res,2008,36:3420-3435.
    71. Gonzalez F A, Raden D L, Rigby M R, Davis R J. Heterogeneous expression of four MAPkinase isoforms in human tissues. Federation of European Biochemical Societies,1992,304(2-3):170-178.
    72. Grobet L, Martin L J R, Poncelet, et al. A deletion in the bovine myostatin gene causes thedouble-muscled phenotype in cattle [J]. Nature Genetics,1997,17:71-74
    73. Guojie Zhang,Guangwu Guo,Xueda Hu,et al. Deep RNA sequencing at single base-pairresolution reveals high complexity of the rice transcriptome.Genome Res,2010,20:646-654.
    74. Hamada H. A novel reptead elemeat wit h Z-DNA-forming potential is widely found inevolutionarily diverse eukaryotic genomes [J]. Proc Natl Acad Sci USA,1982(79):6465-6469
    75. Hedgecock D, Hubert S, Li G, et al. Agenetic linkage map of100microsatellite markers forthe Pacific oyster Crassostrea gigas [J]. Journal of Shellfish Research,2002,21(1):381.
    76. Heyland A, Vue Z, Voolstra CR, Medina M, Moroz LL. Developmental transcriptome ofAplysia californica. J Exp Zool B Mol Dev Evol.2011,316(2):113-134.
    77. Hou R, Bao ZM, Wang S, Su HL, Li Y, et al. Transcriptome Sequencing and De NovoAnalysis for Yesso Scallop (Patinopecten yessoensis) Using454GS FLX. PloS one,2011,6(6):e21560.
    78. Hu XL, Bao ZM, Hu JJ, Shao MY, Zhang LL, et al. Cloning and characterization oftryptophan2,3-dioxygenase gene of Zhikong scallop Chlamys farreri (Jones and Preston,1904). Aquac Res,2006,37:1187-1194.
    79. Huan P, Wang HX, Liu BZ. Transcriptomic analysis of the clam Meretrix meretrix on differentlarval stages. Mar Biotechol,2012,14(1):69-78
    80. Huh JE,Kang KS,Chae C,Kim HM,Ahn KS,Kim SH.Roles of p38and JNK mitogen-activatedprotein kinase pathways during cantharidin-induced apoptosis in U937cells[J].BiochemPharmacol,2004,67(10):1811-1818.
    81. Hunter G, Ferreira G.5-aminolevulinate synthase: catalysis of the first step of hemebiosynthesis. Cell Mol Biol,2009,55:102-110.
    82. Jay Shendure&Hanlee Ji. Next-generation DNA sequencing. Nature Biotechnology,2008,26(10):1135-1145.
    83. Jin CH, Li CH, Su XR, Li TW. Identification and characterization of a Tegillarca granosaferritin regulation by iron exposure and thermal stress. Developmental and ComparativeImmunology,2011,35:745-751.
    84. Jonathan M Rothberg&John H Leamon. The development and impact of454sequencing.Nature Biotechnology,2008,26(10):1117-1124.
    85. Jones PA, Baylin SB. The epigenomics of cancer. Cell,2007,128,683-692.
    86. Johnson G L, Lapadat R. Miogen-activated protein kinase pathways mediated by ERK, JNK,and p38protein kinases. Science,2002,298(5600):1911-1912.
    87. Joubert C, Piquemal D, Marie B, Manchon L, Pierrat F, et al. Transcriptome and proteomeanalysis of Pinctada margaritifera calcifying mantle and shell: focus on biomineralization.BMC genomics,2010,11:613.
    88. Kagawa H, Gen K, Okuzawa K, et al. Effects of luteinizing hormone and folliche-stimulatinghormone and insulin-like growth factor-1on aromatase activity and P450aromatase geneexpression in the ovarian follicles of red seabream, Pagrus maior[J]. Biol Reprod,2003,68(5):1562-1568.
    89. Kanehisa M, Goto S. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res,2000,28:27-30.
    90. Kantety RV,La Rota M,Matthews DE,et a1. Data mining for simple sequence repeats inexpressed tags from barly,maize,rice,sorghum and wheat[J]. Plant MolecularBiology,2002,48:501-510.
    91. Kim HW, Mykles DL, Goetz FW, et al. Characterization of a myostatin-like gene from thebay scallop, Arogopecten irradians. Biochimica et Biophysica Acta,2004,1679:174-179
    92. Kloetzel PM&Ossendorp F. Proteasome and peptidase function in MHC-class-Ⅰ-mediatedantigen presentation [J].Curr Opin Immunol,2004,16:76-81.
    93. Kofler R, Schl tterer C, Lelley T (2007) SciRoKo: A new tool for whole genomemicrosatellite search and investigation. Bioinformatics23:1683-1685.
    94. Korkaya H, Jameel S, Gupta D, et al. The ORF3prot ein of hepat it is E virus binds to Srchomology3domains and activates MAPK [J]. J Biol Chem,2001,276(45):42389-42400.
    95. Koryu K, Shota K, Hiroshi. A novel role for dpp in the shaping of bivalve shells revealed in aconserved molluscan development program [J]. Developmental biology,2009,32:152-166.
    96. Lamoril J, Martasek P, Deybach JC, Silva VD, Grandchamp B, Nordmann Y. A moleculardefect in coproporphyrinogen oxidase gene causing harderoporphyria, a variant form ofhereditary coproporphyria. Hum Mol Genet,1995,4:275-278.
    97. Lewis TS, Shapiro PS, Ahn NG. Signal transduction through MAP kinase Cascades [J]. AdvCancer Res,1998,74:49-139.
    98. Li Q, Liu SK, Kong LF. Microsatellite within genes and ESTs of the Pacific oysterCrassostrea gigas and their transferability in five other Crassostrea species. ElectronicJournal of Biotechnology,2009,12(3):1-6
    99. Liang W, Qi XQ, et al. Characterization of the sesame (Sesamum indicum L.) globaltranscriptome using Illumina paired-end sequencing and development of EST-SSR markers.BMC Genomics,2011,12:451
    100. Lin SJ, Lerch TF, Cook RW, Jardetzky TS, Woodruff TK. The structural basis of TGF-β,bone morphogenetic protein and activin ligand binding[J]. Reproduction,2006,132(2):179-190.
    101. Lockhart DJ, Winzeler EA. Genomics, gene expression and DNA arrays [J]. Nature,2000,405(6788):827-836.
    102. Lowenstein E J, Daly R J, Batzer A G, et al. The SH2and SH3domaincontaining prot einGRB2l inks receptor tyrosine kinases to ras signaling [J]. Cell,1992,70(3):431-442.
    103. Mangum CP, Scott JL, Miller KI, et al. Bivalve hemocyamin: structural, functional, andphylogenetic relationships. Biological Bulletin,1987,173(1):205-221.
    104. Marc Sultan, et al. A global view of gene activity and alternative splicing by deep sequencingof the human transcriptome. Science2008,321:956-960.
    105. Matsui M, Foeler J H, Walling LL. Leucine aminopeptidases: diversity in structure andfunction [J]. Bio Chem,2006,387(12):1535-1544.
    106. Maxam, AM and Gilbert W. A new method for sequencing DNA. Proc Natl Acad Sci USA,1977,74(2):560-564.
    107. McPherron A C, Lawler A M, Lee S. Regulation of skeletal muscle mass in mice by a newTGF-β superfamily member [J]. Nature,1997,387:83-90
    108. McPherron A C, Lee S. Double muscling in cattle due to mutations in the myostatin gene [J].Proc. Natl. Acad. Sci. USA,1997,94:12457-12461
    109. Meyer E, Aglyamova GV, Wang S, Buchanan-Carter J, Abrego D, et al. Sequencing and denovo analysis of a coral larval transcriptome using454GSFlx. BMC Genomics,2009,10:219.
    110. Minokoshi Y, Alquier T, Furukawa N et al. AMP-kinase regulate food intake by responding tobormonal and nutrient signals in the hypothalamus.Nature,2004,428:569-574.
    111. Mishima K, Inoue K, Hayashi Y.Overexpression of extra-celluLar-signal reguLated kinaseson oral squamous cell carcinoma [J].Oral Oncol,2002,38(5):468-474.
    112. Moriya Y, Itoh M, Okuda S, Yoshizawa AC, Kanehisa M. KAAS: an automatic genomeannotation and pathway reconstruction server. Nucleic Acids Res,2007,35(Web Server issue):182-185.
    113. Mosher, D. S., Quignon, P., Bustamante, C. D., et al. A mutation in the myostatin geneincreases muscle mass and enhances racing performance in heterozygote dogs [J]. PLOSGenet.2007,3, e79.
    114. Motohiko Nishida, Koji Nagata, et al. Novel recognition mode between Vav and Grb2SH3domains. EMBO Journal,2001,20:2995-3007.
    115. Naciri Y, Vigouroux Y, Dallas J, et al. Identification and inheritance of (GA/TC) n and(AC/GT) n repeats in the European flat oyster Ostrea edulis (L.)[J]. Mol Mar Biol Biotechnol,1995,4(1):83-89.
    116. Neubauer K, Knittel T, Aurisch S, Fellmer P, Ramadori G. Glial fibrillary acidic protein-acell type specific marker for Ito cells in vivo and in vitro. Journal of Hepatology,1996,24(6):719-730.
    117. O'Neil ST, Dzurisin JD, Czrmichael RD, Lobo NF, Emrich SJ, et al. Population-leveltranscriptome sequencing of nonmodel organisms Erynnis propertius and Papilio zelicaon.BMC Genomics,2010,11:310.
    118. Pages G, Lenormand PL. Allemain G, et al. Mitogen-activated proein kinase p42mapk andp44mapk are required for f ibroblast proliferation. Proc Natl Acad Sci USA,1993,90:8319
    119. Rescan P Y. Regulation and functions of myogenic regulatory factors in lower vertebrates [J].Comp. Biochem. Physiol. Part B,2001,130:1-12
    120. Rika koshino, Susumu, Tanimura, Kazushi, Watanabe, Tadashi Kataoka1Blockade of theExtRACEllular Signal-regulated Kinase Path-way Induces Marked G1Cell Cycle Arrestand Apoptosis in Tumor Cells in Which the Pathway Is Cosstitutively Activated UP-REGULATION OF p27Kipl[J]. Biol Chem,2001:276(4):2686-2692.
    121. RosenV,Thies R S,Lyons K Signaling pathways in skeletal formation:a role for BMPreceptors.Ann N Y Acad Sci,1996,785:59-69.
    122. Sanger F, Nicklen S, and Coulson AR. DNA sequencing with chain-terminating inhibitors.Proc Natl Acad Sci USA,1977,74(12):5463-5467.
    123. Santen RJ,Song RX,McpHerson R,et al.The role of mi-togen-activated protein(MAP)kinasein breast cancer[J].J Steroid Biochem Mol Biol,2002,80(2):239-256.
    124. Schuelke, M., Wagner, K. R., Stolz. L. E., et al.2004. Myostatin mutation associated withgross muscle hypertrophy in a child [J]. New Engl. J. Med.350,2682-2688.
    125. Scott KD, Eggler P, Seaton G, Rossetto M, Ablett EM, Lee LS, Henry R.J. Analysis of SSRsderived from grape ESTs. Theoretical and Applied Genetics.2000,100:723-726.
    126. Seger R, Krebs EG. The MAPK signaling cascade. FASEB J,1995,9:726-35.
    127. Sergei A. Filichkin, Henry D. Priest, Scott A. Givan, et al. Genome-wide mapping ofalternative splicing in Arabidopsis thaliana. Genome Res,2010,20:45-58.
    128. Shakespeare W C. SH2domain inhibition: a problem solved. Curr Opin Chem Bio.2001,5:409-415.
    129. Shi CY, Yang H, Wei CL, Yu O, Zhang ZZ, Jiang CJ, et al. Deep sequencing of the Camelliasinensis transcriptome revealed candidate genes for major metabolic pathways of tea-specificcompounds. BMC Genomics.2011,28,12:131.
    130. Shimasaki S, Moore RK, Ootsuka F, Erickson GF. The bone morphogenetic protein systemin mammalian reproduction. Endocrine Rev,2004,25(1):72-101.
    131. Simpson A, Uitto J, RodeckU, et al. Different ial expression and subcellular distribution ofthe mouse met ast asis-associated proteins Mt a1and Mta3[J]. Gene,2001,273(1):29-39.
    132. Smalley KS.A piyotal role for ERK in the oncogenic be-haviour of malignantmelanoma[J].Int J Cancer,2003,104(5):527-532.
    133. Smith, EL. The peptidases of skeletal, heart, and uterine muscle [J].J Biol Chem,1948,173,553-569.
    134. Smith SA, NG Wilson, F Goetz, C Feehery, SCS Andrade, et al. Resolving the evolutionaryrelationships of molluscs with phylogenomic tools. Nature. doi:10.1038/nature,2011,10526.
    135. Soller M, Beeklnan J S. Genetic Polymorphism in varietal identification and geneticimprovement [J].The or APPL Genet,1983,67(l):25-33.
    136. Streelman JT.&Kocher TD. Microsatellite variation associated with prolactin expressionand growth of salt-challenged tilapia. Physiological Genomics,2002,9:1-4.
    137. Suzuki T, Kawasaki Y, Arita T and Nakamura A. Two-domain haemoglobin of the bloodclam Barbatia lima resulted from the recent gene duplication of the single-domain δ chain.Biochem J,1996,313,561-566.
    138. Su Y Q, Denegre J M, Wigglesworth K, et al. Oocyte-dependent activation of mitogen-activated protein kinase (ERK1/2) in cumulus cells is required for the maturation of themouse oocyte-cumulus cell complex [J].Developmental Biology,2003,263(1):126-138.
    139. Tang JF, Vosman B, Voorrips RE, Linden CG Van der, Leunissen JAM. QualitySNP: apipeline for detecting single nucleotide polymorphisms and insertions/deletions in EST datafrom diploid and polyploid species. BMC Bioinformatics,2006,7:438.
    140. Taylor A. Review of the activation of TGF-{beta} in immunity. J Leukoc Biol,2009,85:29-33.
    141. Terwilliger NB. Functional adaptations of oxygen-transport proteins. J Exp Biol,1998,201:1085-1098.
    142. Tomoyuki M, Takuo H, et al.Gene cloning and biochemical charaction of the BMP-2ofPinctada fucata[J].2008,72(1):37-47.
    143. Toth G, Gaspari Z, Jurka J. Microsatellitesin different euknryotic genomes: survey andanalysis [J]. Genome Reseach,2000,10(7):967-981.
    144. Verbe E K B S, Adriaansen-slot S S, Ruksen N G, et al. Grb2overexpr ession in nuclei andcytoplasm of hum an breast cells: A histochemical and biochem ical study of normal andneoplastic mammary tissue specimens [J]. J Pathol,1997,183(2):195-203.
    145. Wang GL, Wang JJ, Li JL. Preliminary study on applicability of microsatellite primersdeveloped from Crassostrea gigas to genomic analysis of Hyriopsis cumingii. Journal ofFisheries of China,2006,30(1):15-20
    146. Wang HX, Huan P, Xia L and Liu BZ.. Mining of EST-SSR markers in clam Meretrixmeretrix larvae from454shotgun transcriptome. Genes Genet. Syst.2011,86:197-205.
    147. Waskiewicz Aj, Cooper JA. Mitogen and stress response pathways: MAPK cascades and iacmyocyte hypertrophy. J Mol Cell Cardiol,1997,29:2873-2892.
    148. Watanabe T, Shinoharan N, Moriya K, et al. Signicance of the Grb2and son of seven less(SOS) proteins in human bladder cancer cell lines [J]. IUBMB Life,2000,49(4):317-320.
    149. Weber J L. Informativeness of human (dC-dA)/7,(dG-dT)/7, polymorphisms [J], Genomics,1990,7(4):524-530.
    150. Wharam SD, Wardill TJ, Goddard V, Donald KM, Parry H, et al. A leucine aminopeptidasegene of the Pacific oyster Crassostrea gigas exhibits an unusually high level of sequencevariation, predicted to affect structure, and hence activity, of the enzyme J. Shellfish Res.2008,27(5),1143-1154.
    151. Whittemore L, Song K, Li X, et al. Inhibition of myostatin in adult mice increases skeletalmuscle mass and strength[J]. Biochem. Biophys. Res. Comm.,2003,300:965-971
    152. Wilhelm BT, Landry JR. RNA-Seq quantitative measurement of expression throughmassively parallel RNA-sequencing [J]. Methods,2009,48(3):249-257
    153. Willem CW, Petra MH, Andrew GM. Lymnaea Epidermal Growth Factor Promotes AxonalRegenerationin CNS Organ Culture [J]. The Journal of Neuroscience,2001,21(23):9345–9354
    154. Woolwine SC, Sprinkle AB&Wozniak DJ. Loss of Pseudomonas aeruginosa PhpAaminopeptidase activity results in increased algD transcription [J]. J Bacteriol,2001,183:4674-4679.
    155. Wright J M, Bentzen P. Microsatellites: genetic markers for future [J].1994,4(3):384-388.
    156. Xiaoli Hu, Huihui Guo, Yan He, et al. Molecular Characterization of Myostatin Gene fromZhikong scallop Chlamys farreri (Jones et Preston1904)[J]. Genes genet. Syst.,2010,85:207-218
    157. Yagi K, Goto D, Hamamoto T, et a1. Alternatively spliced variant of Smad2lacking exon3[J].Biol Chem,1999,274(2):703-709.
    158. Zeng S, Xiao G, Guo J, Fei Z, Xu Y, et al. Development of a EST dataset and characterizationof EST-SSRs in a traditional Chinese medicinal plant, Epimedium sagittatum (Sieb. Et Zucc.)Maxim. BMC Genomics,2010,11:94.
    159. Zhan AB, Bao ZM, Yao., Wang XL, Hui M., Hu JJ. Polymorphic microsatellite markers inthe Zhikong scallop Chlamys farreri. Molecular Ecology Notes.2006,6:127-129.
    160. Zhou YJ, He ZX, Huang J, et al. Cloning and characterization of the activin like receptor1homolog (Pf-ALR1) in the pearl oyster, Pinctada fucata. Comparative Biochemistry andPhysilogy, Part B,2010,156:158-167.
    161. Zhu X, Lee HG, Perry G,et al.The role of mitogen-acti-vated protein kinase pathways inAlzheimer's disease[J].Neurosig-nals,2002,11(5):270-281.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700