用户名: 密码: 验证码:
萝卜硫素抗肿瘤活性研究及其关键酶myrosinase基因的克隆表达
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
萝卜硫素(1-异硫氰酸-4-甲磺酰基丁烷)(SFN)是迄今为止蔬菜中所发现的抗痛效果最好的天然活性物之一,美国、日本等国家从20世纪50年代就开始研究SFN的性质、制备方法、肿瘤抑制机制及生理功能等,由于其具有多种抑瘤机制且具有分子量小、治疗指数好等优点,SFN现已成为重点研究的抗肿瘤药候选药物。我国关于SFN的研究较少,关于其抑瘤活性的研究几无报道。本论文利用MTT法、荧光显微术和流式细胞术等方法研究了SFN对人胶质母细胞廇细胞A172、非小细胞肺癌细胞株H460、肝癌细胞株HepG2、人肺癌细胞株A549生长的影响。对人胶质瘤细胞A172的实验结果表明,较低浓度的萝卜硫素能够诱导A172发生凋亡和调控细胞周期,并主要以后者为主。而萝卜硫素对H460增殖抑制其所需浓度较高,并且主要是通过诱导凋亡通路来实现。可见,SFN对于不同瘤细胞株其增殖抑制机制不同。此外,SFN对A549和HepG2也有增殖抑制作用,结合本课题组前期MTT试验结果:SFN对瘤细胞株HeLa、HL-60、CNE、PC3及P388细胞等均有显著的体外增殖抑制活性且IC50值较低,说明SFN具有很好的新药开发潜力。
     硫代葡萄糖苷酶(myrosinase, EC 3.2.3.1,简称硫苷酶)又称黑芥子酶,是黑芥子苷(硫代葡萄糖苷的一种)水解生成SFN过程的关键酶。在生命进化历程中,硫苷酶基因往往以多个拷贝的形式存在于物种基因组中并在遗传过程中被各物种保留,最终形成了一个相当复杂的基因家族。在甘蓝型油菜中,该基因的研究已非常广泛,而在同为十字花科植物的西兰花中其研究却少见报道。因此,对西兰花硫苷酶基因进行克隆并对其异源表达进行研究对进一步研究该植物的防卫机理和硫苷活性水解产物的获得具有重要的学术意义和实际应用价值。
     硫苷酶在十字花科植物中的重要功能对硫苷酶基因结构保守性的要求与硫苷酶编码基因的多基因存在及在进化中被保留的现象说明硫苷酶编码基因序列存在相当保守的序列模体和变异相当活跃的区域。因此,利用现有基因数据库中不同物种的硫苷酶编码序列进行同源性比较,探询硫苷酶编码基因的保守序列,设计扩增西兰花硫苷酶编码基因保守序列的引物,结合利用RACE技术,在西兰花中获得硫苷酶基因的全长序列是可行的。本实验以西兰花幼苗为材料,根据同源序列法PCR扩增硫苷酶特异cDNA片段,进一步用3'RACE和5'RACE分别扩增cDNA 3'端序列和5’端序列,经序列拼接获得西兰花硫苷酶全长cDNA序列。利用在线蛋白质分析系统对其编码的氨基酸序列进行结构特征分析,NCBI CDD数据库中进行保守结构域查找,在SWISS-MODEL进行在线蛋白同源模建,MEG A3.1构建NJ系统树。结果得到一全长1830bp硫苷酶cDNA,含有一个1641bp的ORF及31bp的5’端非翻译区和158bp的3’端非翻译区,命名为BoMyr2(GenBank登录号为EU004075)。编码氨基酸序列含有20氨基酸长度的信号肽并含有9个天冬酰胺N末端糖基化位点,编码的蛋白分子量(Mw)约为62.2kD,等电点(pI)为8.71;BoMyr2推测氨基酸序列含有糖基水解酶家族1特有的糖基水解酶结构域,其编码蛋白与PDB库中白芥硫苷酶有相似的三维结构,具有明显的β/α(TIM)桶结构;BoMyr2应归为硫苷酶基因家族的MB亚族。
     由于硫苷酶是一类非组织型表达的蛋白,通常在植物体内含量较低,并且由MB亚族基因编码的硫苷酶在植物体内往往与硫苷酶结合蛋白形成复合物,因此,从植物源出发通过分离纯化获得大量的硫苷酶很难实现。西兰花硫甘酶的原核表达现无资料公开报道。根据RACE结果设计引物扩增硫苷酶成熟蛋白编码区序列,以pGEX-4T-1为载体,在大肠杆菌BL21中进行GST融合蛋白表达。经SDS-PAGE检测,发现在90kD左右处有明显的蛋白条带。预测的硫苷酶成熟蛋白分子量为60.17kDa,而融合蛋白N端融合标签蛋白分子量约为26kDa,表达产物与与预期大小一致。说明硫苷酶成熟蛋白在BL21中融合表达成功。不同时间点GST融合蛋白表达比较发现,融合蛋白的诱导表达具有累积作用,在诱导4h后,蛋白表达量已较高,到6小时达最大。融合蛋白活性测定发现,表达的融合蛋白基本没有催化底物sinigrin的能力,即融合蛋白缺乏硫苷酶活性,有必要进行进一步的凝血酶酶切加工以及蛋白变性、复性等方面的研究。
     蛋白数据库(PDB)中三维结构已闸明的硫苷酶均存在糖基化现象,利用不同模型对GenBank中已登录的硫苷酶全长cDNA序列进行信号肽预测发现,其编码基因均含有一段典型信号肽编码序列,说明硫苷酶蛋白在黑芥子酶细胞ER膜上合成后转运到黑芥子酶颗粒的过程中发生了糖基化反应。毕赤酵母(Pichia pastoris)具有对外源蛋白进行适度糖基化修饰的作用。因此,进一步将西兰花BoMyr2成熟蛋白编码序列重组到Pichia pastoris分泌型表达载体pPIC9K上,得到重组酵母表达载体pPIC9K-BoMyr2,经SacⅠ线性化后电转导入Pichia pastoris KM71。菌落PCR以及重组酵母的SDS-PAGE分析发现,硫苷酶在Pichia pastoris中进行分泌表达,表达蛋白分子量约为65kDa。酶活测定显示,表达较好的6株菌株(13#、15#、5#、21#、41#、29#、36#),13#、15#重组菌株其发酵液上清硫苷酶酶活可达1.7~1.9U/ml,而36#菌株其活性为0.75U/ml。硫苷酶比活力分析发现,同样是13#、15#重组菌株比活力较高,相关分析发现两者相关性达95%,说明发酵上清的蛋白量可基本反映外源蛋白的表达情况和硫苷酶活性。
     将酶活相对较高的13#菌株,进一步进行摇瓶发酵研究。结果表明,在BMMY培养基中,pH 6.0、1.0%甲醇浓度可以获得较好的表达水平;0.05%的油酸和0.1%的表面活性剂吐温20可以少量提高硫苷酶的表达。诱导培养36小时后发酵上清中硫苷酶总酶活较好,适于发酵液的回收。重组毕赤酵母在合适条件下其发酵上清酶活可达到3U/ml左右
     MA基因亚族编码的自由态硫苷酶已得到广泛深入的研究,而关于MB基因亚族编码的硫苷酶因在植物体内的表达情况、存在形式等因素其生化特性至今很少被触及。BoMyr2基因的克隆及其在毕赤酵母基因组中整合、分泌表达不但为大量获得纯硫苷酶提供了一条可行的新途径,而且必将有助于研究该酶的结构、功能,研究该酶与其结合蛋白、相关蛋白等相互作用并形成复合物的过程及各类蛋白对蛋白复合体活性影响等方面均具有重要的意义。
Sulforaphane (SFN), which has been identified in broccoli as a product of enzymatic or acid hydrolysis of the corresponding glucoraphanin(one of glucosinolates), is viewed as a conceptually promising agent in cancer prevention and/or therapy. SFN was prepared by author laboratory and its purity was about 85% determined by HPLC and GC/MS. The effect of SFN on the proliferation of human glioma cell line A172, human intestinal adenocarcinoma cell lines A549 and H460, human hepatoma carcinoma cell HepG2 was investigated in vitro by MTT assay、Hoechst fluorescent staining、Annexin V /PI fluorescent staining and FCS Technique. The results show that SFN can induce A172 cells apoptosis and SFN-mediated apoptosis depend on dose and time. In vitro experiments with SFN Simultaneously indicated a pronounced role for cell cycle arrest in its anti-cancer properties; G2/M arrest is the predominant stage of cell cycle arrest induced by SFN which indicated that SFN could inhibit cell microtube formation. Apoptosis and cell cycle arrest both contribute to the cell proliferation inhibition and the latter is the dominance mechanism for cell line A172. to contrast with cell line A172, sulforaphene concentration for cell H460 proliferation inhibition are higher than it's concentration for cell line A172, and the chief mechanism for proliferation inhibition is due to apoptosis. So the mechanisms of the proliferation inhibition are different with regard to different tumor cell lines. And it's essential to approach the mechanisms for tumor cell line when we do rearch for drug anti-tumor experiment.The proliferation inhibition evoked by SFN was also observed in tumor cell lines A549 and HepG2. Combined with the results about proliferation inhibition of SFN on tumor cell lines HeLa, HL-60, CNE, PC3 and P388 which were got by author laboratory by MTT method, the conclusion was that SFN had anti-tumor activity and can act via several mechanisms to suppress cancer progression, such as modulate cell growth and cell death signals. In conclution, SFN has a promising potential as a new anti-tumor drug.
     Myrosinases, thioglucoside glucohydrolases (EC 3.2.3.1) are isoenzymes present in most organs of Brassicaceae species. They catalyse the degradation of glucosinolates, a group of low molecular weight compounds to form an aglucone and D-glucose. The aglucone is unstable and spontaneously decomposes into nitriles, thiocyanates, isothiocyanates or indoles depending on the nature of the side chain and the reaction conditions. In some Brassica vegetables such as cabbage, cauliflower, brussels sprouts and broccoli, glucosinolate degradation products, especially isothiocyanates have been shown to have anticarcinogenic properties. Myrosinase-glucosinolate system in plant is also an important prevention mechanism for responding to the attacks by herbivores, entomologica, pathogenic microorganisms et al. All plant myrosinases characterized to date are glycosylated and are probably transported via the secretory pathway to the myrosin grains present in idioblasts called myrosin cells. Only when the plant tissues are damaged by physical or biological factors and the physical separation is disappeared, glucosinolates can contact with myrosinases and be hydrolyzed by myrosinases.
     Myrosinases have been well characterized in biochemical and molecular biological studies. Myrosinase genes have been cloned fr om oilseed rape (B. napus), turnip (B. campestris), leaf mustard (B. juncea), white mustard (Sinapis alba), and thale cress (Arabidopsis thaliana) and classified into four subtypes, MA, MB, MC and TGG, on the basis of amino acid sequences. Studies of myrosinases in B. napus and Sinapis alba showed that they are encoded by large gene families, with up to 15-20 genes in B.napus. MB showed dominant expression in seeds, seedlings, young leaves, and other organs in the mature plant, whereas MA and MC were expressed only in developing seeds. Few reports were about the Myrosinase genes from Broccoli (Brassica oleracea var. italica). In this paper, a full-length cDNA encoding myrosinase from Broccoli are cloned and characterized. And the gene is further fusion expressed in E.coli BL21 and secretory expressed in Pichia pastoris. Moreover, fermentation research of the recombinant yeast for myrosinase secretion was carried on in the last chapter.
     Based on the reported plant myrosinase genes in GenBank, software Primer Premier 5 was used to design degenerate primers MyrF and MyrR for amplification gene consensus regions. And then, using 3'RACE and the corresponding 5'RACE technique, the full-length cDNA of Broccoli homologous gene of Brassicaceae myrosinase (BoMyr2, GenBank number: EU004075) was obtained. The 1830bp cDNA contained an ORF of 1641bp, which coded for a polypeptide of 548 amino acids. The deduced polypeptide had a predicted molecular weight of 62.2kD, a pI of 8.71. And The predicted amino acid sequence include a signal peptide, nine N-glycosylation sites and a characteristic domain of the glycosyl hydrolases family 1 which include N-terminal signature(FiFGvAsSAYQiEgG) and active site(IYITENGFS). Homology model of the myrosinase from Broccoli was obtained with MOE on the base of the crystal structure of myrosinase from S. alba as template. Putative three-dimensional structures of the myrosinase showed a (β/α)8 barrel structure common to other glucosidases. Neighbor-joining tree constructed by MEGA 3.1 showed that BoMyr2 was belonged to myrosinase MB subfamily.
     The codon region of BoMyr2 was amplified using designed primers based on the RACE results and inserted into E.coli expression vector pGEX-4T-1.The recombinant plasmid was transformed into E.coli BL12 to produce expression strain which would express GST-myrosinase fusion protein. SDS-PAGE showed that the recombinant protein was highly expressed at 90KDa which is coincided with the designed protein. The protein was accumulated in the E.coli BL12 cells by IPTG induced. The product of fusion protein was fairly well after four hours IPTG induced and reached the maxium after six hours IPTG induced. Enzyme activity analysis found that the fusion protein was lack of myrosinase activity. This phenomenon maybe due to the fusion protein was deficient in modification or had a GST addition. The fusion protein presented mostly as inclusion body would also lead to enzyme deficient. So the further investigation, such as protein degeneration and regeneration, enzyme cleavage, is necessary for the aim to get enzymatic protein.
     Primary myrosinase has a signal peptide using different SignalP prediction models predicted. And all mature myrosinase which three dimension structure are mentioned and published in PDB database are glycosylated. Pichia pastoris expression system has glycosylation and other modification after protein translated. So it was also used to express recombinant myrosinase BoMyr2 in this paper. The interested BoMyr2 gene was got by digesting the pMD-18-BoMyr2 vector using restriction endonuclease, and then it was inserted into the secretory pPIC9K Pichia pastoris expression vector and transformed into E.coli. Positive recombinant plasmids were selected、sequenced and named pPIC9K-BoMyr2 and was linearized by Sac I, then the linear DNA transferred into Pichia pastoris KM71 by electroporation. The recombinant expression vector pPIC9K-BoMyr2 integrated into KM71 via homologous recombination between the transforming DNA and regions of homology within yeast genome. The positive transformants were screened by MD His- plates and colony PCR. The recombinants were induced expression with methanol and the expression products were tested by SDS-PAGE and enzymatic activity. The results showed that the BoMyr2 gene had been expressed successfully in Pichia pastoris and secreted in the culture medium. The expression product is about a 65 kDa protein and can degrade sinigrin in suitable condition. Six strains were selected in the experiment. Myrosinase activities in the culture supernatant of number 13 # and 15# reached 1.7-1.9U/ml. Determination of the special activity of myrosinase reflected that protein expression levels and enzyme activity had good correlation in culture supernatant. This is the first report on successful heterologous expression of a myrosinase in Pichia pastoris KM71 and provides an important tool for, e.g., further characterization of myrosinase by site-directed mutagenesis and for studying the interaction between myrosinase and myrosinase-binding proteins, myrosinase-associated proteins, and epithiospecifier proteins.
     Further fermentation research on number 13# strain were carried out using single factor analysis. The result show that the optimum pH and methanol concentration were respectively as 6.0 and 1.0% for myrosinase expression in BMMY medium.0.05% oleic acid or 0.1% tween-20 can also enhance myrosinase expression in small scale. Opportunity for recovering the fermentation culture was 36 hours after methanol inducing began. And myrosinase activity in the supernatant would come up to 3U/ml or so.
     The free, soluble form of myrosinase of the MA gene family has so far been intensively analyzed. In contrast, only limited information is available about the biochemical properties of the myrosinases encoded by the MB gene family for the reason of its low-level exression and complex form. the successful heterologous expression of recombinant BoMyr2 myrosinase from Broccoli in the yeast Pichia pastoris provides a new feasible procedure to produce free myrosinase homogeneity, facilitates studies on structure and function of the enzyme and will be a key for determining the consequences of complex formation with, e.g., myrosinase-binding proteins and myrosinaseassociated proteins, including their effection on myrosinase complex activity.
引文
1. Ahn SJ, Seo JS, Kin MS, et al. Cloning, site-directed mutagenesis and expression of cathepsin L-like cysteine protease from Uronema marinum (Ciliophora:Scuticociliatida). Molecular and Biochemical Parasitology,2007,156:191-198.
    2. Al-Shehbaz 1A. The tribes of the cruciferae (Brassicaceae) in the southeastern United States [J]. J. Arnold. Arbor. 1984,65:343-373.
    3. Al-Turki AI, Dick WA.Myrosinase Activity in Soil [J]. Soil Sci. Soc. Am.J.,2003,67:139-145.
    4. Andersen MD, Busk PK, Svendsen 1, et al. Cytochromes P-450 from cassava (Manihot esculenta Crantz) catalyzing the first steps in the biosynthesis of the cyanogenic glucosides linamarin and lotaustralin, Cloning, functional expression in Pichia pastoris, and substrate specificity of the isolated recombinant enzymes [J].J.Biol. Chem.,2000,275:1966-1975.
    5. Andreasson E, Bolt JL, Hoglund AS,et al. Different myrosinase and idioblast distribution in Arabidopsis and Brassica napus.[J]. Plant Physiol,2001,127(4):1750-1763.
    6. Andreasson E, Taipalensuu J, Rask Let al. Age-dependent wound induction of a myrosinase-associated protein from oilseed rape (Brassica napus) [J]. Plant Mol Biol,1999,41(2):171-180.
    7. Anna-Sigrid Keck, John W, inley P. ruciferous Vegetables:ancer Protective Mechanisms of Glucosinolate Hydrolysis Products and Selenium [J]. Nerative Cancer Therapies,2004,3(1):5-12.
    8. Arnold K, Bordoli L, Kopp J, et al. The SWISS-MODEL Workspace:A web-based environment for protein structure homology modelling [J]. Bioinformatics,2006,22,195-201.
    9. Bak S, Nielsen HL, Halkier BA. The presences of CYP79 homologues in glucosinolate-producing plants show evolutionary conservation of the enzymes in the conversion of amino acid to aldoxime in the biosynthesis of cyanogenic glucosides and glucosinolates [J]. Plant Mol. Biol.,1998,38:725-734.
    10. Bak S, Olsen CE, Halkier BA, et al.Transgenic tobacco and Arabidopsis plants expressing the two multifunctional Sorghum cytochrome P450 enzymes, CYP79A1 and CYP71E1, are cyanogenic and accumulate metabolites derived from intermediates in dhurrin biosynthesis [J]. Plant Physiol.,2000,123:1437-1448.
    11. Bak S, Olsen CE, Petersen BL,et al. etabolic engineering of p-hydroxybenzylglucosinolate in Arabidopsis by expression of the cyanogenic CYP79A1 from Sorghum bicolor[J]. Plant J.,1999,20:327-345.
    12. Bartel B. Differential regulation of an auxin-producing nitrilase gene family in Arabidopsis thaliana [J]. Proc. Natl. Acad. Sci. USA,1994,91:6649-6653.
    13. Bartlet E, Kiddle G, Williams I, et al. Wound-induced increases in the glucosinolate content of oilseed rape and their effect on subsequent herbivory by a crucifer specialist [J]. Entomol. Exp. Appl.,1999,91:163-167.
    14. Basten G P, Bao Y P and Willamson G. Sulforaphane and its glutathione conjugate but not sulforaphane nitrile induces UDP-glucuronosyl transferase (UGT1A1) and glutathione transferase (GSTA1) in cultured cells[J]. Carcinogenesis, 2002,23(8):1399-1404.
    15. Bennett RN, Kiddle G, Hick AJ,et al. Distribution and activity of microsomal NADPH-dependent monooxygenases and amino acid decarboxylases in cruciferous and non-cruciferous plants, and their relationship to foliar glucosinolate content[J]. Plant Cell Environ.,1996,19:801-812.
    16. Bennett RN, Kiddle G, Wallsgrove RM.Biosynthesis of benzylglucosinolate, cyanogenic glucosides and phenylpropanoids in Carica papaya[J].Phytochemistry,1997,45:59-66.
    17. Bennett RN, Kiddle G, Wallsgrove RM. Involvement of cytochrome P450 in glucosinolate biosynthesis in white mustard [J]. Plant Physiol.,1997,114:1283-1291.
    18. Bennett RN, Ludwig-Muller J, Kiddle G, et al. Developmental regulation of aldoxime formation in seedlings and mature plants of Chinese cabbage (Brassica campestris ssp. pekinensis) and oilseed rape (Brassica napus): glucosinolate and IAA biosynthetic enzymes [J]. Planta,1995,196:239-244.
    19. Bertelli D, Plessi M, Braghiroli D, et al. Separation by solid-phase extraction and quantification by reverse phase HPLC of sulforaphane in broccoli [J]. Food Chemistry,1998,63:417-421.
    20. Bjorkman R, Janson JC. Studies on myrosinases Ⅰ. Purification and characterization of a myrosinase from white mustard seed(Sinapis alba, L.)[J]. Biochim. Biophys. Acta,1972,276:508-518.
    21. BjorkmanR, Lonnerdal B. Studies on myrosinases:Ⅲ. Enzymatic properties of myrosinases from Sinapis alba and Brassica napus seeds [J]. Biochim Biophvs Acta,1973,327:121.
    22. Blake-Kalff MM, Harrison KR. Hawkesford MJ, et al. Distribution of sulfur within oilseed rape leaves in response to sulfur deficiency during vegetative growth[J]. Plant Physiol.,1998,118:1337-1344.
    23. Blum P, Velligan M, Lin N, et al. DnaK-mediated alterations in human growth hormone protein inclusion bodies. Biotechnology,1992,10:301-304.
    24. Bones AM, Rossiter JT. The myrosinase-glucosinolate system, its organization and biochemistry [J]. Physiol. Plant., 1996,97:194-208.
    25. Bones A, Thangstad O, Haugen O, et al.Fate of myrosin cells:characterization of monoclonal antibodies against myrosinase [J].J. Exp. Bot.,1991,42:1541-1549.
    26. Bones AM, Rossiter JT. The enzymic and chemically induced decomposition of glucosinolates [J]. Phytochemistry, 2006,67:1053-1067.
    27. Bones AM. Distribution of b-thioglucosidase activity in intact plants, cell and tissue cultures and regenerant plants of Brassica napus L. [J].J. Exp. Bot.,1990,41:737-744.
    28. Botti MG, Taylor MG, Botting NP. Studies on the mechanism of myrosinase. Investigation of the effect of glycosyl acceptors on enzyme activity [J].J.Biol. Chem.,1995,270(35):20530-20535.
    29. Bourderioux A, Lefoix M, Gueyrard D, et al. The glucosinolate-myrosinase system. New insights into enzyme-substrate interactions by use of simplified inhibitors [J]. Org. Biomol. Chem.,2005,3:1872-1879.
    30. Bowden G A, Georgiou G. Folding and aggregation of p-lactamase in the periplasmic space of Escherichia coli. J. Biol. Chem.,1990,265:16760-16766.
    31. Brabban AD, Edwards C. The effects of glucosinolates and their hydrolysis products on microbial growth [J].J.Appl. Bacteriol.,1995,79(2):171-177.
    32. Brudenell AJP, Griffiths H, Rossiter JT, et al. The phloem mobility of glucosinolates [J].J. Exp. Bot.,1999,50: 745-756.
    33. Bugos RC, Chiang VL, Campbell WH. cDNA cloning, sequence analysis and seasonal expression of lignin-bispecific caffeic acid:5-hydroxyferulic acid Omethyltransferase of aspen [J]. Plant Mol. Biol.,1991,17:1203-1215.
    34. Burmeister WP, Cottaz S, Driguez H, et al. The crystal structures of Sinapis alba myrosinase and a covalent glycosyl-enzyme intermediate provide insights into the substrate recognition and active-site machinery of an S-glycosidase [J]. Structure,1997,5:663-675.
    35. Campo de Quiros H, Magrath R, McCallum D, et al. a-Keto acid elongation and glucosinolate biosynthesis in Arabidopsis thaliana,[J].Theor. Appl. Genet.,2000,101:429-437.
    36. Chadchawan S, Bishop J, Thangstad OP, et al. Arabidopsis cDNA sequence encoding myrosinase [J]. Plant Physiol., 1993,103(2):671.
    37. Chaudhary PM, Eby MT, Jasmin A,et al. Activation of the c-Jun N-terminal kinase/stress-activated protein kinase pathway by overexpression of caspase-8 and its homologs[J]. J. Biol. Chem.,1999,274:19211-19219.
    38. Chavadej S, Brisson N, McNei UN, et al. Redirection of tryptophan leads to production of low indole glucosinolate canola [J].Proc. Natl. Acad. Sci. USA,1994,91:2166-2170.
    39. Chen S, Halkier BA. Characterization of glucosinolate uptake by leaf protoplasts of Brassica napus [J]. J. Biol. Chem., 2000,275:22955-22960.
    40. Chen S, Halkier BA. Functional expression and characterization of the myrosinase MYR1 from Brassica napus in Saccharomyces cerevisiae,[J]. Protein Expr. Purif.,1999,17:414-420.
    41. Chen YR, Han J, Kori R,et al. Phenylethyl isothiocyanate induces apoptotic signaling via suppressing phosphatase activity against c-Jun N-terminal kinase [J]. J. Biol. Chem.,2002,277:361-372.
    42. Chen YR, Wang W, Kong AN,et al. Molecular mechanisms of c-Jun N-terminal kinase-mediated apoptosis induced by anticarcinogenic isothiocyanates [J]. J. Biol. Chem.,1998,273:1769-1775.
    43. Cho SD, Li G, Hu H, et al. Involvement of c-jun N-terminal kinase in g2/m arrest and caspase-mediated apoptosis induced by sulforaphane in dul45 prostate cancer cells [J]. Nutr. Cancer,2005,52:213-224.
    44. Choi BK, Bobrowicz P, Davidson RC, et al. Use of combinatorial genetic libraries to humanize N-linked glycosylation in the yeast pichia pastoris.PNAS,2003,100 (9):5022-5027.
    45. Chung FL, Juchatz A, Vitarius J, et al. Effects of dietary compounds on alpha-hydroxylation of N-nitrosopyrrolidine and N'-nitrosonornicotine in rat target tissues.[J]. Cancer Res,1984,44(7):2924-2928.
    46. Clare JJ, Rayment FB, Ballantine SP. et al. High level expression of tetanus toxin fragment C in Pichia pasteris strains containing multip le tandem integrations of the gene. Biotechnology,1991,9 (5):445-460.
    47. Clare JJ. Rayment FB, Sreekrishna K, et al. High-Level Expression of Tetanus Toxin Fragment C in Pichia Pastoris Strains Containing Multiple Tandem Integrations of the Gene. Nature Biotechnology,1991,9:455-460.
    48. Clossais-Besnard N, Larher F. Physiological role of glucosinolates in Brassica napus. Concentration and distribution pattern of glucosinolates among plant organs during a complete life cycle[J].J. Sci. Food Agric.,1991,56:25-38.
    49. Combet C, Blanchet C, Geourjon C et al. GNPS@:Network Protein Sequence Analysis. TIBS[J],2000,25,3 (291):147-150.
    50. CrootWassink JD, Reed DW, Kolenovsky DW. Immunopurification and Immunocharacterization of the Clucosinolate Biosynthetic Enzyme Thiohydroximate S-Clucosyltransferase [J]. Plant Physiol.,1994,105:425-433.
    51. Depree JA, Howard TM. Flavour and pharmaceutical properties of the volatile sulphur compounds of Wasabi (Wasabia japonica) [J]. Food Research International,1999,31(5):329-337.
    52. Doughty K.I, Kiddle G, Pye BJ, et al. Selective induction of glucosinolates in oilseed rape leaves by methyl jasmonate [J]. Photochemistry,1995,38:347-350.
    53. Du L, Lykkesfeldt J, Olsen CE,et al. Involvement of cytochrome P450 in oxime production in glucosinolate biosynthesis as demonstrated by an in vitro microsomal enzyme system isolated from jasmonic acid-induced seedlings of Sinapis alba L.[J]. Proc. Natl. Acad. Sci. USA,1995,92:12505-12509.
    54. Durham PL, Poulton JE. Effect of castanospermine and related polyhydroxyalkaloids on purified myrosinase from Lepidium sativum seedlings [J]. Plant. PhysioL.,1989,90:48-52.
    55. Earnshaw WC, Martins LM. Kaufmann SH. Mammalian caspases:structure, activation, substrates, and functions during apoptosis [J]. Annu. Rev. Biochem.,1999,68:383-424.
    56. Edouard de Castro, Christian JA, Gattiker A, et al. ScanProsite:detection of PROSITE signature matches and ProRule-associated functional and structural residues in proteins. Nucleic Acids Res.,2006,34(Web Server issue):W362-W365.
    57. Eriksson S, Andreasson E, Ekbom B,et al. Complex Formation of Myrosinase Isoenzymes in Oilseed Rape Seeds Are Dependent on the Presence of Myrosinase-Binding Proteins[J]. Plant Physiology,2002,129:1592-1599.
    58. Ettlinger MG, Kjaer A. Sulfur compounds in plants [J]. Rec. Adv. Phytochem.,1968,1:59-144.
    59. Eylen DV, Indrawati, Hendrickx M,et al. Temperature and pressure stability of mustard seed (Sinapis alba L.) myrosinase. Food Chemistry,2006,97(2):263-271
    60. Fahey JW. Zhang Y, Talalay P. Broccoli sprouts:An exceptionally rich source of inducers of enzymes that protect against chemical carcinogens [J]. Proc. Natl. Acad. Sci. USA,1997,94:10367-10372.
    61. Fahey JW, Zalcmann AT, Talalay P. The chemical diversity and distribution of glucosinolates and sothiocyanates among plants [J]. Phytochemistry,001,6:5-51.
    62. Falk A, Ek B, Rask L. Characterization of a new myrosinase in Brassica napus [J]. Plant Mol. Biol.,1995,27:863-874.
    63. Falk A, Ek B, Rask L. Characterization of a new myrosinase in Brassica napus [J]. Plant Mol Biol,1995,27(5): 863-874.
    64. Falk A, Taipalensuu J, Ek B, et al. Characterization of rapeseed myrosinase-binding protein [J]. Planta,1995,195(3): 387-395.
    65. Fenwich R, Heaney RK, Mullin WJ. Glucosinolates and their breakdown products in food and food plants [J]. CRC Crit. Rev. Food Sci. Nutr.,1983,18:123-201.
    66. Fimognari C, Hrelia P. Sulforaphane as a promising molecule for fighting cancerb [J]. Mutation Research,2007,635 (2-3):90-104.
    67. Fimognari C, Nusse M, Cesari R, et al. Growth inhibition, cell-cycle arrest and apoptosis in human T-cell leukemia by the isothiocyanate sulforaphane [J]. Carcinogenesis,2002,23(4):581-586.
    68. Foo HL, Gronning LM, Goodenough L, et al. Purification and characterisation of epithiospecifer protein from Brassica napus:enzymic intramolecular sulphur addition within alkenyl thiohydroximates derived from alkenyl glucosinolate hydrolysis [J].FEBS Lett..,2000,468:243-246.
    69. Francis F, Lognay G, Wathelet J, et al.Characterisation of Aphid Myrosinase and Degradation Studies of Glucosinolates[J].Archives of Insect Biochemistry and Physiology,2002,50:173-182.
    70. Gattiker A, Gasteiger E, Bairoch A. ScanProsite:a reference implementation of a PROSITE scanning tool Applied Bioinformatics [M]. PubMed:15130850,2002,1:107-108.
    71. Georgiou G, VALAX P, Ostermeier M. Folding and aggregation of TEM {beta}-lactamase:Analogies with the formation of inclusion bodies in Escherichia coli. Protein science,1994,3:1953-1960.
    72. Geshi N, Andreasson E, Meijer J, et al. Co-localization of myrosinase-and myrosinase-binding proteins in grains of myrosin cells in cotyledon of Brassica napus seedlings. Plant Physiology:and Biochemistry,1998,36 (8):583-590.
    73. Geshi N, Brandt A. Two jasmonate-inducible myrosinase-binding proteins from Brassica napus L. seedlings with homology to jacalin [J]. Planta,1998,204(3):295-304.
    74. Gijzen M, McGregor I. Seguin-Swartz G. Glucosinolate uptake by developing rapeseed embryos [J]. Plant Physiol., 1989,89:260-263.
    75. Gijzen M, Seguin-Swartz G, McGregor I. Glucosinolate metabolism in rapeseed embryos:effect of feeding glucosinolate precursors and uptake of glucosinolate by different plant cultivars [J].J. Plant Physiol.,1994,144:17-21.
    76. Glendening TM, Poulton JE. Glucosinolate Biosynthesis:Sulfation of Desulfobenzylglucosinolate by Cell-Free Extracts of Cress (Lepidium sativum L.) Seedlings [J]. Plant Physiol,1988,86(2):319-321.
    77. Goldner M, Nairn CA, Patel PV, et al. Indication of thioglucosidase activity in extracts of Neisseria gonorrhoeae [J]. Ann Inst Pasteur Microbiol,1987,138(3):325-332.
    78. Grob K, Matile PH. Vacuolar location of glucosinolates in horseradish root cells [J]. Plant Sci. Lett.,1979,14: 327-335.
    79. GrootWassink JWD, Underhill EW, Hemmingsen SM, et al. Plants with reduced glucosinolate content [P]. European Patent,1997:EP 0 771 878 A1.
    80. Guex N, Peitsch, MC. SWISS-MODEL and the Swiss-PdbViewer:An environment for comparative protein modelling [J]. Electrophoresis,1997,18:2714-2723.
    81. Gurvitz A, Wabnegger L, Rottensteiner H et al. Adrlp-Dependent Regulation of the Oleic Acid-lnducible Yeast Gene SPS19 Encoding the Peroxisomal b-Oxidation Auxiliary Enzyme 2,4-Dienoyl-CoA Reductase [J]. Molecular Cell Biology Research Communications,2000,4:81-89.
    82. Halkidou K, Gaughan L, Cook S, et al. Up-regulation and nuclear recruitment of hdacl in hormone refractory prostate cancer[J]. Prostate,2004,59:177-189.
    83. Halkier BA.Glucosinolates, in:Ikan R. (Ed.) [M]. London:John Wiley and Sons Ltd,1999.193-223.
    84. Hamilton RS, Bobrowicz P, Bobrowicz B, et al. Production of complex human glycoproteins in yeast. Science,2003, 301:1244-1246.
    85. Hansen CH, Wittstock U, Olsen CK,et al. Cytochrome P450 CYP79F1 from Arabidopsis catalyzes the conversion of dihomomethionine and trihomomethionine to the corresponding aldoximes in the biosynthesis of aliphatic glucosinolates [J]. J. Biol. Chem.,2001,276:11078-11085.
    86. Hara M, Etob H, Kuboi T. Tissue printing for myrosinase activity in roots of turnip and Japanese radish and horseradish: a technique for localizing myrosinases [J]. Plant Science.2001,160:425-431.
    87. Hara M, Fujii Y, Sasada Y and Kuboi T. cDNA Cloning of Radish (Raphanus sativus) Myrosinase and Tissue-Specific Expression in Root. Plant Cell Physiol.2000,41(10):1102-1109.
    88. HartelFV, Brandt A. Characterization of a Brassica napus Myrosinase Expressed and Secreted by Pichia pastoris[J]. Protein Expression and Purification,2002,24:221-226.
    89. Hasegawa T, Yamada K, Kosemura S, et al. Phototropic stimulation induces the conversion of glucosinolate to phototropism-regulating substances of radish hypocotyls [J]. Phytochemistry,2000,54:275-279.
    90. Hecht SS. Chemoprevention of cancer by isothiocyanates, modifiers of carcinogen metabolism [J]. J Nutr,1999,129(3): 768-774.
    91. Henrik N, Anders K. Prediction of signal peptides and signal anchors by a hidden Markov model. Proceedings of the Sixth International Conference on Intelligent Systems for Molecular Biology (ISMB 6) [M], AAAI Press, Menlo Park. California,1998,122-130.
    92. Henrik N, Jacob E, Soren Brunak, et al. Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites [J]. Protein Engineering,1997,10:1-6.
    93. Higdon J V, Delage B, Williams D E, et al. Cruciferous vegetables and human cancer risk:epidemiologic evidence and mechanistic basis[J]. Pharmacological Research,2007,55(3):224-236.
    94. Hogge LR, Reed DW, Underhill EW.et al. HPLC separation of glucosinolates from leaves and seeds of Arabidopsis thaliana and their identification using thermospray liquid chromatography/mass spectrometry [J].J.Chromalogr. Sci., 1988,26:551-556.
    95. Hoglund AS, Lenman M, Falk A,et al.Distribution of Myrosinase in Rapeseed Tissues.[J]. Plant Physiol,1991,95(1): 213-221.
    96. Hoglund AS, Lenman M, Rask L. Myrosinase is localized to the interior of myrosin grains and is not associated to the surrounding tonoplast membrane [J]. Plant Sci,1992,85:165-170.
    97. Hrncirik K, Valusek J, Velisek J. A study on the formation and stability of ascorbigen in an aqueous system [J]. Food Chem.,1998,63:349-355.
    98. Huang C, Ma WY, Li J,et al. Essential role of p53 in phenethyl isothiocyanate-induced apoptosis [J].Cancer Res.,1998, 58:4102-4106.
    99. Huesby H, Chadchawan S, Winge P,et al. Guard cell-and phloem idioblast-specific expression of thioglucoside glucohydrolase Ⅰ (myrosinase) in Arabidopsis[J]. Plant Physiol,2002,128(4):1180-1188.
    100. Hull AK, Vij R, Celenza JL. Arabidopsis cytochrome P450s that catalyze the first step of tryptophandependent indole-3-acetic acid biosynthesis [J]. Proc. Natl. Acad. Sci. USA,2000,97:2379-2384.
    101.Husebye H, Arzt S, Burmeister WP, et al. Crystal structure at 1.(?)A resolution of an insect myrosinase from Brevicoryne brassicae shows its close relationship to [beta]-glucosidases[J]. Insect Biochemistry and Molecular Biology,2005,35 (12):1311-1320.
    102. Inke Nitz, Heike Berkefeld, Piotr S,et al. Pyk 10, a seedling and root specific gene and promoter from Arabidopsis thaliana [J]. Plant Science,2001,161:337-346.
    103. Iori R, Rollin P, Streicher H, et al. The myrosinase-glucosinolate interaction mechanism studied using some synthetic competitive inhibitors [J]. FEBS Lett,1996,385(1-2):87-90.
    104. James D, Rossiter J. Development and characteristics of myrosinase in Brassica napus during early seedling growth [J]. Plant Physiol,1991,82:163-170.
    105. Fahey JW, Zalcmann AM. The chemical diversity and distribution of glucosinolates and isothiocyanates among plants [J]. Phytochemistry,2001,56:5-51.
    106. Jones AME, Bridges M, Bones AM, et al. Purification and characterisation of a non-plant myrosinase from the cabbage aphid Brevicoryne brassicae (L.)[J]. Insect Biochemistry and Molecular Biology,2001,31:1-5.
    107. Jones AME, Winge P, Bones AM, et al. Characterization and evolution of a myrosinase from the cabbage aphid Brevicoryne brassicae[J]. Insect Biochemistry and Molecular Biology,2002,32:275-284.
    108. Jones PR, Moller BL. The UDP-glucose:p-Hydroxy-mandelonitrile-O-glucosyltransferase that catalyzes the last step in synthesis of the cyanogenic glucoside dhurrin in Sorghum bicolor [J]. J. Biol. Chem.,1999,274:366-374.
    109. Jorgensen LB. Myrosin cells and dilated cisternae of the endoplasmic reticulum in the order Capparales [J]. Nord J Bot, 1981,1:433-445.
    110. Jwanny EW, El-Sayed ST, Rashad M M, et al. Myrosinase from roots of Raphanus sativus. Phytochemistry,1995,39 (6):1301-1303.
    111. Kelly PJ, Bones A, Rossiter JT. Subcellular immunolocalization of the glucosinolate sinigrin in seedlings of Brassica juncea [J]. Planta,1998,206:370-377.
    112. Keuma Y, Jeong W, Tony Kong AN. Chemoprevention by isothiocyanates and their underlying molecular signaling mechanisms [J]. Mutation Research,2004,555:191-202.
    113. Kiddle GA, Bennett RN, Hick AJ,et al. C-S lyase activities in leaves of crucifers and non-crucifers, and the characterization of three classes of C-S lyase activities from oilseed rape (Brassica napus L.)[J]. Plant Cell Environ., 1999,22:433-445.
    114. Kiddle GA, Doughty KJ, Wallsgrove RM. Salicylic acid-induced accumulation of glucosinolates in oilseed rape leaves [J]. J. Exp. Biol.,1994,45:1343-1346.
    115. Kleinwachter M, Selmar D. A novel approach for reliable activity determination of ascorbic acid depending myrosinases [J]. J. Biochem. Biophvs. Methods,2004,59:253-265.
    116. Kliebenstein D J, Kroymann J, Mitchell-Olds T. The glucosinolate-myrosinase system in an ecological and evolutionary context. Current Opinion in Plant Biology,2005,8:264-271.
    117. Kliebenstein DJ, Kroymann J, Brown P,et al. Genetic control of natural variation in Arabidopsis glucosinolate accumulation [J]. Plant Physiol,2001,126:811-825.
    118. Kliebenstein DJ, Lambrix VM, Reichelt M, et al. Gene duplication in the diversification of secondary metabolism: tandem 2-oxoglutarate-dependent dioxygenases control glucosinolate biosynthesis in Arabidopsis thaliana [J].Plant Cell,2001,13:681-693.
    119. Kobayashi K, Kuwab S, Ohya T, et al. Addition of Oleic Acid Increases Expression of Recombinant Human Serum Albumin by the AOX Promoter in Pichia pastoris. Journal of Bioscience and Bioengineering,2000,89, (5):479-484.
    120. Kore AM, Spencer GF, Wallig MA. Purification of the omega-(methylsulfinyl)alkyl glucosinolate hydrolysis products:1-isothiocyanato-3-(methylsulfinyl)propane,1-isothiocyanato-4-(methylsulfinyl)butane,4-(methylsulfinyl)buta ne-nitrile and 5-(methylsulfinyl)pentanenitrile from broccoli and Lesquerella fendleri[J]. Journal of Agricultural and Food Chemistry,1993,41:89-95.
    121. Koritsas VM, Lewis JA, Fenwick GR. Glucosinolate response of oilseed rape, mustard and kale to mechanical wounding and infestation by cabbage stem flea beetle (Psyliodes chysocephala) [J]. Ann. Appl. Biol.,1991,118: 209-221.
    122. Koroleva OA, Davies A, Deeken R, et al. Identification of a new glucosinolate-rich cell type in Arabidopsis flower stalk [J].Plant Physiol.,2000,124:599-608.
    123. Lefoix M, Tatibouet A, Cottaz S, et al. Carba-glucotropaeolin the first nonhydrolyzable glucosinolate analogue, to inhibit myrosinase [J]. Tetrahedron Letters,2002,43:2889-2890.
    124. Lenman M, Falk A, Xue J, et al. Characterization of a Brassica napus pseudogene:myrosinases are members of the BGA family of glycosidases [J]. Plant Mol. Biol,1993,21:463-474.
    125. Lenman M, Falk A. Xue J, et al. Characterization of a Brassica napus myrosinase pseudogene:myrosinases are members of the BGA family of beta-glycosidases [J]. Plant Mol. Biol.,1993,21(3):463-474.
    126. Lenman M, Rodin J, Josefsson LG, et al. Immunological characterization of rapeseed myrosinase [J]. Eur. J. Biochem., 1990,194:747-753.
    127. Leoni O, lori R, Palmieri S, et al. Myrosinase-generated isothiocyanate from glucosinolates:Isolation, characterization and in vitro antiproliferative studies [J]. Bioorganic & Medicinal Chemistry,1997,5 (9):1799-1806.
    128. Li X, Kushad MM. Correlation of Glucosinolate Content to Myrosinase Activity in Horseradish (Armoracia rusticama) [J].J.Agric. Food Chem.,2004,52:6950-6955.
    129. Li X, Kushad MM. Purification and characterization of myrosinase from horseradish (Armoracia rusticana) roots [J]. Plant Physiology and Biochemistry,2005,43:503-511.
    130. Li YC, Kiddle G. Bennett R, et al. Local and systemic changes in glucosinolates in Chinese and European cultivars of oilseed rape (Brassica napus L.) after inoculation with Sclerotinia sclerotiorum (stem rot) [J]. Ann. Appl. Biol.,1999, 134:45-58.
    131. Liang H. Yuan Q, Xiao Q. Effects of metal ions on myrosinase activity and the formation of sulforaphane in broccoli seed [J]. Journal of Molecular Catalysis B:Enzymatic,2006:1-4.
    132. Shen LQ, Su GY, Wang XY,et al. Endogenous and Exogenous Enzymolysis of Vegetable-Sourced Glucosinolates and Influencing Factors. Food Chemistry,2010,119:987-994.
    133. Llanos PM, Smiths JP, Brink BT. Degradation of sinigrin by Lactobacillus agilis strain R16 [J]. Inl J Food Microbiol, 1995,26(2):219-229.
    134. Ludikhuyze L, Ooms V, Weemaes C,et al. Kinetic study of the irreversible thermal and pressure inactivation of myrosinase from broccoli (Brassica oleracea L. Cv. (?)alica) [J]. J Agric Food Chem,1999,47(5):1794-1800.
    135. Ludwig-Mueller J, Bennett R, Kiddle G,et al. The host range of Plasmodiophora brassicae and its relationship to endogenous glucosinolate content [J]. New Phytol,1999,141:443-458.
    136. Ludwig-Mueller J, Rausch T, Lang S,et al. Plasma membrane bound high plant isoenzymes convert tryptophan to indole-3-acetaldoxime [J]. Phytochemistry,1990,29:1397-1400.
    137. Lykkesfeldt J, Moller BL. Synthesis of benzylglucosinolate in Tropaeolum majus L.:isothiocyanates as potent enzyme inhibitors [J]. Plant Physiol.,1993,102:609-613.
    138. MacLeod AJ, Rossiter JT. Degradation of 2-hydroxybut-3-enyllglucosinolate (progoitrin) [J]. Phytochemistry,1987,26: 669-673.
    139. MacLeod A.I, Rossiter JT. Isolation and examination of thioglucoside glucohydrolase from seeds of Brassica napus [J]. Phytochemistiy,1986,25:1047-1051.
    140. Magrath R, Bano F, Morgner M, et al.Genetics of aliphatic glucosinolates, Ⅰ. Side chain elongation in Brassica napus and Arabidopsis thaliana [J]. Heredity,1994,72:290-299.
    141. Magrath R, Mithen R.Maternal effects on the expression of individual aliphatic glucosinolates in seeds and seedlings of Brassica napus [J]. Plant Breeding,1993,111:249-252.
    142. Mahadevan S, Stowe BB. An Intermediate in the Synthesis of Glucobrassicins from 3-Indoleacetaldoxime by Woad Leaves [J]. Plant Physiol,1972,50(1):43-50.
    143. Marc WT. High yield secretion of recombinant gelation by Pichia pastoris[J]. Yeast,1999,15:1087-1096.
    144. Matusheski NV, Swarup R, Juvik JA, et al. Epithiospecifier protein from broccoli (Brassica oleracea L. ssp. italica) inhibits formation of the anticancer agent sulforaphane.[J]. J Agric Food Chem,2006,54(6):2069-2076.
    145. Matusheski NV, Wallig MA, Juvik JA, et al. Preparative HPLC method for the purification of sulforaphane and sulforaphane nitrile from Rassica Oleracea [J]. Journal of Agricultural and Food Chemistry,2001,49:1867-1872.
    146. Matusheski NV, Juvik JA, JefTery EH. Heating decreases epithiospecifier protein activity and increases sulforaphane formation in broccoli [J]. Phytochemistry,2004,65(9):1273-1281.
    147. Merritt SZ. Within-plant variation in concentrations of amino acids, sugar, and sinigrin in phloem sap of black mustard, Brassica nigra L. Koch [J]. J. Chem. Ecol.,1996,22:1133-1145.
    148. Mikkelsen MD, Hansen CH, Wittstock U, et al. Cytochrome P450 CYP79B2 from Arabidopsis catalyzes the conversion of tryptophan to indole-3-acetaldoxime, a precursor of indoleglucosinolates and indole-3-acetic acid [J]. J. Biol. Chem.,2000,275:237-245.
    149. Mithen R, Campos H. Genetic variation of aliphatic glucosinolates in Arabidopsis thaliana and prospects for map-based cloning [J]. Entomol. Exp. Appl.,1996,80:202-205.
    150. Mithen R, Clarke J, Lister C, et al. Genetics of aliphatic glucosinolates,Ⅲ. Side chain structure of aliphatic glucosinolates in Arabidopsis thaliana [J]. Heredity,1995,74:210-215.
    151. Moller BL, Poulton J. The biosynthesis of cyanogenic glucosides, in:Dey P.M., Harborne.I.B. (Eds.), Methods in Plant Biochemistry [M]:Academic Press, New York,1993.183-207.
    152. Moller C, Nehlin L, Glimelius K.et al. Influence of in vitro culture conditions on glucosinolate composition of microspore-derived embryos of Brassica napus [J]. Physiol. Plant.1999,107.
    153. Nagano AJ, Matsushima R, Hara-Nishimura I. Activation of an ER-body-localized β-Glucosidase via a Cytosolic Binding Partner in Damaged Tissues of Arabidopsis thaliana[J]. Plant Cell Physiol.,2005,46(7):1140-1148.
    154. Nielsen JS, MOller BL.Cloning and expression of cytochrome P450 enzymes catalyzing the conversion of tyrosine to p-hydroxyphenylacetaldoxime in the biosynthesis of cyanogenic glucosides in Triglochin maritima [J]. Plant Physiol., 2000,122:1311-1321.
    155. Oerlemans K, Barrett DM, Suades CB, et al. Thermal degradation of glucosinolates in red cabbage[J]. Food Chemistry, 2006,95:19-29.
    156. Ohtsuru M, Hata T. The interaction of L-ascorbic acid with the active center of myrosinase [J]. Biochim Biophys Acta, 1979,567(2):384-391.
    157. Ohtsuru M, Kawatani H. Studies on the myrosinase from Wasabia japonica:purification and some properties of Wasabi myrosinase [J]. Agric. Biol. Chem.,1979,43:2249-2255.
    158. Oldfield MF, Bennett RN, Kiddle G,et al. Biochemical characterization of an aldoxime-forming flavoprotein involved in 2-phenylethylglucosinolate biosynthesis in Brassica species[J]. Plant Physiol. Biochem.,1999,37:99-108.
    159. Paolini M, Perocco P, Canistro D, et al. Induction of cytochrome P450, generation of oxidative stress and in vitro cell-transforming and DNA-damaging activities by glucoraphanin, the bioprecursor of the chemopreventive agent sulforaphane found in broccoli [J]. Carcinogenesis,2004,25(1):61-67.
    160. Pappa G, Lichtenberg M, lori R, et al. Comparison of growth inhibition profiles and mechanisms of apoptosis induction in human colon cancer cell lines by isothiocyanates and indoles from brassicaceae. Mutat. Res.,2006,599:76-87.
    161. Peng H, He H, Hay J, et al. Interaction between the varicella zoster virus IE62 major transactivator and cellular transcription factor Spl [J].J Biol. Chem.,2003,278 (39):38068-38075.
    162. Perocco P, Bronzetti G, Canistro D, et al. Glucoraphanin, the bioprecursor of the widely extolled chemopreventive agent sulforaphane found in broccoli, induces phase-1 xenobiotic metabolizing enzymes and increases free radical generation in rat liver[J]. Mutat. Res.,2006,595(1-2):125-136.
    163. Pessina A, Thomas RM, Palmieri S, et al. An improved method for the purification of myrosinase and its physicochemical characterization [J]. Arch Biochem. Biophys.1990,280(2):383-389.
    164. Peyrado GM, de Forchetti SM, Tigier H,et al. Tissue printing for peroxidases associated with lignification [J]. Biotech. Histochem.,1996,71:258-262.
    165. Pontoppidan B, Ekbom B, Eriksson S,et al. Purification and characterization of myrosinase from the cabbage aphid (Brevicoryne brassicae), a brassica herbivore[J]. Eur. J. Biochem.,2001,268:1041-1048.
    166. Pontoppidan B, Hopkinsb R, Rask L, et al. Differential wound induction of the myrosinase system in oilseed rape (Brassica napus):contrasting insect damage with mechanical damage [J]. Plant Science,2005,168:715-722.
    167. Porter AJR, Morton AM, Kiddle G, et al. Variation in the glucosinolate content of oilseed rape (Brassica napus L.), Ⅰ. Effects of leafage and position [J]. Ann. Appl. Biol.,1991,118:461-467.
    168. Prochaska HJ, Santamaria AB, Talalay P.Rapid detection of inducers of enzymes that protect against carcinogens[J].Proc Natl Acad Sci USA,1992,89(6):2394-2398.
    169. Rask L, Andr'eassonE, Ekbom B, et al. Myrosinase:gene family evolution and herbivore defense in Brassicaceae [J]. Plant Molecular Biology,2000,42:93-113.
    170. Rask L, Andreasson E, Ekbom B, et al. Myrosinase:Gene family evolution and herbivore defense in Brassicaceae [J]. Plant Mol. Biol.,2000,42:93-113.
    171. RatzkaA, Vogel H, Kliebenstein D.I, et al. Disarming the mustard oil bomb [J]. PNAS,2002,99 (17):11223-11228.
    172. Reese ET, Clapp RC, Mandels M.A thioglucosidase in fungi [J].Arch Biochem Biophys,1958,75(1):228-242.
    173. Riedl M A, Saxon A, Diaz-sanchez D. Oral Sulforaphane Induces Antioxidant Phase 11 Enzymes in the Human Air way[J]. Journal of Allergy and Clinical Immunology,2007,119(1, Supplement 1):297-297.
    174. Rodman JE, Karol KG, Price RA, et al. Molecules, morphology and Dahlgren's expanded order Capparales[J]. Syst. Bot.,1996:289-307.
    175. Rodman JE, Soltis PS, Soltis DE,et al. Parallel evolution of glucosinolate biosynthesis inferred from congruent nuclear and plastid gene phylogenies [J]. Am. J. Bot.,1998:36-47.
    176. Rodman JE. A taxonomic analysis of glucosinolate producing plants, part Ⅰ[J]. Phenetics Syst. Bot.,1991:598-618.
    177. Romanos M A, Clare J J, Beesley K M et al. Recombinant Bordetella pertussis pertactin from the yeast pichia pestoris: high-leval production and immunological properties[J]. Vaccine,1991,9(12):901-906.
    178. Roos AJ, Clandinin DR.Transfer of 1251 to eggs in hens fed on diets containing rapeseed meal [J].Br Poult Sci,1975, 16(4):413-415.
    179. Ru R, Kim BR, Chen C. et al.The roles of JNK and apoptotic signaling pathways in PEITC-mediated responses in human HT-29 colon adenocarcinoma cells[J].Carcinogenesis,2003,24:1361-1367.
    180. Saupe SG. Cyanogenic compounds and angiosperm phylogeny, in:Young D.A., Seigler D.S. (Eds.)[M]: Phytochemistry and Angiosperm Phylogeny, Praeger Scientific, New York,1981.80-116.
    181. Schein CN, Noteborn MHM. Formation of soluble recombinant proteins in Escherichia coli is favored by lower growth temperature [J]. Bioitechnology,1988,6:291-294.
    182. Schwede T, Kopp J, Guex N et al. SWISS-MODEL:an automated protein homology-modeling server [J]. Nucleic Acids Res.,2003,31:3381-3385.
    183. Sheikh F, Baurin V V, Lewis-Antes A, et al. Cutting edge:IL-26 signals through a novel receptor complex composed of IL-20 receptor 1 and IL-10 receptor 2. J. Immunol.,2004,172(4):2006-2010.
    184. Sheng Z, Chang S B, Chirico W J. Expression and purification of a bio2 logically active basic fibroblast growth factor fusion protein[J]. Protein Expr. Purif.,2003,27(2):267-271.
    185. Shikita M, Fahey J, Golden T,et al. An unusual case of 'uncompetitive activation by ascorbic acid:purification and kinetic properties of a myrosinase from Raphanus sativus seedlings [J]. Biochem J.,1999,341:725-732.
    186. Sixue Chen EA.Update on glucosinolate metabolism and transport [J]. Plant Physiol. Biochem,2001,39:743-758.
    187. Taipalensuu J, Andreasson E, Eriksson S, et al. Regulation of the wound-induced myrosinase-associated protein transcript in Brassica napus plants [J]. Eur J Biochem,1997,247(3):963-971.
    188. Taipalensuu J, Eriksson S, Rask L.The myrosinase-binding protein from Brassica napus seeds possesses lectin activity and has a highly similar vegetatively expressed wound-inducible counterpart [J]. Eur J Biochem,1997,250(3): 680-688.
    189. Taipalensuu J, Falk A, Ek B, et al. Myrosinase-binding proteins are derived from a large wound-inducible and repetitive transcript [J]. Eur J Biochem,1997,243(3):605-611.
    190. Taipalensuu J, Falk A, Rask L. A wound- and methyl jasmonate-inducible transcript coding for a
    myrosinase-associated protein with similarities to an early nodulin [J]. Plant Physiol,1996,110(2):483-491.
    191. Talalay P, Fahey JW, Holtzclaw WD, et al. Chemoprotection against cancer by Phase 2 enzyme induction[J]. Toxicology Letter,1995,82-83:173-179.
    192. Tetsu O, McCormick F.Beta-catenin regulates expression of cyclin Dl in colon carcinoma cells [J].Nature,1999,398: 422-426.
    193. Thangstad OP, Winge P, Husbye H. et al. The myrosinase (thioglucoside glucohydrolase) gene family in Brassicaceae [J]. Plant Mol. Biol.,1993,.23:511-524.
    194. Thangstad OP, Evjen K, Bones A. Immunogold-EM localization of myrosinase in Brassicacea [J]. Protoplasma 1991, 161:85-93.
    195. Thangstad OP, Iversen T, Slupphaug G,et al.Immunocytochemical localization of myrosinase in Brassica napus [J].Planta,1990,180:245-248.
    196. van Eylen D, Oey I, Hendrickx M and Loey, A V. Effects of pressure/temperature treatments on stability and activity of endogenous broccoli (Brassica oleracea L. cv. Italica) myrosinase and on cell permeability[J].Journal of Food Engineering,2008,89 (2):178-186.
    197. Van Eylen DV, Indrawati, Hendrickx M, et al.Temperature and pressure stability of mustard seed (Sinapis alba L.) myrosinase[J].Food Chemistry,2006,97:263-271.
    198. Veenhuis M, Mateblowski M, Kunau WH et al. Proliferation of microbodies in Saccharomyces cerevisiae[J]. Yeast, 1987,3:77-84.
    199. Verhoeven D T, Verhagen H, Goldbohm R A, van den Brandt P A and van Poppel G. A review of mechanisms underlying anticarcinogenicity by brassica vegetables [J]. Chemico-Biological Interactions,1997,103 (2):79-129.
    200. Verkerk R., van der Gaag M.S., Dekker M., et al. Effects of processing conditions on glucosinolates in cruciferous vegetables [J]. Cancer Letters,1997,114:193-194.
    201. Visvalingam S, Hrnsi TG, Bones AM.Sulphate and micronutrients can modulate the expression levels of myrosinase in Sinapis alba plants [J].Physiol.Plant,1998,104:30-37.
    202. Wang L, Liu D, Ahmed T, et al. Targeting cell cycle machinery as a molecular mechanism of sulforaphane in prostate cancer prevention [J]. Int. J. Oncol.,2004,24(1):187-192.
    203. Ward AC. Rapid analysis of yeast transformants using colony PCR [J]. Biotechniques,1992, 13(3):350.
    204. Weinstein IB.Disorders in cell circuitry during multistage carcinogenesis:the role of homeostasis [J].Carcinogenesis, 2000,21:857-864.
    205. Wilkinson AP, Rhodes MJ, Fenwick GR. Determination of myrosinase (thioglucoside glucohydrolase) activity by a spectrophotometric coupled enzyme assay [J]. Anal. Biochem.,1984,139(2):284-291.
    206. Wittstock U, Halkier BA. Cytochrome P450 CYP79A2 from Arabidopsis thaliana L. catalyzes the conversion of L-phenylalanine to phenylacetaldoxime in the biosynthesis of benzylglucosinolate [J].J.Biol. Chem.,2000,275: 14659-14666.
    207. Wu CH, Wang YY, Zou MJ et al. Prokaryotic expression, purification, and production of polyclonal antibody against human polypeptide N-acetylgalactosaminyltransferase [J]. Molecular and Biochemical Parasitology,2007,56:1-7.
    208. Wu X, Oppermann U. High-level expression and rapid purigication of rare-codon genes from hyperthermophilic archaea by the GST gene fusion system [J]. J.Chromatogr B. Analyt. Technol. Biomed. Life Sci.,2003, 786(122):177-185.
    209. Xiao D, Singh SV. Phenethyl isothiocyanate-induced apoptosis in p53-deficient PC-3 human prostate cancer cell line is mediated by extracellular signal-regulated kinases [J].Cancer Res.,2002,62:3615-3619.
    210. Xu K, Thornalley PJ. Studies on the mechanism of the inhibition of human leukaemia cell growth by dietary isothiocyanates and their cysteine adducts in vitro [J]. Biochem. Pharmacol.,2000,60:221-231.
    211. Xue J, Jorgensen M, Pihlgren U, et al. The myrosinase gene family in Arabidopsis thaliana:gene organization, expression and evolution[J]. Plant Mol. Biol.,1995,27(5):911-922.
    212. Xue JP, Lenman M, Falk A, et al.The glucosinolate-degrading enzyme myrosinase in Brassicaceae is encoded by a gene family [J].Plant Mol. Biol.,1992,18(2):387-398.
    213. Yu R, Mandlekar S, Harvey KJ, et al.Chemopreventive isothiocyanates induce apoptosis and caspase-3-like protease activity [J].Cancer Res.,1998,56:402-408.
    214. Zhang Y, Talalay P.Anticarcinogenic activities of organic isothiocyanates:chemistry and mechanisms [J].Cancer Res., 1994,54.
    215.陈义华,陆兆新,尤华.灰色链轮丝菌产转谷氨酰胺酶发酵条件的优化.食品科学,2003,24(9):92-94.
    216.何洪巨,曹宛虹,唐晓伟.芸苔属蔬菜硫代葡萄糖苷含量.食品工业科技,2000,21(6):4.
    217.何洪巨,陈杭Schnitzler WH.芸薹属蔬菜中硫代葡萄糖苷鉴定与含量分析.中国农业科学,2002,35(2):192-197.
    218.李桂兰,王文颇,藏少先等。拟南芥黑芥子酶基因根特异性表达启动子的克隆。河北农业大学学报,2005,28(1)49-52
    219.李良维,刘海波,胡思怡等.富含二硫键的膜蛋白p185胞外区在大肠杆菌中的可溶性表达和性质鉴定.生物工程学报,2005,21(4):590-596.
    220.刘月萍.黑芥子酶的提取分离、性质ji固定化研究.浙江工商大学硕士学位论文,2007.
    221.刘爽,胡宝成.原核系统可溶性表达策略.生物技术通讯,2005,16(2):172-175
    222.欧阳立明,张惠展,张嗣良.巴斯德毕赤酵母的基因表达系统研究进展.生物化学与生物物理进展,2000,27(2):151-154.
    223.沈莲清,苏光耀,王奎武.西兰花种子中硫苷酶解产物萝卜硫素的提纯与抗肿瘤的体外实验研究,中国食品学报,2008,8(5):15-21.
    224.孙光耀,沈莲清,王向阳,王奎武.西兰花种子中硫代葡萄糖苷酶解条件的研究,中国粮油学报,2008,23(2):178-182
    225.王伟,苏光耀,沈莲清.3-甲磺酰基丙基异硫代氰酸酯的提取分离与抗肿瘤的体外试验研究,食品与生物技术学报,2009,28(5):637-641.
    226.谢磊,孙建波,张世清等.大肠杆菌表达系统及其研究进展.华南热带农业大学学报,2004.10(2):12-19
    227.张学杰,樊守金,孙稚颖等.中国十字花科植物系统分类近期研究进展.武汉植物学研究,2003,21(3):267-272
    228.张志波,曾光明,时进钢,刘佳等.表面活性剂对栗褐链霉菌(streptomyces badius)产酶的影响.高技术通讯,2007,17(9):962-967.
    229.赵明,张蘅.外源基因在大肠杆菌中表达研究进展.生理科学进展,1998,29(3):226-230
    230.朱凤,陈长华,张琪.吐温-85对螺旋霉素发酵过程的影响,中国医药工业杂志, 2008,39(3):176-178.
    231.熊爱生,彭日荷,李贤,等.信号肽序列刘毕赤酵母表达外源蛋白质的影响.生物化学与生物物理学报,2003,35(2):154-160.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700