用户名: 密码: 验证码:
组氨酸为活性中心的蛋白质酪氨酸磷酸酶和细胞自噬标记物的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
蛋白质的磷酸化与去磷酸化调控着人体重要的生物学功能,与许多人类的疾病密切相关。本论文主要以一类新型的蛋白质酪氨酸磷酸酶——T细胞受体信号通路抑制因子1和2(STS-1/2)为目标,对它们的生物学功能进行探索。本研究克隆了STS-1/2的催化结构域,并在大肠杆菌表达系统中表达出融合蛋白,通过柱层析色谱技术,分离纯化得到了高纯度的融合蛋白。通过体外酶促反应动力学分析,确定了STS-2的最适酶促反应条件为pH=4.0,NaCl浓度为0。应用带有GST标签的融合蛋白模拟体内的二聚体结构,发现了STS-2对STS-1的磷酸酶活性具有一定的抑制作用。本文证明了以组氨酸为活性中心的STS-1/2具有蛋白质酪氨酸磷酸酶的活性,并且发现两种蛋白间存在相互抑制的作用。另外,本论文还对小鼠mLC3b蛋白在细胞自嗜的标记物的应用上进行了研究,我们克隆、表达了小鼠mLC3b蛋白,通过与绿色荧光蛋白形成嵌合体,我们对mLC3b在细胞中进行定位。结果表明,当在哺乳动物细胞中表达的时候,mLC3b分布在细胞质中;当诱导细胞自嗜现象产生的时候,mLC3b则发生聚集并与细胞自嗜小体发生结合。研究表明,mLC3b可以作为标记细胞自嗜的标记物在生物学研究中广泛应用。
Protein phosphatases play important functions in cell growth, division and differentiation. They counteract the activities of protein kinase thereby controlling protein phosphorylation and cell signaling pathways. Among protein phosphatases, there are 107 protein tyrosine phosphatases. As crucial regulators of signal transduction, dysfunction of these enzymes causes many human diseases.
     STS-1 and STS-2 form a sub-family of protein tyrosine phosphatase. STS-1 was initially identified as a suppressor of the T cell receptor signaling pathway. STS-1 and STS-2 have multi-functional structures consisting of UBA domain, SH3 domain, PGM domain, and dimmerization domain. The UBA domain is involved in protein ubiquitination and regulates degradation of STS1 and STS2. The SH3 domain initiates interactions with proline-rich segments of signaling proteins. The dimmerization domain is responsible for formation of STS-1 and STS-2 dimmers. PGM domain is homologous to phosphataseglycerol mutase which catalyzes conversion of 2-phosphoglycerol to 3-phosphoglycerol. Recently, the PGM domain of STS-1 was found to have protein tyrosine phosphatase activity. It dephosphorylates para-nitrophenolphosphate (p-NPP) in biochemical assays and reduces tyrosine phosphorylation of the epidermal growth factor receptor in transfected cells. However, if the PGM domain of STS-2 has similar activity is not known. Based on the high sequence homology of STS-1 and STS-2, we hypothesize that STS-2 is also a protein phosphatase.
     To confirm our hypothesis, we expressed three fragments containing the PGM domains of STS-1 and STS-2 as non-fusion proteins as well as GST fusion proteins in E. coli cells. These proteins were purified to near homogeneity by using chromatographic procedures. We first analyzed the phosphatase activities of purified non-fusion proteins by using pNPP as a substrate under various conditions. In contrast to STS-1 which displays optimal activity at neutral pH, STS-2 strongly prefer acidic pH. Furthermore, while increase in ionic strength reduces activity of STS-2, this has no effects on STS-1. Overall, STS-1 is more active with a kcat value of 20/second versus 0.1/second for STS-2. We then compared with activity obtained with GST-fusion proteins. Interestingly, while fusion of STS-1 with GST increases its phosphatase activity, GST-STS-2 is much less active then STS-2 alone. Since GST intends to induce protein dimmer formation, the data suggest that dimmerization distinctly regulates activity of STS-1 and STS2.
     We further analyzed the activity of STS-1 and STS-2 with a recombinant protein substrate designated GST-JAKS and extracts of Jurkat cells which were stimulated with pervanadate to stimulate tyrosine phosphorylation. Both STS-1 and STS-2 effectively dephosphorylated tyrosine phosphorylated proteins with optimal pH 7 for the former and pH4 for the latter. Interestingly, they appeared to selectively dephosphorylate proteins in the Jurkat cell extracts. This indicates different substrate specificity.
     Finally, we investigated the interaction of STS-1 and STS-2 by analyzing STS-1 activity in the presence of STS-2. The data demonstrated that STS-2 significantly inhibits STS-1. This represents a novel mechanism for the regulation of these enzymes. Together, our study demonstrated that STS-2 is a protein tyrosine phosphatase with distinct feature from STS-1. STS-1 and STS2 may have different biological functions.
     Autophagy is a catabolic process which causes degradation of a cell’s own components through the lysosomal machinery. It plays an important role in cell growth and development. There are different methods for detection of autophagy. In this study, we cloned a chimeric protein containing the mouse microtubule-associated protein light chain 3 beta (LC3b) and enhanced green fluorescent protein (EGFP). When expressed in mammalian cells, the EGFP-mLC3b chimeric protein is diffused in the entire cytosol. Upon treatment of the transfected cells with reagents which induce autophagy, EGFP-mLC3b is localized to punctate intracellular structures resembling autophagosomes. Therefore, EGFP-mLC3b can serve as a marker of autophagy. Our study thus produced a valuable tool for further study of autophagy.
引文
[1] Alonso, A., Sasin, J., Bottini, N., Friedberg, I., Friedberg, I., Osterman, A., Godzik, A., Hunter, T., Dixon, J., and Mustelin, T. Protein tyrosine phosphatasesin the human genome. [J]. Cell, 2001. 117, 699–711.
    [2] Andersen, J.N., Mortensen, O.H., Peters, G.H., Drake, P.G., Iversen, L.F., Olsen,O.H., Jansen, P.G., Andersen, H.S., Tonks, N.K., and Moller, N.P. Structural and evolutionary relationships among protein tyrosine phosphatasedomains. [J]. Mol. Cell. Biol. 2001. 21, 7117–7136.
    [3] Tonks NK. Protein tyrosine phosphatases: from genes, to function, to disease. [J].Nat Rev Mol Cell Biol, 2006. 7(11):833-846.
    [4] Aricescu, A.R., Siebold, C., Choudhuri, K., Chang, V.T., Lu, W., Davis, S.J., vander Merwe, P.A., and Jones, E.Y., Structure of a tyrosine phosphatase adhesive interaction reveals a spacer-clamp mechanism. [J]. Science. 2007. 317, 1217–1220.
    [5] Tabernero L, Aricescu AR, Jones EY, Szedlacsek SE. Protein tyrosine phosphatases: structure-function relationships. [J]. FEBS J. 2008. 275, 867-882.
    [6] Zhang, Z.Y. Protein tyrosine phosphatases: structure and function, substrate specificity, and inhibitor development. [J]. Annu. Rev. Pharmacol.Toxicol. 2002. 42, 209–234.
    [7] Barford, D., Das, A.K., and Egloff, M.P. The structure and mechanism of protein phosphatases: insights into catalysis and regulation. [J]. Annu. Rev. Biophys. Biomol. Struct. 1998. 27, 133–164
    [8] Stuckey JA, Schubert HL, Fauman EB, Zhang ZY, Dixon JE & Saper MA. Crystal structure of Yersinia protein tyrosine phosphatase at 2.5 A ? and the complex with tungstate. [J]. Nature. 1994. 370, 571–575.
    [9] Frangioni JV, Beahm PH, Shifrin V, Jost CA & Neel BG. The nontransmembrane tyrosine phosphatase PTP-1B localizes to the endoplasmic reticulum via its 35 amino acid C-terminal sequence. [J]. Cell, 1992. 68, 545–560.
    [10] Pulido R, Zuniga A, Ullrich A. PTP-SL and STEP protein tyrosine phosphatases regulate the activation of the extracellular signal-regulated kinases ERK1 and ERK2 by association through a kinase interaction motif. [J]. EMBO. J. 1998. 17, 7337–7350.
    [11] Large-Scale Structural Analysis of the Classical Human Protein Tyrosine Phosphatome Alastair J. Barr, Emilie Ugochukwu, Wen Hwa Lee, Oliver N.F. King, Panagis Filippakopoulos, Ivan Alfano, Pavel Savitsky, Nicola A. Burgess-Brown, Susanne Mu¨ller, and Stefan Knapp. [J]. Cell. 2009. 136, 352–363,
    [12] Villa F, Deak M, Bloomberg GB, Alessi DR & van Aalten DM Crystal structure of the PTPL1 ? FAP-1 human tyrosine phosphatase mutated in colorectal cancer: evidence for a second phosphotyrosine substrate recognition pocket. [J]. J. Biol Chem. 2005. 280, 8180–8187.
    [13] Puius YA, Zhao Y, Sullivan M, Lawrence DS, Almo SC & Zhang ZY Identification of a second aryl phosphate-binding site in protein-tyrosine phosphatase 1B: a paradigm for inhibitor design. [J]. Proc Natl Acad Sci USA.1997. 94, 13420–13425.
    [14] Iversen LF, Moller KB, Pedersen AK, Peters GH, Petersen AS, Andersen HS, Branner S, Mortensen SB & Moller NP. Structure determination of T cell protein-tyrosine phosphatase. [J]. J. Biol Chem. 2002. 277, 19982–19990.
    [15] Salmeen A, Andersen JN, Myers MP, Tonks NK & Barford D. Molecular basis for the dephosphorylation of the activation segment of the insulin receptor by protein tyrosine phosphatase 1B. [J]. Mol Cell. 2000. 6, 1401–1412.
    [16] Szczepankiewicz BG, Liu G, Hajduk PJ, Abad-Zapatero C, Pei Z, Xin Z, Lubben TH, Trevillyan JM, Stashko MA, Ballaron SJ et al. Discovery of a potent, selective protein tyrosine phosphatase 1B inhibitor using a linked-fragment strategy. [J]. J Am Chem Soc. 2003. 125, 4087–4096.
    [17] Pei D, Lorenz U, Klingmuller U, Neel BG & Walsh CT. Intramolecular regulation of protein tyrosine phosphatase SH-PTP1: a new function for Src homology 2 domains. [J]. Biochemistry.1994. 33, 15483–15493.
    [18] Sugimoto S, Wandless TJ, Shoelson SE, Neel BG & Walsh CT. Activation of the SH2-containing protein tyrosine phosphatase, SH-PTP2, by phosphotyrosine- containing peptides derived from insulin receptor substrate-1. [J]. J. Biol Chem. 1994. 269, 13614–13622.
    [19] Pluskey S, Wandless TJ, Walsh CT & Shoelson SE. Potent stimulation of SH-PTP2 phosphatase activity by simultaneous occupancy of both SH2 domains. [J]. J. Biol Chem. 1995. 270, 2897–2900.
    [20] Wattenhofer, M., Shibuya, K., Kudoh, J., Lyle, R., Michaud, J., Rossier, C., Kawasaki, K., Asakawa, S., Minoshima, S., Berry, A., Bonne-Tamir, B., Shimizu, N., Antonarakis, S. E., and Scott, H. S. Isolation and characterization of the UBASH3A gene on 21q22.3 encoding a potential nuclear protein with a novel combination of domains. [J]. Hum. Genet. 2001. 108, 140–147.
    [21] Carpino, N., Kobayashi, R., Zang, H., Takahashi, Y., Jou, S. T., Feng, J., Nakajima, H., and Ihle, J. N. Identification, cDNA cloning, and targeted deletion of p70, a novel, ubiquitously expressed SH3 domain-containing protein. [J]. Mol. Cell Biol. 2002. 22, 7491–7500.
    [22] Feshchenko, E. A., Smirnova, E. V., Swaminathan, G., Teckchandani, A. M., Agrawal, R., Band, H., Zhang, X., Annan, R. S., Carr, S. A., and Tsygankov, A. Y. TULA: an SH3- and UBAcontaining protein that binds to c-Cbl and ubiquitin. [J]. Oncogene.2002. 23, 4690–4706.
    [23] Carpino, N., Turner, S., Mekala, D., Takahashi, Y., Zang, H., Geiger, T. L., Doherty, P., and Ihle, J. N. Regulation of ZAP-70 activation and TCR signaling by two related proteins, Sts-1 and Sts-2. [J]. Immunity. 2004. 20, 37–46.
    [24] Kowanetz, K., Crosetto, N., Haglund, K., Schmidt, M. H., Heldin, C. H., and Dikic, I. Suppressors of T-cell receptor signaling Sts-1 and Sts-2 bind to Cbl and inhibit endocytosis of receptor tyrosine kinases. [J]. J. Biol. Chem. 2004. 279, 32786–32795.
    [25] Bertelsen, V., Breen, K., Sandvig, K., Stang, E., and Madshus, I. H. The Cbl-interacting protein TULA inhibits dynamin-dependent endocytosis. [J]. Exp. Cell Res. 2007. 313, 1696–1709.
    [26] Hoeller, D., Crosetto, N., Blagoev, B., Raiborg, C., Tikkanen, R., Wagner, S., Kowanetz, K., Breitling, R., Mann, M., Stenmark, H., and Dikic, I. Regulation of ubiquitin-binding proteins by monoubiquitination. [J]. Nat. Cell Biol. 2006. 8, 163–169.
    [27] Jedrzejas, M. J. Structure, function, and evolution of phosphoglycerate mutases: comparison with fructose-2,6-bisphosphatase, acid phosphatase, and alkaline phosphatase. [J]. Prog. Biophys. Mol. Biol. 2000. 73, 263–287.
    [28] Mikhailik, A., Ford, B., Keller, J., Chen, Y., Nassar, N., and Carpino, N. A phosphatase activity of Sts-1 contributes to the suppression of TCR signaling. [J].Mol. Cell. 2007. 27, 486–497.
    [29] Kleinman, H., Ford, B., Keller, J., Carpino, N., and Nassar, N. Crystallization and initial crystal characterization of the C-terminal phosphoglycerate mutase homology domain of Sts-1. Acta Crystallogr. [J]. Sect. F Struct. Biol. Cryst. Commun. 2006. 62, 218–220.
    [30] Collingwood, T. S., Smirnova, E. V., Bogush, M., Carpino, N., Annan, R. S., and Tsygankov, A. Y. T-cell ubiquitin ligand affects cell death through a functional interaction with apoptosis-inducing factor, a key factor of caspase-independent apoptosis. [J]. J. Biol. Chem. 2007. 42, 30920–30928.
    [31] Smirnova, E., Collingwood, T., Bisbal, C., Tsygankova, O., Bogush, V., Meinkoth, J., Henderson, E., Annan, R., and Tsygankov, A. TULA proteins bind to ABCE-1, a host factor of HIV-1 assembly, and inhibit HIV-1 biogenesis in a UBA-dependent fashion. [J]. Virology. 2008. 1, 10-23
    [32] Raguz, J., Wagner, S., Dikic, I., and Hoeller, D. Suppressor of T-cell receptor signalling 1 and 2 differentially regulate endocytosis and signalling of receptor tyrosine kinases. [J]. FEBS Lett. 2007. 581, 4767–4772.
    [33] Kim, J. E., and White, F. M. Quantitative analysis of phosphotyrosine signaling networks triggered by CD3 and CD28 costimulation in Jurkat cells. [J]. J. Immunol. 2006. 176, 2833–2843.
    [34] Agrawal, R., Carpino, N., and Tsygankov, A. TULA proteins regulate activity of the protein tyrosine kinase Syk. [J]. J. Cell Biochem. 2008. 1, 953-64.
    [35] Yamada, R., and Sonobe, H. Purification, kinetic characterization,and molecular cloning of a novel enzyme ecdysteroid-phosphate phosphatase. [J]. J. Biol. Chem. 2003. 278, 26365–26373.
    [36] Davies, L., Anderson, I. P., Turner, P. C., Shirras, A. D., Rees, H. H.,and Rigden, D. J. An unsuspected ecdysteroid/steroid phosphatase activity in the key T-cell regulator, Sts-1: surprising relationship to insect ecdysteroid phosphate phosphatase. [J]. Proteins. 2007. 67, 720–731.
    [1] Hotchkiss RS, Strasser A, McDunn JE, Swanson PE., Cell death. [J]. N Engl J Med. 2009, 16, 1570-1583
    [2] Zong WX, Thompson CB. Necrotic death as a cell fate. [J]. Genes Dev. 2006, 20, 1-15.
    [3] Golstein P, Kroemer G. Cell death by necrosis: towards a molecular definition. [J]. Trends Biochem Sci. 2007, 32, 37-43.
    [4] Festjens N, Vanden Berghe T, Vandenabeele P. Necrosis, a well-orchestrated form of cell demise: signalling cascades, important mediators and concomitant immune response. [J]. Biochim Biophys Acta. 2006, 1757, 1371-1387.
    [5] Luke CJ, Pak SC, Askew YS, et al. An intracellular serpin regulates necrosis by inhibiting the induction and sequelae of lysosomal injury. [J]. Cell. 2007, 130, 1108-1119.
    [6] Nishimura Y, Lemasters JJ. Glycine blocks opening of a death channel in cultured hepatic sinusoidal endothelial cells during chemical hypoxia. [J]. Cell Death Differ. 2001, 8, 850-858.
    [7] Malhi H, Gores GJ, Lemasters JJ. Apoptosis and necrosis in the liver: a tale of two deaths? [J]. Hepatology. 2006, 43, S31- 44.
    [8] Adams JM, Cory S. Bcl-2-regulated apoptosis: mechanism and therapeutic potential. [J]. Curr Opin Immunol. 2007, 19, 488-496.
    [9] Marsden VS, Strasser A. Control of apoptosis in the immune system: Bcl-2, BH3-only proteins and more. [J]. Annu Rev Immunol. 2003, 21, 71-105.
    [10] Green DR, Kroemer G. Pharmacological manipulation of cell death: clinical applications in sight? [J]. J Clin Invest. 2005, 115, 2610-2617.
    [11] Strasser A. The role of BH3-only proteins in the immune system. [J]. Nat Rev Immunol. 2005, 5, 189-200.
    [12] Deter RL, De Duve C. Influence of glucagon, an inducer of cellular autophagy, on some physical properties of rat liver lysosomes. [J]. J Cell Biol. 1967, 33, 437–449.
    [13] Nakatogawa H, Suzuki K, Kamada Y, Ohsumi Y. Dynamics and diversity in autophagy mechanisms: lessons from yeast. [J]. Nat Rev Mol Cell Biol. 2009, 10, 458–467.
    [1] Hotchkiss RS, Strasser A, McDunn JE, Swanson PE., Cell death. [J]. N Engl J Med. 2009, 16, 1570-1583
    [2] Zong WX, Thompson CB. Necrotic death as a cell fate. [J]. Genes Dev. 2006, 20, 1-15.
    [3] Golstein P, Kroemer G. Cell death by necrosis: towards a molecular definition. [J]. Trends Biochem Sci. 2007, 32, 37-43.
    [4] Festjens N, Vanden Berghe T, Vandenabeele P. Necrosis, a well-orchestrated form of cell demise: signalling cascades, important mediators and concomitant immune response. [J]. Biochim Biophys Acta. 2006, 1757, 1371-1387.
    [5] Luke CJ, Pak SC, Askew YS, et al. An intracellular serpin regulates necrosis by inhibiting the induction and sequelae of lysosomal injury. [J]. Cell. 2007, 130, 1108-1119.
    [6] Nishimura Y, Lemasters JJ. Glycine blocks opening of a death channel in cultured hepatic sinusoidal endothelial cells during chemical hypoxia. [J]. Cell Death Differ. 2001, 8, 850-858.
    [7] Malhi H, Gores GJ, Lemasters JJ. Apoptosis and necrosis in the liver: a tale of two deaths? [J]. Hepatology. 2006, 43, S31- 44.
    [8] Adams JM, Cory S. Bcl-2-regulated apoptosis: mechanism and therapeutic potential. [J]. Curr Opin Immunol. 2007, 19, 488-496.
    [9] Marsden VS, Strasser A. Control of apoptosis in the immune system: Bcl-2, BH3-only proteins and more. [J]. Annu Rev Immunol. 2003, 21, 71-105.
    [10] Green DR, Kroemer G. Pharmacological manipulation of cell death: clinical applications in sight? [J]. J Clin Invest. 2005, 115, 2610-2617.
    [11] Strasser A. The role of BH3-only proteins in the immune system. [J]. Nat Rev Immunol. 2005, 5, 189-200.
    [12] Deter RL, De Duve C. Influence of glucagon, an inducer of cellular autophagy, on some physical properties of rat liver lysosomes. [J]. J Cell Biol. 1967, 33, 437–449.
    [13] Nakatogawa H, Suzuki K, Kamada Y, Ohsumi Y. Dynamics and diversity in autophagy mechanisms: lessons from yeast. [J]. Nat Rev Mol Cell Biol. 2009, 10, 458–467.
    [26] Rubinsztein, D.C., Gestwicki, J.E., Murphy, L.O., and Klionsky, D.J.. Potential therapeutic applications of autophagy. [J]. Nat. Rev. Drug Discov. 2007. 6. 304–312.
    [27] Maiuri, M.C., Le Toumelin, G., Criollo, A., Rain, J.C., Gautier, F., Juin, P., Tasdemir, E., Pierron, G., Troulinaki, K., Tavernarakis, N. Functional and physical interaction between Bcl-X(L) and a BH3-like domain in Beclin-1. [J]. EMBO J. 2007, 26. 2527–2539.
    [28] Williams, A., Jahreiss, L., Sarkar, S., Saiki, S., Menzies, F.M., Ravikumar, B., and Rubinsztein, D.C. Aggregate-prone proteins are cleared from the cytosol by autophagy: therapeutic implications. [J]. Curr. Top. Dev. Biol. 2006, 76. 89–101.
    [29] Martinez-Vicente, M., and Cuervo, A.M. Autophagy and neurodegeneration: when the cleaning crew goes on strike. [J]. Lancet Neurol. 2006, 6. 352–361.
    [30] Feng, Z., Zhang, H., Levine, A.J., and Jin, S.. The coordinate regulation of the p53 and mTOR pathways in cells. [J]. Proc. Natl. Acad. Sci. USA. 2007, 102. 8204–8209.
    [31] Crighton, D., Wilkinson, S., O’Prey, J., Syed, N., Smith, P., Harrison, P.R., Gasco, M., Garrone, O., Crook, T., and Ryan, K.M. DRAM, a p53- induced modulator of autophagy, is critical for apoptosis. [J]. Cell. 2006, 126. 121–134.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700