用户名: 密码: 验证码:
日本柄瘤蚜茧蜂的寄生对黑豆蚜的发育和生化代谢影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黑豆蚜[Aphis craccivora (Koch)]属同翅目、蚜科,别名有花生蚜、苜蓿蚜、菜豆蚜、槐蚜等,是危害严重的世界性害虫,寄主植物广泛。除取食对植物造成的损害外,黑豆蚜还传播植物病毒病,导致严重的经济损失。对有害昆虫进行生物防治是控制虫害的重要手段。日本柄瘤蚜茧蜂[Lysiphlebus japonicus (Ashmead)]是黑豆蚜重要的寄生性天敌,属膜翅目,蚜茧蜂科,是营内寄生的单寄生蜂,对黑豆蚜有较好的控制作用。前人对日本柄瘤蚜茧蜂仅作过一些野外调查和简单的生物学研究,目前,对日本柄瘤蚜茧蜂的发育及成功寄生的条件和机制仍缺乏基本的信息。
    本文就日本柄瘤蚜茧蜂的寄生影响因子、龄期划分及对寄主黑豆蚜的发育和生化代谢调控进行了研究,结果报告如下。
    1. 本部分以黑豆蚜为寄主,研究了寄生蜂蜂龄、接蜂时间、寄生蜂密度、寄主密度、寄主龄期和翅型等因子对日本柄瘤蚜茧蜂寄生的影响。实验室研究表明,在25±1℃温度条件下,1天龄的日本柄瘤蚜茧蜂雌蜂对寄主的寄生率最高,其次为2-4天龄雌蜂,5天龄雌蜂寄生率明显降低。接蜂时间对该蜂的寄生显示明显影响,但同时又受寄主密度的影响。在接蜂时间相对短的情况下,寄生率随着接蜂时间的增加而增加。在蜂蚜比为1:20时,持续接蜂超过24小时,寄生率不再明显增长;在蜂蚜比为1:40的条件下,寄生率在持续接蜂超过48小时后才无明显增加。寄生蜂密度亦影响日本柄瘤蚜茧蜂的寄生,在蜂密度为1、5、10、15头雌蜂/200头蚜虫时,寄生率随着雌蜂密度的增加而逐渐升高,但当蜂密度增加至20、30头雌蜂/200头蚜虫时,寄生率不升反降。寄主密度对日本柄瘤蚜茧蜂的寄生有明显影响,在寄主密度为50-100头蚜虫/5头雌蜂时,寄生率最高,达90%以上,但过寄生率也高,随着寄主密度的升高,蚜虫的寄生率
    
    逐步下降,同时过寄生率也相应逐步降低。日本柄瘤蚜茧蜂对寄主龄期显示明显的选择性,龄期较小的蚜虫寄生率较高,2龄若蚜的寄生率最高,1龄若蚜次之,而4龄若蚜的寄生率最低。在有翅与无翅型3、4龄若蚜寄主中,日本柄瘤蚜茧蜂较喜寄生无翅型若蚜,无翅型若蚜的寄生率均高于同龄有翅型若蚜。
    2.为了详细了解日本柄瘤蚜茧蜂的幼虫发育,研究日本柄瘤蚜茧蜂与黑豆蚜之间发育的相互关系,我们利用扫描电镜技术区分了日本柄瘤蚜茧蜂的四个幼虫龄期。对日本柄瘤蚜茧蜂的雌蜂剖腹卵与产出卵进行了首次对比描述。这是关于日本柄瘤蚜茧蜂幼期形态的首次报道。日本柄瘤蚜茧蜂有四个幼虫龄期。1龄幼虫有发达的骨化大颚,其主要在种内的物理竞争中发挥作用。同时,幼虫还具有背部刺突和尾突。2龄幼虫大颚显著退化,背部密布小刺簇,尾突短而钝。发达的大颚在幼虫进入3龄后重新出现,此时的幼虫体壁光滑,尾部退化呈小突起。4龄幼虫大颚较3龄退化,头部器官明显分化。文中用扫描电镜照片描述了各龄期的区分特点。
    3. 本部分研究了日本柄瘤蚜茧蜂对黑豆蚜龄期的选择和黑豆蚜龄期对日本柄瘤蚜茧蜂发育的影响。试验结果表明,在混合虫态寄主中,日本柄瘤蚜茧蜂通常选择黑豆蚜的较小龄期若蚜寄生,其中2龄若蚜被寄生的相对机率最高,为26.4%,其次是1龄若蚜,为20.6%,无翅成蚜与3、4龄有翅若蚜和成蚜的相对寄生机率较低。在25℃下,日本柄瘤蚜茧蜂的寄生延缓了黑豆蚜若蚜的发育,其中1龄寄生若蚜的发育在一、二、三龄被显著延滞,有翅3龄若蚜被寄生后其发育在三、四龄明显延长,但无翅和有翅4龄寄生若蚜的发育均不受影响;寄生后的各龄若蚜的成蚜寿命明显缩短,其中,1龄寄生的若蚜不能发育至成蚜,其他较早龄期寄生的若蚜生育能力则被显著抑制。在25℃下,日本柄瘤蚜茧蜂在不同龄期黑豆蚜体内发育历期有所差异,寄生2龄黑豆蚜的日本柄瘤蚜茧蜂个体发育最快,为194.10小时,在1龄寄主体内的蚜茧蜂个体发育最慢,需215.80小时。
    
    
    4. 日本柄瘤蚜茧蜂的寄生影响了寄主黑豆蚜体内的生化代谢。试验选用2龄若蚜进行。寄生使黑豆蚜的游离氨基酸总浓度升高,寄生1天后,正常组的游离氨基酸总浓度为17.721nmol/L,寄生组为23.153nmol/L;寄生4天后,正常组和寄生组分别为58.703和69.659nmol/L。苏氨酸、谷氨酸和酪氨酸是黑豆蚜血淋巴中主要的氨基酸,寄生后的黑豆蚜血淋巴中苏氨酸含量升高,谷氨酸和酪氨酸含量下降。与正常蚜虫相比,寄生3天后,黑豆蚜血淋巴的蛋白质浓度下降;体蛋白质浓度升高;寄生还使寄主血淋巴的蛋白质组成发生了变化,在SDS-聚丙烯酰胺凝胶电泳图谱中出现了两个新的蛋白质,其分子量分别约为54和41kD。在寄生后4天,黑豆蚜的血淋巴海藻糖浓度明显降低。寄生蚜虫的体总糖原和体总脂含量在寄生后2天显著升高,但在寄生后3、4天明显低于未寄生蚜虫。
    5. 从黑豆蚜体内经DE52 Cellulose、Sephadex G-150凝胶过滤以及FPLC Hitrap Q Sepharose分离出一种蛋白质。该蛋白质经SDS-PAGE测定在非还原和还原条件下分子量均为60kD左右,等电聚焦测得其等电点约为5.0, 为糖蛋白,不是脂蛋白。若蚜期间该蛋白质在蚜虫体内积累,蜕皮至成蚜时含量明显减少,为蚜虫提供发育所需营养,在成蚜期间仍以低浓度存在。根据其分子量和氨基酸组成与含量变化动态应
Aphis craccivora Koch (Hemiptera: Aphididae), black bean aphid or peanut aphid, is a worldwide serious pest with numerous hosts. Besides feeding damage, A. craccivora spreads plant viruses, and results in heavily economic loss. Biological control is an important measure to control pests. Lysiphlebus japonicus Ashmead (Hymenoptera: Aphidiidae), a solitary endoparasitoid, is a useful parasitic natural enemy of A. craccivora. Although some field investigations and biological features have been done, the basic information of development and the mechanism of successful parasitism still lacking in L. japonicus.
    This paper studied the effects of some factors on parasitism, the determination of L. japonicus instars, the regulations on host development and metabolism. The results are as follows:
    1. In the laboratory condition, parasitoid stage, exposure period, female parasitoid density, host density, host instar and morph of host wings were found to affect the parasitization of L. japonicus on A. craccivora. The parasitization rate dereased with the increase of parasitoid age. The highest parasitization rate was obtained by parasitoids of 1d age. Exposure period affected the parasitization of L. japonicus. When the parasite:host ratio was 1:20, the parasitization rates did not
    
    increase distinctively if the exposure period was more than 24hr.. While the ratio was 1:40, the parasitization rates kept on increasing significantly until the exposure period was more than 48hr.. The parasitoid density could affect the parasitization of L. japonicus too. When the parasitoid density was 1、5、10、15 female parasitoids/200 aphids, the parasitization rate increased readily with parasitoid density. However, when the parasitoid density was 20、30 female parasitoids/5 aphids, the parasitization decreased. Host density had significant effect on the parasitism of L. japonicus. The highest parasitization rate was more than 90%, which was gained at 50-100 aphids/5 female parasitoids. Both parasitization rate and superparasitism rate decreased with the increase of host density. The host instar could influence the parasitization rate. L. japonicus preferred to oviposit on blank bean aphid of younger instar and the parasitization rate for L2 was the highest, the second highest was for L1, but that for L4 was the lowest. Between apterous and alate aphid larvae, L. japonicus preferred for apterous larvae. All parasitization rates of apterous larvae were higher than those of alate host of the same instar.
    2. To make clear the larval development of L. japonicus and study the developmental interactions between L. japonicus and A. craccivora farther, we described and illustrated with scanning electron micrographs the chief diagnostic criteria of 4 instars of L. japonicus each. This is the first report on larval morph of L. japonicus. The 1st instar is mandibulate, caudate and has sclerotized spines. Supernumerary newly hatched larvae are eliminated by powerful mandibles of the prior hatched larva. The 2nd instar has degenerative mandibles and covered with small sclerotized bristles on abdominal segments; the cauda is short and blunt. The 3rd instar is mandibulate; its cuticle is smooth and the caudal segment retrogresses to a short salient. The 4th instar is strong and hymenopteriform; the mandibles are
    
    smaller than those of 3rd instar, and various sensory organs are well developed, especially for the mouthpart.
    3. In the laboratory conditions, host-instar selection of Lysiphlebus japonicus Ashmead and its development in Aphis craccivora Koch of different instars were studied. When served mixed instars aphids, The parasitoid showed a preference for small aphids. The relative parasitization rate of L2 aphids was the highest (26.4%), followed by L1 aphids, which was 20.6%, the others were lower. The devolopment of aphids was delayed after parasitized. At 25℃, the developmental period of parasitized L1 aphids was significantly prolonged at the 1st、2nd and the 3rd instar; and which of alate parasitized L3 aphids was eviden
引文
1. 丁德诚,潘务耀等. 松突圆蚧花角蚜小蜂对寄主的选择. 昆虫学研究集刊. 1994. 11: 35-42.
    2. 侯照远,严福顺. 寄生蜂寄主选择行为研究进展. 昆虫学报. 1997. 40(1): 94-107.
    3. 李元喜,刘树生. 寄主对拟寄生昆虫产卵行为的防御. 中国生物防治. 1999. 15(3):130-134.
    4. 刘树生. 蚜茧蜂的生物学和生态学特性. 生物防治通报. 1989. 5(3):129-133.
    5. 刘树生,汪庆庚. 菜蛾啮小蜂对寄主龄期的选择性和适合性. 中国生物防治. 1999. 15(1):1-4.
    6. 忻亦芬,李学荣,王洪平等. 用萝卜苗作桃蚜植物寄主繁殖烟蚜茧蜂. 中国生物防治. 2001. 17(2): 49-52.
    7. 王方海,古德祥,温瑞贞. 寄生蜂对寄主生长发育的调控. 昆虫天敌. 2000. 22(4): 177-181.
    8. 王问学. 麦蛾茧蜂性比与寄主的关系. 生物防治通报. 1991. 7(1):16-18.
    9. 王荫长. 昆虫生物化学. 北京:中国农业出版社. 2001.
    10. 巫之馨,钦俊德. 松毛虫赤眼蜂对假卵不同内含物的产卵反应. 昆虫学报. 1982. 25(4):363-372.
    11. 许红兵,陈正耀. 昆虫体液免疫中的抗菌物质. 昆虫知识. 1999. 36(5): 316-319.
    12. 严静君,刘后平. 绒茧蜂研究进展. 生物防治通报. 1991. 7(13): 127-133.
    13. 尹丽红,王琛柱,钦俊德. 多分DNA病毒及其在寄生蜂与寄主关系中的作用. 昆虫学报. 2001. 44: 109-118.
    14. 张学武,古德祥. 红圆蚧三种寄生蜂的生物学研究. 中国生物防治. 1995. 11(2): 60-63.
    15. Asgari, S., Schmidt. O. Passive protection eggs from the parasitoid, Cotesia rubecula, in the host, Pieris rapae. J. Insect Physiol. 1994. 40: 189-795.
    
    
    16. Asgari, S. et al. A protein with protective properties against the cellular defence reactions in insects Proceedings of the National Academy of Science USA. 1998. 95: 3690-3695.
    17. Balgopal, M. M., Dover, B. A., Goodmen, W. G., et al. J. Insect Physiol. 1996. 42: 337-345.
    18. Barras, D. J., Joiner, R. L. & Vinson, S. B. Neutral lipid composition of the tobacco budworm, Heliothis virescens (Fab.), as affected by its habitual parasite, Cardiochiles nigriceps Viereck. Comp.Biochem. Physiol. 1970. 36: 775-783.
    19. Beckage, N. E. New insights:How parasites and pathogens alter the endocrine physiology and development of insect hosts. In: Beckage, N. E. (Ed.), Parasites And Pathogens.Effects on Host Hormones And Behaviour.Chapman and Hall, London, 1997. pp.3-36.
    20. Beckage, N. E. Modulation of immune responses to parasitoids by polydnavirus. Parasitology 1998. 116: 57-64.
    21. Beckage, N. E. & Riddiford, L. M. Effects of parasitism by Apanteles congregatus on the endocrine physiology of the tobacco hornworm, Manduca sexta. Gen.Comp. Endocrinol. 1982. 47: 308-322.
    22. Beckage, N. E. & Temleton, T. J. Physiological effects of parasitism by Apanteles congregatus in terminal-stage tobacco hornworm larvae. J. Insect Physiol. 1986. 32: 299- 314.
    23. Beckage, N. E., Templeton, T. J. et al. Parasitism-induced hemolymph polypeptides in Manduca sexta (L.) larvae parasitised by the braconid wasp Cotesia congregata (Say). Insect Biochem. 1987. 17 :439-455.
    24. Beckage, N. E., Metcalf, J. S., et al. Host hemolymph monophenoloxidase activity in parasitised Manduca sexta larvae and evidence for inhibition by wasp polydnaviruse. Insect Biochem. 1990. 20: 285-294.
    Beckage, N. E. & Kanost, M. R. Effects of parasitism by the braconid wasp Cotesia congregata on host hemolymph protein of the tobacco hornworm, Manduca sexta. Insect
    
    25. Biochem. Molec. Biol. 1993. 23(5): 643-653.
    26. Bischof, C. & Ortel, J. The effects of parasitism by Glyptapanteles liparidis (Braconidae: Hymenoptera) on the hemolymph and total body composition of gypsy moth larvae, Lymantria dispar (Lymantriidae: Lepidoptera). Parasitology Research 1996. 82(8): 687-692.
    27. Brown, J. J. & Kainoh, Y. Host castration by Ascogaster spp. (Hymenoptera: Braconidae). Ann. Entomol. Soc. Am. 1992. 85: 67-71.
    28. Chau, A. & Mackauer, M. Host-instar selection in the aphid parasitoid Monoctonus paulensis (Hymenoptera: Braconidae, Aphidiidae): a preference for small pea aphids. Eur. J. Entomol. 2000. 97: 347-353.
    29. Christian-Weniger, P. & Hardie, J. Wing development in parasitized male and female Sitobion fragariae. Physiological Entomology. 1998. 23: 208-213.
    30. Christian-Weniger, P. & Hardie, J. The influence of parasitism on wing development in male and female pea aphids. J. Insect Physiol. 2000. 46(6): 861-867.
    31. Cloutier, C., Duperron, J., Tertuliano, M. et al. Host instar, body size and fitness in the koinobiotic parasitoid Aphidius nigripes. Entomol. Exp. Appl. 2000. 97: 29-40.
    32. Cook, D. I. et al. Induction of a new haemolymph glycoprotein in larvae of permissive hosts parasitized by Campoletis sonorensis. Insect Biochemistry 1984. 14: 45-50.
    33. Coudron, T. A. Host-regulating factors associated with parasitic Hymenoptera. In Hedin PA (ed): Naturally Occurring Pest Bioregulators. Washington, D. C.: American Chemical Society, ACS Symposium Series 449, 1991. pp.41-65.
    34. Coudron, T. A., Jones, D. & Jones, G. Premature production of late larval storage proteins in larvae of Trichoplusis ni parasitized by Euplectrus comstockii. Arch. Insect Biochem. Physiol. 1994. 26: 97-109.
    Coudron, T. A., Brandt, S. L. & Raqib, A. Comparison of the response of Heliothis
    
    35. virescens to parasitism by Euplectrus comstockii and Euplectrus plathypenae. Comp. Biochem. Physiol. 1997. 116B(2): 197-202.
    36. Coudron, T. A., Raqib, A., et al. Comparison of the hemolymph proteins in permissive and non-permissive hosts of Euplectrus comstockii. Compa .Biochem. Physiol. 1998. 120B: 349-357.
    37. Dahlman, D. L. & Vinson, S. B. Trehalose and glucose levels in the hemolymph of Heliothis virescens parasitized by Micropilitis croceipes or Cardiochiles nigriceps. Comp. Biochem. Physiol. 1975. 52B: 465-468.
    38. Dahlman, D. L. & Vinson, S. B. Effect of calyx fluid from insect parasitoid on host hemolymph dry weight and trehalose content. J. Invert. Pathol. 1977. 29: 223-229.
    39. Dahlman, D. L. & Vinson, S. B. Glycogen content of Heliothis virescens parasitized by Micropilitis croceipes. Comp. Biochem. Physiol. 1980. 66A: 625-630.
    40. Dahlman, D. L. & Vinson, S. B. In: Beckage, N. E., Thompson, S. N., Federici, B. A. eds. Parasites and Pathogens of Insect. San Diego: Academic Press, 1993. pp145-165.
    41. Damman, H. & Cappuccino, N. Ecol. Entomol. 1991. 16(2): 163-167.
    42. Davies, D. H. & Vinson, S. B. Passive evasion by eggs of the braconid parasitoid Cardiochiles nigriceps from encapsulation by haemocytes of host Heliothis virescens. J. Insect Physiol. 1986. 32: 1003-1010.
    43. Dib-Hajj, S. D., Webb, B. A., Summer, M. D. Structure and evolutionary implication of a "cysteine-rich" Campoletis sonorensis polydnavirus gene family. Proc. Natl. Acad. Sci. USA. 1993. 90: 3765-3769.
    44. Digilio, M. C., Pennacchio, F., Tremblay, E. Host regulation effects of ovary fluid and venom by Aphidius ervi (Hymenoptera: Braconidae). J. Insect Physiol. 1998. 44: 779-784.
    45. Digilio, M. C., Isidoro, N., Tremblay, E. et al. Host castration by Aphidius ervi venom proteins. J. Insect Physiol. 2000. 46(6): 1041-1050.
    
    
    46. Dong, K., Zhang, D., Dahlman, D. L. Down-regulation of juvenile hormone esterase and arylphorin production in Heliothis virenscens larvae parasitized by Microplitis croceipes. Arch. Insect Biochem. Physiol. 1996. 32: 237-248.
    47. Dover, B. A., Davies, D. H., Vinson, S. B. Arch.Insect Biochem.Physiol. 1988. 19: 177-192.
    48. Dover, B. A. & Vinson, S. B. Physiol. Entomol. 1990. 15: 405-414.
    49. Dover, B. A. & Vinson, S. B. J. Insect Physiol. 1995. 41: 947-955.
    50. Eslin, P. & Prévost, G. Racing against host's immunity defenses:a likely strategy for passive evasion of encapsulation in Asobara tabida parasitoids. J. Insect Physiol. 2000. 46(8): 1161-1168.
    51. Fathpour, H. & Dahlman, D. L. Polydnavirus of Microplitis croceipes prolongs the larval period and changes hemolymph protein contents of the host, Heliothis virescens. Arch. Insect Biochem. Physiol. 1995. 28(1): 33-48.
    52. Führer, E. Eine parasitar bedinge entwicklungshemmung der flugelimaginalscheiben in den larven von Epiblema tedella Cl. Z. Angew. Entomol. 1972. 71: 113-120.
    53. Fernando, C. M., Bailey, P. C. E., Gurr, G. M. In: Zalucki, M. P., Drew, R. A. I., White, G. G., eds. Pest Management Future Challenges, Preceedings of the Sixth Australiasian Applied Entomological Research Conference.Brisbane, 1998. Vol. I: 335-340.
    54. Gillespie, J. P. & Kanost, M. R., Trenczek, T. Annu. Rev. Entomol. 1997. 42: 611-643.
    55. Gleman, G. B., Carpenter, J. E., Greany, P. D. Ecdysteroid level/profiles of the parasitoid wasp, Diapetimorpha introita, reared on its host, Spodoptera frugiperda and on an artificial diet. J. Insect Physiol. 2000. 46(4): 457-465.
    56. Godfray, H. C. J. Parasitoids: Behavioural and Evolutionary Ecology. 1994. Princeton University Press, Chichester, UK.
    57. Gross, P. Annu. Rev. Entomol. 1993. 12(1): 1-11.
    58. Gupta, P. & Ferkovich, S. M. J. Insect Phsiol. 1998. 42: 713-719.
    
    
    59. Harwood, G., Grosovsky, A. H., Cowles, E. A., et al. An abundantly expressed hemolymph glycoprotein isolated from parasitized Manduca Sexta larvae is a polydnavirus gene product. Virology. 1994. 205: 381-392.
    60. Harwood, S. H. et al. Production of early expressed parasitism-specific proteins in alternate sphingid hosts of the braconid wasp Cotesia congregata. J. Invertebrate Pathol. 1998. 71: 271-279.
    61. Hawlitzky, N. & Christiane, B. Effects of the egg-larval parasite, Phanerotoma flavitestacea Fisch.(Hymenoptera, Braconidae) on the dry weight and chemical composition of its host Anagasta kuehniella Zell (Lepidoptera, Phyralidae). J. Insect Physiol. 1986. 32(4): 269-274.
    62. Hayakawa, Y. Growth-blocking peptide:an insect biogenic peptide that prevents the onset of metamorphosis. J. Insect Physiol. 1995. 41: 1-6.
    63. Heimpel, G. E. & T. R. Collier, The evolution of host-feeding behaviour in insect parasitoids. Biol. Rev. 1996. 71: 373-400.
    64. Honda, J. Y. & R. F. Luck, Interactions between host attributes and wasp size: a laboratory evalution of Trichogramma platneri as an augmentative biological control agent for two avocado pests. Entomol. Exp. Appl. 2001. 100(1): 1-13.
    65. Hunter, M. S. Evolution and behavioral ecology of heteromomous aphelinid parasitids. Annu. Rev. Entomol. 2001. 46: 251-290.
    66. Hurlbutt, B. Sexual size dimorphism in parasitoid wasps. Biol. J. Linnean Soc. 1987. 30: 63-89.
    67. Jones, D. Insect Biochem. Molec. Biol. 1996. 26: 981-996.
    68. Jones, D. & Coudron, T. Venoms of parasitic hymenoptera as investigatory tools. In: Beckage, N. E., Thompson, S. N., Federici, B. A. eds. Parasites and Pathogens of Insects, New York: Academic Press. 1993. 1: 227-244.
    69. Jones, D. & Wache, S. J. Insect Physiol. 1998. 44: 755-765.
    
    
    70. Junnikkala, E. Testis development in Pieris brassicae parasitised by Apanteles glomeratus. Entomol. Exp. Appl. 1985. 37: 283-288.
    71. Kainoh, Y. & Brown, J. J. Amino acids as oviposition stimulants for the egg-larval parasitoid, Chelonus sp. near curvimaculatus (Hymenoptera: Braconidae). J. Bio. Control. 1994. 4: 22-25.
    72. Kanost, M. R., Kawooya, J. K., Law, J. H. Insect haemolymph proteins. Adv. Insect Physiol. 1990. 22: 299-396.
    73. King, B. H. Host-size dependent sex ratios among parasitoid wasp: does host growth matter? Oecologia 1989. 78: 420-426.
    74. Kitano, H. Possible role of teratocytes of the gregarious parasitoid, Cotesia (=Apanteles) glomerata in the suppression of phenoloxidase activity in the larval host, Pieris rapae crucivora. Arch. Insect Biochem. Physiol. 1990. 13: 177-185.
    75. Lavine, M. D., Beckage, N. E. Polydnaviruses: potent mediators of host insect immune dysfunction. Parasitology Today. 1995. 11: 368-378.
    76. Lawrence, P. O. The biochemical and physiological effects of insect hosts on the development and ecology of their insect parasites: An overview. Arch. Insect Biochem. Physiol. 1990. 13: 217-228.
    77. Lee, H. P., Ko, T. Y. & Lee, K. R. Changes in hemolymph metabolites of Lymantria dispar L. parasitized by the pupal parasitoid, Brachymeria lasus Walker. Korean Journal of Entomology 1990a. 20(1): 23-32.
    78. Lee, H. P., Ko, T. Y. & Lee, K. R. Changes in hemolymph metabolites, protein, carbohydrate and free amino acid of Galleria mellonella L. parasitized by the pupal parasitoid, Brachymeria lasus Walker. Korean Journal of Entomology 1990b. 20(1): 23-32.
    Luckhart, S. & Webb, B. A. Interaction of a wasp ovarian protein and polydnavirus in host
    
    79. immune suppression. Developmental and Comparative Immunology. 1996. 20: 1-21.
    80. Mackauer, M. & Michaud, J. P., V?lkl, W. Host choice by aphidiid parasitoids (Hymenopera: Aphidiidae): host recognition, host quality, and host value. Can. Entomol. 1996. 128: 959-980.
    81. Mackauer, M. & Sequeira, R. Patterns of development in insect parasites. Parasites and Pathogens of insects ?: Parasites. Academic Press. Inc. 1993.
    82. McAuslane, H. J. Stimuli influencing host microhabitat location in parasitoid Campoletis sonorensis. Entomol. Exp. Appl. 1991. 58: 267-277.
    83. McCravy, K. W. & Berisford, C. W. Environ. Entomol. 1998. 27(2): 355-359.
    84. Michael, R. S. & Barry, A. D. Arch. Insect Biochem. Physiol. 1993. 18: 131-145.
    85. Nufio, C. R., Papaj, D. R. Host marking behavior in phytophagous insects and parasitoids. Entomol. Exp. Appl. 2001. 99: 273-293.
    86. Ohnishi, A., Hayakawa, Y., Matsuda, Y., et al. Insect Biochem. Molec. Biol. 1995. 25: 1121-1127.
    87. Okuda, T., Kadono, Okuda, K. Perilitus coccinellae teratocyte polypeptide: Evidence for production of a teratocyte-specific 540kDa protein. J. Insect Physiol. 1995. 41: 819-825.
    88. Pak, G. A., Van Dalon, A., Daashoek, N. et al. J. Insect Physiol. 1990. 36(11): 869-875.
    89. Pennacchio, F., Vinson, S. B., Tremblay, E. Arch. Insect Biochem. Physiol. 1992. 19: 177-192.
    90. Pennacchio, F., Vinson, S. B. & Tremblay, E. Growth and development of Cardiochiles nigriceps (V.)(Hymenoptera, Braconidae) larvae and synchronization with some changes of the hemolymph composition of their host, Heliothis virescens(F.)(Lepidoptera, Noctuidae). Arch. Insect Biochem. Physiol. 1993. 24(2): 65-77.
    Pennacchio, F. & Vinson, S. B. Alteration of ecdysone metabolism in Heliothis virescens (F.) (Lepidoptera, Noctuidae) larvae induced by Cardiochiles nigriceps (V.) (Hymenoptera,
    
    91. Braconidae). Insect Biochem. Mol. Biol. 1994a. 24(4): 383-394.
    92. Pennacchio, F. & Vinson, S. B. Biochemical and developmental alterations of Heliothis virescens(F.)(Lepidoptera, Noctuidae) larvae induced by the endophagous parasitoid Cardiochiles nigriceps(V.)(Hymenoptera, Braconidae). Arch. Insect Biochem. Physiol. 1994b. 26: 211-233.
    93. Pennacchio, F., Vinson, S. B. & Tremblay, E. Morphology and ultrastructure of the serosal cells (teratocytes) in Cardiochiles nigriceps Viereck(Hymenoptera: Braconidae) embryos. Int. J. Insect Morphol. Embryol. 1994c. 23: 93-104.
    94. Pennacchio, F. et al. Host recognition and acceptance behaviour in two aphid parasitoid species:Aphidius ervi and Aphidius mirolophii(Hymenoptera: Braconondae). Bull. Ent. Res. 1994d. 84(1): 57-64.
    95. Pennacchio, F., Digilio, M. C. & Trembly, E. Biochemical and metabolic alterations in Acyrthosiphon pisum parasitized by Aphidius ervi. Arch. Insect Biochem. Physiol. 1995. 30: 351-367.
    96. Pennacchio, F., Falabella, P., Sordetti, R. et al. J. Insect Physiol. 1998. 44: 854-857.
    97. Pfister - Wilhelm, R. & Lanzrein, B. Precocious induction of metamorphosis in Spodoptera littoralis (Noctuidae) by the parasite wasp Chelonus inanitus (Branconidae): Identification of the parasitoid larvae as the key regulatory element and the host corpora allata as the main targets. Arch. Insect Biochem. Physiol. 1996. 32: 511- 525.
    98. Quicke, D.L.G. Parasitic wasps. 1997. Chapman, London.
    99. Reed, D. A. & Beckage, N. E. J. Insect Physiol. 1997. 43: 29-38.
    100. Riotberg, B. D. Fitness, parasitoids, and biological control: an opinion. Can. Entomol. 2001. 133: 429-438.
    Sagarra, L. A. & Vincent, C. Influence of host stage on oviposition, development, sex ratio, and survival of Anagyrus kamali Moursi (Hymenoptera: Encyrtidae), a parasitoid of the
    
    101. hibiscus mealybug, Maconellicocus hirsutus Green (Hymenoptera: Encyrtidae). Biological Control. 1999. 15: 51-56.
    102. Salt, G. Experimental studies in insect parasitism. V. Thesense used by Trichogramma to distinguish between parasitized and unparasitized hosts. Proc. Roy. Soc. London. B 1937. 122: 57-75.
    103. Schepers, E. J. et al. Microplitis croceipes teratocytes:in vitro culture and biological activity of teratocyte secreted protein. J. Insect Physiol. 1998. 44: 767-777.
    104. Schopf, A. & Nussbaumer, C. Influence of parasitism by Glyptapanteles liparidis (Braconidae: Hymenoptera) on the haemolymph carbohydrate and glycogen content of its host larva, Lymantria dispar (Lymantriidae: Lepidoptera). J. Appl. Entomol. 1996. 120(6): 357-362.
    105. Sequeira, R. & Mackauer, M. Covariance of adult size and development time in the parasitoid wasp Aphidius ervi in relation to the size of its host, Acyrthosiphon pisum. Evol. Ecol. 1992. 6: 34-44.
    106. Sequeira, R.& Mackauer, M. The nutritional ecology of a parasitoid wasp Ephedrus californicus Baker (Hymenoptera: Aphididae). Can. Entomol. 1993. 125: 423-430.
    107. Shelby, K. S. & Webb, B. A. Polydnavirus infection inhibits synthesis of an insect plasma protein, arylphorin. J. Gen. Virol. 1994. 75: 1-8.
    108. Shelby, K. S., Webb, B. A. Polydanvirus infection inhibits translation of specific growth-associated host proteins. Insect Biochem. Mol. Biol. 1997. 27: 263 -270.
    109. Shelby, K. S., Cui, Li & Webb, B. A. Polydanvirus-mediated inhibition of lysozyme gene expression and the antibacterial response. Insect Molec. Biol. 1998. 7: 265 -272.
    110. Shelby, K. S., Webb, B. A. Polydanvirus-mediated suppression of insect immunity. J. Insect Physiol. 1999. 45: 507-514.
    Strand, M. R. The physiological interactions of parasitoids with their hosts and their
    
    111. influence on reproductive strategies. In "Insect Parasitoids" (J. Waage and D. Greathead, eds.), 1986. pp. 97-136. Academic Press, London.
    112. Strand, M. R. & Dover, B. A. Arch.Insect Biochem. Physiol. 1991. 18: 131-145.
    113. Strand, M. R. & Pech, L. L. Immunological basis for compatibility in parasitoid-host relationships. Annu. Rev. Entomol. 1995. 40: 31-56.
    114. Strand, M. R. & Johnson, J. A. Characterization of monocolnal antibodies to hemocytes of Pseudoplusia includens. J. Insect Physiol. 1996. 42(1): 21-31.
    115. Strand, M. R., Witherell, R., Trudeau, D. Two Microplitis demolitor polydnavirus mRNAs expressed in haemocytes of Psuedoplusia includens contain a common cysteine-rich domain. J. Virol. 1997. 71: 2146-2156.
    116. Sugumaran, M. Role of insect cuticle in immunity. In: New directions in invertebrate immumology. SOS Puba. Fair Haven. NJ. 1996, 355-374.
    117. Sullivan, D. J. Hyperparasitism: multitrophic ecology and behavior. Ann. Rev. Entomol. 1999. 44: 291-315.
    118. Tagashira, E. & Tanaka, T. J. J. Insect Physiol. 1998. 42: 733-744.
    119. Tagawa, Jun, Shinsuke Aoki et al. Longevity, egg load, and lack of host-quality preference in the hyperparasitoid Eurytoma goidanichi Boucek (Hymenoptera: Eurytomidae). Appl. Ent. Zool. 2000. 35(4): 541-548.
    120. Takashi, O. & Ceryngier, P. Host discrimination in Dinocampus coccinellae (Hymenoptera: Braconidae), a solitary parasitoid of of coccinellid beetles. Appl. Entomol. Zool. 2000. 35(4): 535-540.
    121. Tanaka, T. Effects of the calyx and venom fluid of Apanteles Kariyai watanabe (Hymenoptera: Braconidae) on the fat body and hemolymph protein contents of its host Psedualetia separata (Walker)(Lepidotera: Noctuidae). Appl. Entomol. Zool. 1986. 441: 1-6.
    122. Tanaka, T. & Vinson, S. B. J. Insect Physiol. 1991. 37: 139-144.
    
    
    123. Tanaka, T. & E. Tagashira. Regulation of testis growth of the host, Pseudaletlia separata by the polydnavirus and venom of Cotesia kariyai.In:XX International Cogress of Entomology, Firenze, Italy, 1996. 157.
    124. Taylor, A. J. et al. Effect of aphid predators on oviposition behavior of aphid parasitoids. J. Insect Behav. 1998. 11(2): 297-302.
    125. Thompson, S. N. Effects of the insect parasite, Hyposoter exigue on the total body glycogen and lipid levels of its host, Trichoplusia ni. Comp. Biochem. Physiol. 1982. 72B(2): 233-237.
    126. Thompson, S. N. The nutritional physiology of Trichoplusia ni parasitized by the insect parasite, Hyposoter exigue, and the effects of parallel-feeding. Parasitology. 1983. 87: 15-28.
    127. Thompson, S. N. Effects of the insect parasite Hyposoter exiguae on the carbohydrate metabolism of its host, Trichoplusia ni (Hübner). J. Insect Physiol. 1986. 32(4): 287-293.
    128. Thompson, S. N. Redirection of host metabolism and effects on parasite nutrition. In: Beckage, N. E., Thompson, S. N., Federici, B. A.(Eds.) Parasites and Patho-gens of Insects, vol.I, Academic Press, London, 1993. pp.125-144.
    129. Thompson, S. N. & Johnson, J. Further studies on lipid metabolism in the insect parasite, Exeristes roborator (F.). J. Parasitol. 1978. 64: 731-740.
    130. Thompson, S. N. & Bradley, F. B. Altered carbohydrate levels and gluconeogenic enzyme activity in Trichoplusia ni parasitized by the insect parasite, Hyposoter exiguae. J. Parasit. 1984. 70(5): 644-651.
    131. Tran, Tan Viet, Keiji Takasu. Host age selection by the host-feeding pupal parasitoid Diadromus subtiliconis (Gravenhorst) (Hymenoptera: Ichneumonidae). Appl. Entomol. Zool. 2000. 35(4): 549-556.
    Ueno, T. Self-recognition by the parasitic wasp Itoplectis naranyae (Hymenoptera:
    
    132. Ichneumonidae). OIKOS. 1994. 70: 333-339.
    133. Ueno, T. & T. Tanaka. Self-host discrimination by a parasitic wasp: the role of short-term parasitoids. Anim. Behav. 1996. 52: 875-883.
    134. Ueno, T. Host age preference and sex allocation in the pupal parasitoid Itoplectis naranyae (Hymenoptera: Ichneumonidae). Ann. Entomol. Soc. Am. 1997. 87: 592-598.
    135. Ueno, T. Adaptiveness of sex ratio control by the pupal parasitoid Itoplectis naranyae (Hymenoptera: Ichneumonidae) in response to host size. Evolutionary Ecology 1998. 12: 643-654.
    136. Van Dijken, M. j., P. van Stratum, et al. Recognition of individual-specific marked parasitized hosts by the solitary parasitoid Epidinocarsis lopezi. Behav. Ecol. Sociobiol. 1992. 30: 77-82.
    137. Vinson, S. B. Host selection by insect parasitoids. Annu. Rev. Ent. 1976. 21: 109-133.
    138. Vinson, S. B. The behavior of parasitoids. In G. A. Kerkut & L. I. Gilber eds. Comprehensive insect physiology, Biochemistry and pharmacology, 1985. Vol. 9. Pergamon Press, New York.
    139. Vinson, S. B. How parasitoids deal with the immune system of their host: An overview. Arch. Insect Biochem. Physiol. 1990. 13: 3-27.
    140. Vinson, S. B. & Barras, D. J. Effects of the parasitoid, Cardiochiles nigriceps, on the growth development and tissues of Heliothis virescens. J. Insect Physiol. 1970. 16: 1329-1338.
    141. Vinson, S. B. & Iwantsch, G. F. Host regulation by insect parasitoids. The Quarterly Review of Biology. 1980. 55(6): 143-165.
    142. Vinson, S. B. et al. Source of possible host regulatory factors in Cardiochiles nigriceps (Hymenoptera: Braconidae). Arch. Insect Biochem. Physiol. 1994. 26: 197-209.
    143. Von Brand, T. Pathophysiology of the host. Biochemistry and Physiology of Endoparasites, 1979. pp.321-390. Elsevier/North Holland Biomedical Press, Amsterdam.
    
    
    144. Wago, H. & Kitano, H. Immunity of Insects and other arthopods. Gupta, A. P. ed. 1991. 215-235.
    145. Wani, M., Yagi, S., Tanaka, T. Synergistic effect of venom, calyx and teratocytes of Apanteles kariyai on the inhibiton of the larval-pupal ecdysis of the host, Pdeudaletia separata. Entomol. Exp. Appl. 1990. 57: 101-104.
    146. Webb, B. A., Summers, M. D. Venom and viral expression products of endoparasite wasp Campoletis sonorensis share epitopes and related sequence. Proc. Natl. Acad. Sci. USA. 1990. 87: 4961-4965.
    147. Webb, B. A. & Summers, M. D. Stimulation of polydnavirus replication by 20-hydroxy- ecdysone. Experientia. 1993. 42: 1018-1022.
    148. Zhang, D. L. & Dahlman, D. L. Microplitis croceipes teratocytes cause developmental arrest of Heliothis virescens larvae. Arch. Insect Biochem. Physiol. 1989. 12: 51-61.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700