用户名: 密码: 验证码:
利用簇合效应与类同法合成新农药活性化合物的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
农药是农业生产的重要保障物资,在国民经济发展中具有重要的作用。高效、低毒、环境友好是21世纪农药新品种发展的趋势。为了筛选与发现结构新颖的具有农药活性的化合物,本文利用簇合效应和类同合成两种新农药创制方法,设计合成了4个系列的化合物,并进行了生物活性评价。可分为以下两个部分:
     第一部分:利用簇合效应原理合成双作用位点抑制剂
     1、基于乙酰乳酸合成酶(acetohydroxyacid synthase, AHAS, EC 2.2.1.6)两个活性位点的晶体结构,以甲基咪草烟为母体,设计合成了8个同簇二效价化合物。经生物活性研究发现:当用不同烷基链连接成簇合物后,其对AHAS的离体活性显著下降。然而,这些簇合物对油菜根长的抑制却表现出与单体相同的活性。
     2、基于乙酰胆碱酯酶(acetylcholinesterase, AChE, EC 3.1.1.7)催化活性中心和芳香通道疏水性结合位点的特征,设计合成了31个异簇化合物。经生物活性研究发现:化合物B10,B11,B25,B26,B28和B29对家蝇头部AChE的抑制活性高于母体化合物苯基N-甲基氨基甲酸酯(MH)。其中,簇合物B29显示出最高的活性,比母体化合物提高62倍,比商品化杀虫剂速灭威提高12倍。由此表明,簇合物B29在苯基氨基甲酸酯基团结合到AChE的催化活性中心的同时,苯氧基团能够与芳香峡谷通道疏水性位点结合,提高对AChE的抑制活性,进一步证实了簇合效应在新农药创制中的可行性。
     第二部分:利用类同法合成新型吡唑类除草剂。
     1、利用类同合成法,以即将上市的农药新品种pyroxasulfone为模板,设计合成了14个新型吡唑类化合物。经生物活性研究发现:在100μg mL-1浓度下,化合物C1-C6明显抑制稗草、马唐和马齿苋芽和根的生长。温室盆栽实验结果表明这些化合物对单子叶杂草具有很好的抑制作用,其活性明显好于对照药剂异丙甲草胺。其中化合物C4显示出最好的除草活性和作物安全性。在玉米田苗前土壤处理实验中,化合物C4能有效的防除马唐等一年生禾本科杂草和部分阔叶杂草,其除草活性好于异丙甲草胺;而且对玉米的生长没有不良影响。可见,化合物C4具有很好的除草活性和选择性,可作为除草剂候选化合物进行进一步的研究。
     2、利用活性基团拼接法,设计合成了31个含炔基、嘧啶和吡唑三个活性基团的新型化合物,并测定其除草活性。经生物活性研究发现:目标化合物对马唐、稗草和油菜都具有不同程度的抑制作用。D13-16,D18,D21,D22,和D24表现出很好的白化作用,使测试植物出现白化后死亡,具有进一步研究的价值。
Pesticide is an important guarantee for agricultural production and plays an important role in national economic development. New pesticidal varieties with high activity, low toxicity and safety have been a trend in the 21st century. To find novel compounds with pesticidal activities, we have synthesized 4 novel series of compounds by the methods of cluster effect and me-too, and evaluated their bioactivities in this study. It mainly contains two parts as bellow:
     Part I: Synthesis of dual binding site inhibitors by cluster effect
     1、Based on the two binding sites of AHAS, 8 symmetrical bivalent molecules of imazapic were designed and synthesized. The preliminary bioassay results showed that the inhibition rate to the AHAS from dimeric compounds were less potent than that of imazapic. And the inhibition rate to the growth of rape (Brassica campestris L.) root from bivalent compounds were very close to that of imazapic at the concentration of 100μg mL-1.
     2、Based on catalytic triad and hydrophobic sites of AChE, 31 dimeric compounds were designed and synthesized. Their activities results in vitro showed that compounds B10,B11,B25,B26,B28 and B29 had better AChE inhibitory activities than pheny N-methylcarbamate (MH). Among them, compound B29 displayed the best AChE inhibitory activity with 62-fold higher than MH and 12-fold higher than metolcarb, which suggested that the phenoxy group bound strongly to the residues lining the gorge, the phenyl carbamate group bound at the catalytic sites. The results obtained from these studies demonstrated the feasibility of the cluster effect in the pesticide field.
     Part II: Synthesis of the novel pyrazole derivatives by me-too method.
     1、Using new pesticide pyroxasulfone, currently under commercial development, as lead compound, 14 novel compounds were designed and synthesized. The herbicidal bioassay results showed that these pyrazole derivatives (C1-C6) inhibited root and shoot elongation of the germinated seed of Echinochloa crusgalli L., Digitaria sanguinalis L., and Portulaca oleracea L. at the concentration of 100μg mL-1. In greenhouse conditions, compounds C1-C6 showed better herbicidal activities against monocotyledonous weeds in pre-emergence treatment than metolachlor. Among them, compound C4 showed best inhibitory activity against both dicotyledonous and monocotyledonous weeds with good safety to maize and rape. Field trials indicated that compound C4 exhibited better herbicidal activity by soil application than the commercial herbicide, metolachlor. Moreover, compound C4 showed the same level of safety to maize as metolachlor. Consequently, compound C4 possessed excellent herbicidal activity and selectivity and deserved further studies as the herbicide candidate in a maize field.
     2、By the introduction of alkyne and pyrimidine moieties into pyrazole ring, we have designed and synthesized 31 novel pyrazole derivatives and evaluated their herbicidal activites. The preliminary bioassay results showed these compounds inhibited root and shoot elongation of the germinated seed of Echinochloa crusgalli L., Digitaria sanguinalis L., and rape. Compounds D13-16, D18, D21, D22 and D24 exhibited excellent bleaching herbicidal activities and deserved further studies.
引文
[1]柏亚罗.具有不同作用机理的杀螨剂[J].现代农药, 2005, 4: 27~30.
    [2]曹瑾.吡唑类农药的研究进展[J].精细化工中间体, 2007, 37: 1~4.
    [3]成四喜,吴防军.新型吡唑类广谱杀虫剂fipronil的合成与应用[J].农药译丛, 1995, 17, 18~21.
    [4]陈万义.新农药的研发—方法进展[M].北京:化学工业出版社, 2007: 1~18.
    [5]陈万义,薛振祥,王能武.新农药研究与开发[M].北京:化学工业出版社, 1995: 26~65.
    [6]大连瑞泽农药股份有限公司.新颖杀虫剂—丁烯氟虫腈[J].世界农药, 2005, 27: 49.
    [7]范志金,钱传范,于维强,陈俊鹏,李正名,王玲秀.氯磺隆和苯磺隆对玉米乙酰乳酸合成酶抑制作用的研究[J].中国农业科学, 2003, 36(2): 173~178.
    [8]方晓东,黄俊生.家蝇乙酰胆碱酯酶基因的克隆与序列分析[J].中国热带作物, 2006, 6: 950~952.
    [9]梁英,贺红武.具有杀菌活性的吡唑类衍生物的研究进展[J].农药, 2005, 44 (11): 491~495.
    [10]靳广毅,瑕瑜,白东鲁.基于双中心理论的乙酰胆碱酯酶抑制剂研究进展[J].药学学报, 2002, 37(9): 749~752.
    [11]李海屏.杀菌剂新品种开发进展及发展趋势[J].江苏化工, 2004, 32: 7~12.
    [12]郎玉成,柏亚罗.吡唑类农药品种的研究开发进展[J].现代农药, 2006, 5: 6~12.
    [13]李梅,王振宁,宋宝安,胡德禹.吡唑类衍生物杀菌活性研究进展[J].农药, 2008, 47: 391~397.
    [14]刘长令.世界农药大全(除草剂卷)[M].北京:化学工业出版社. 2002: 17~327.
    [15]刘长令.选择发明在新农药创制中的应用[J].农药, 1999, 38: 7~9.
    [16]刘卫敏,邹小毛,宋洪海,汪义丰,朱有全,杨华铮. 4-吡唑基-2-芳氧基嘧啶类化合物的合成及除草活性[J].有机化学, 2006, 26: 1600~1605.
    [17]李琼,陈沛全,陈兰,孙宏伟,沈荣欣,赖城明,等.酵母AHAS酶与磺酰脲类抑制剂作用模型的分子对接研究[J].高等学校化学学报, 2007, 28 (8): 1552~1555.
    [18]梅向东,杨国权,宁君.利用簇合效应发现和创制高效农药的设想[J].农药学学报, 2006, 8: 203~208.
    [19]彭浩,贺红武.类胡萝卜素生物合成抑制剂研究进展[J].农药学学报, 2003, 5: 1~8.
    [20]谭成侠,潘丽艳,傅寅翼.具有除草活性的吡唑类化合物的研究进展[J].现代农药, 2009, 8 (2): 6~12.
    [21]唐除痴,李煜昶,陈彬,杨华铮,金桂玉.农药化学[M].天津:南开大学出版社, 1998.
    [22]田官荣,房立真,吴明根,朴仁哲,全炳武.稻田除草剂吡唑特的合成和除草效果[J].农药, 2005, 44: 205~207.
    [23]吴琴,宋宝安,金林红,胡德禹.嘧啶类化合物的合成及抗菌活性研究进展[J].有机化学, 2009, 29: 365~379.
    [24]肖勇军,王建国,刘幸海,李永红,李正名.基于受体结构的AHAS抑制剂的设计、合成及生物活性[J].高等学校化学学报, 2007, 28 (7): 1280~1282.
    [25]袁家珪,孙耘芹,冯国蕾,祝平,龚坤元.家蝇中乙酰胆碱酯酶、羧酸酯酶和多功能氧化酶活性与抗药性的关系[J].昆虫学报, 1987, 30: 126~132.
    [26]张国生.吡唑类、吡咯类杀虫剂的研究进展[J].农药科学与管理, 2004, 25: 23~26.
    [27]张亦冰.新颖甲氧基丙烯酸醋类杀菌剂—唑菌胺酯[J].世界农药, 2007, 29: 47~48.
    [28]张涛,董喜成,陈海峰,陈敏伯. Sulfonylurea类ALS/AHAS抑制剂作用方式的分子对接研究和新抑制剂的虚拟筛选[J].化学学报, 2006, 64: 899~905.
    [29]周宇涵,苗蔚荣,程侣柏,王大翔,柏再苏.原卟啉原氧化酶抑制剂类除草剂研究进展[J].农药学学报, 2002, 4: 1~8.
    [30]朱良天.精细化工产品手册—农药[M].北京:化学工业出版社, 2004.
    [31] Alonso, D., Dorronsoro, I., Rubio, L., Mu?oz, P., García-Palomero, E., Del Monte, M., et al. A Donepezil–tacrine hybrid related derivatives as new dual binding site inhibitors of AChE[J]. Bioorganic & Medicinal Chemistry, 2005, 24: 6588~6597.
    [32] Arora, P. S., Ansari, A. Z., Best, T. P., Ptashne, M., & Dervan, P. B. Design of Artificial transcriptional activators with rigid poly-L-proline linkers[J]. Journal of the American Chemical Society, 2002, 124: 13067~13071.
    [32] Awada, A., Thodtmann, R., Piccart, M. J., Wanders, J., Schrijvers, A. H. G. J., Von Broen I. M., et al. An EORTC-ECSG phase I study of LU 79553 administered every 21 or 42 days in patients with solid tumours[J]. European Journal of Cancer, 2003, 39: 742~747.
    [34] Axelsen, P. H., Harel, M., Silman, I., & Sussman J. L. Structure and dynamics of the active site gorge of acetylcholinesterase: Synergistic use of molecular dynamics simulation and X-Ray crystallography[J]. Protein Science, 1994, 3: 188~197.
    [35] Belluti, F., Rampa, A., Piazzi, L., Bisi, A., Gobbi, S., Bartolini, M., et al. Andrisano VCholinesterase inhibitors: xanthostigmine derivatives blocking the acetylcholinesterase-induced ?-amyloid aggregation[J]. Journal of Medicinal Chemistry, 2005, 48: 4444~4456.
    [36] Bertozzi, C. R., & Kiessling, L. L. Chemical glycobiology[J]. Science, 2001, 291: 2357~2364.
    [37] Bessard, Y., & Crettaz, Z. Rate acceleration of nucleophilic substitution of 2-chloro-4,6-dimethoxy- pyrimidine by sulfinate catalysis[J]. Tetrahedron, 2000, 56: 4739~4745.
    [38] Bhushan, R. G., Sharma, S. K., Xie, Z., Daniels, D. J., & Portoghese, P. S. A bivalent ligand (KDN-21) reveals spinalδandкopioid receptors are organized as heterodimers that give rise toδ1 andк2 phenotypes. selective targeting ofδ-кheterodimers[J]. Journal of Medicinal Chemistry, 2004, 47: 2969~2972.
    [39] Boyd, M. R., Hallock, Y. F., Cardellina, I., Manfredi, K. P., Blunt, J. W., Mcmahon, J. B., et al. Anti-HIV michellamines from ancistrocladus korupensis[J]. Journal of Medicinal Chemistry, 1994, 37: 1740~1745.
    [40] Brana, M. F., Cacho, M., Garcia, M. A., Pascual-Teresa, B., Ramos, A., Dominguez, M. T., et al.New analogues of amonafide and elinafide, containing aromatic heterocycles: synthesis, antitumor activity, molecular modeling, and DNA binding properties[J]. Journal of Medicinal Chemistry, 2004, 47: 1391~1399.
    [41] Brana, M. F., & Ramos, A. Naphthalimides as anti-cancer agents: synthesis and biological activity[J]. Current Medicinal Chemistry, 2001, 1: 237~255.
    [42] Cardenas, M. E., Sanfridson, A., Cutler, N. S., & Heitman, J. Signal-transduction cascades as targets for therapeutic intervention by natural products[J]. Trends in Biotechnology, 1998, 16: 427~433.
    [43] Carlier, P. R., Du, D. M., Han, Y., Liu, J., Perola, E., Willians, I. D., et al. Dimerization of an inactive fragment of huperzine A produces a drug with twice the potency of natural porduct[J]. Angewandte Chemie International Edition, 2000, 39: 1775~1777.
    [44] Chaires, J. B. Energetics of drug-DNA binding[J]. Biopolymers, 1998, 44: 201~215.
    [45] Chaires, J. B., Leng, F., Przewloka, T., Fokt, I., Ling, Y. H., Perez-Soler, R., et al. Structure-based design of a new bisintercalating anthracycline antibiotic[J]. Journal of Medicinal Chemistry, 1997, 40: 261~266.
    [46] Clemons, P. A. Design and discovery of protein dimerizers[J]. Current Opinion in Chemical Biology, 1999, 3: 112~115.
    [47] Condon, M. E., Brady, T. E., Feist, D., Malefyt, T., Marc, P., Quakenbush, L. S., et al. Brighton crop protection conference-weeds, British Crop Protection Council, Farnham, UK , 1993: 41~46.
    [48] Corbett, J. R. The biochemical mode of action of pesticide[M]. London: Academic Press, 1974.
    [49] Crabtree, G. R., & Schreiber, S. L. Three-part inventions: intracellular signaling and induced proximity[J]. Trends in Biochemical Sciences, 1996, 21: 418~422.
    [50] Dam, T. K., & Brewer, C. F. Thermodynamic studies of lectin-carbohydrate interactions by isothermal titration calorimetry[J]. Chemical Reviews, 2002, 102: 387~429.
    [51] Deglin J. H., & Vallerand A. H. Davis's drug guide for nurses. London: F. A. Davis Company, 1993.
    [52] Ellman, G. L., Courtney, K. D., Andres, V. J., & Feather-Stone R. M. A new and rapid colorimetric determination of acetylcholinesterase activity[J]. Biochemical Pharmacology, 1961, 7: 88~95.
    [53] Erez, M., Takemori, A. E., & Portoghese, P. S. Narcotic antagonistic potency of bivalent ligands which containβ-naltrexamine , evidence for bridging between proximal recognition sites[J]. Journal of Medicinal Chemistry, 1982, 25 (7): 847~849.
    [54] Ernst-Russell, M., Elix, J. A., Chai, C. L. L., Willis, A. C., Hamada, N., & Nash, T. H. Hybocarpone, a novel cytotoxic naphthazarin derivative from mycobiont cultures of the lichen Lecanora hybocarpa[J]. Tetrahedron Letters, 1999, 40: 6321~6324.
    [55] Fan, E. K., Zhang, Z. S., Minke, W. E., Hou, Z., Verlinde, C. L. M. J., & Hol, W. G. J. High-affinity pentavalent ligands of escherichia coli heat-labile enterotoxin by modular structure-based design[J]. Journal of the American Chemical Society, 2000, 122: 2663~2664.
    [56] Feng, S., Wang, Z. F., He, X. C., Zheng, S. X., Xia, Y., Jiang, H. L., et al. Bis-huperzine B: highlypotent and selective acetylcholinesterase inhibitors[J]. Journal of Medicinal Chemistry, 2005, 48(3): 655~657.
    [57] Gabriele, D., Helga, F., Jens, G., Uwe, H., Juergen, B., & Richard, R. New substituted pyrazole derivatives, processes for their preparation and their use as herbicides. WO, 9408999[P]. 1994-04-28.
    [58] Gabriele, D., Helga, F., Jens, G., Uwe, H., Juergen, B., & Richard, R. Substituted pyrazole derivatives and their use as herbicides. US, 5756424[P]. 1998-05-26.
    [59] Gao, J. R. Biochemical and molecular analyses of acetylcholinesterase from organophosphate susceptible and resistant clones of the greenbug[M]. Schizaphis graminum: Kansas State University, 2001.
    [60] Geier, P. W., Stahlman, P. W., & Frihauf, J. C. KIH-485 and S-metolachlor efficacy comparisons in conventional and no-tillage corn[J]. Weed Thchnology, 2006, 20: 622~626.
    [61] Gestwicki, J. E., & Kiessling, L. L. Inter-receptor communication through arrays of bacterial chemoreceptors[J]. Nature, 2002, 415: 81~84.
    [62] Gilchrist, T. L. Heterocyclic Chemistry[M]. Addision Wesley Longman, Singapore, 1997: 261~276.
    [63] Goldstein, B., & Wofsy, C. Theory of equilibrium binding of a bivalent ligand to cell surface antibody: The effect of antibody heterogeneity on cross-linking[J]. Journal of Mathematical Biology, 1980, 10: 347~366.
    [64] Golicnik, M., Fournier, D., & Stojan, J. Interaction of drosophila acetylcholinesterases with D-tubocurarine: an explanation of the activation by an inhibitor[J]. Biochemistry, 2001, 40: 1214~1219.
    [65] Gong, X., Dubois, D. H., Miller, D. J., & Shur, B. D. Activation of a G-protein complex by aggregation of beta-1,4-galactosyltransferase on the surface of sperm[J]. Science, 1995, 269: 1718~1721.
    [66] Gorun, V., Proinov, I., Baltescu, V., Balaban, G., & Barzu, O. Modified Ellman procddure for assay of cholinesterases in crudeenzymatic preparations[J]. Analytical Biochemistry, 1978, 86: 324~326.
    [67] Harel, M., Schalk, I., Ehret-Sabatier, L., Bouet, F., Goeldner, M., Hirth, C., et al. Quaternary ligand binding to aromatic residues in the active-site gorge of acetylcholineterase[J]. Proceedings of the National Academy of Sciences, 1993, 90: 9031~9035.
    [68] Harrison, S. C. Virus structures and conformational rearrangements[J]. Current Opinion in Structural Biology, 1995, 5: 157~164.
    [69] Hernandez, R., He, H., Chen, A. C., Ivie, G. W., George, J. E., & Wagner, G. G. Cloning and sequencing of a putative acetylcholinesterase cDNA from Boophilusmicroplus (Acari: Ixodidae) [J]. Journal of Medical Entomology, 1999, 36: 764~770.
    [70] He, X. C., Feng, S., Wang, Z. F., Shi, Y. F., Zheng, S. X., Xia, Y., et al. Study on dual-site inhibitors of acetylcholinesterase: Highly potent derivatives of bis- and bifunctional huperzine B[J]. Bioorganic & Medicinal Chemistry, 2007, 15(3): 1394~1408.
    [71] Hirai, K., Uchida, A., & Ohno, R. Herbicide classes in development[M]. Heidelberg: Springer-Verlag, 2002: 179~289.
    [72] Hoechst, A. G. Synergistic herbicidal compsns.-contg. sulphonyl-urea deriv and other herbicide. DE, 4241629[P]. 1994-06-16.
    [73] Jezewski, A., Jurczak, J., Lidert, Z., & Tice, C. M. J. Synthesis of herbicidal 3-substituted-4(3H)-pyrimidinones under high pressure[J]. Journal of Heterocyclic Chemistry, 2001, 38: 645~648.
    [74] Jin, G. Y., He, X. C., Zhang, H. Y., & Bai, D. L. Synthesis of alkylene-linked dimers of (-) -huperzine A[J]. Chinese Chemical Letter , 2002, 13(1): 23~26.
    [75] Kagabu, S., Itazu, Y., & Nishimura, K. Preparation of Alkylene-Tethered Acyclic Divalent Neonicotinoids and Their Insecticidal and Neuroblocking Activities for American Cockroach (Periplaneta americana L.) [J]. Journal of Pesticide Science, 2004, 29: 40~42.
    [76] Kagabu, S., Itazu, Y., & Nishimura, K. 1,6-Bis[1-(2-chloro-5-thiazolylmethyl)-2-nitroimino -imidazolidin-3-yl]hexane and 1,3,5-tris[1-(6-chloronicotinyl)-2-nitroimino-imidazolidin-3-ylmethyl] benzene—Synthesis and insecticidal and neuroblocking activities in American Cockroaches, Periplaneta Americana[J]. Journal of Pesticide Science, 2006, 31: 146~149.
    [77] Kagabu, S., Iwaya, K., Konishi, H., Sakai, A., Itazu, Y., Kiriyama, K., et al. Synthesis of alkylene-tethered bis-imidacloprid derivatives as highly insecticidal and nerve-exciting agents with potent affinity to [3H]Imidacloprid-binding sites on nicotinic acetylcholine receptor[J]. Journal of Pesticide Science, 2002, 27: 249~256.
    [78] Kierstead, R. W., Faraone, A., Mennona, F., Mullin, J., Guthrie, R. W., Crowley, H., et al. beta.1-Selective adrenoceptor antagonists. 1. Synthesis and beta.-adrenergic blocking activity of a series of binary (aryloxy)propanolamines[J]. Journal of Medicinal Chemistry, 1983, 26: 1561~1569.
    [79] Kiessling, L., Gestwicki, J., & Strong, L. E. Synthetic multivalent ligands in the exploration of cell-surface interactions[J]. Current Opinion Chemical Biology, 2000, 4: 696~703.
    [80] Kiessling, L. L., & Pohl, N. L. Strength in numbers: non-natural polyvalent carbohydrate derivatives[J]. Chemistry & Biology, 1996, 3: 71~77.
    [81] Kingery-Wood, J. E., Williams, K. W., Sigal, G. B., & Whitesides, G. M. The agglutination of erythrocytes by influenza virus is strongly inhibited by liposomes incorporating an analog of sialyl gangliosides[J]. Journal of the American Chemical Society, 1992, 114: 7303~7305.
    [82] King, S. R., Ritter, R. L., Hagood, E. S., & Menbere, H. Control of acetolactate synthase-resistant shattercane (Sorghum bicolor) in field corn with KIH-485[J]. Weed Thchnology, 2007, 21: 578~582.
    [83] Kitov, P. I., Sadowska, J. M., Mulvey, G., Armstrong, G. D., Ling, H., Pannu, N. S., et al. Shiga-like toxins are neutralized by tailored multivalent carbohydrate ligands[J]. Nature, 2000, 403: 669~672.
    [84] Kopytek, S. J., Standaert, R. F., Dyer, J. C. D. & Hu, J. C. Chemically induced dimerization of dihydrofolate reductase by a homobifunctional dimer of methotrexate[J]. Chemistry & Biology, 2002, 7:313~321.
    [85] Kozikowski, A. P., & Tückmantel, W. Chemistry, pharmacology, and clinical efficacy of the Chinese nootropic agent Huperzine A[J]. Accounts of Chemical Research, 1999, 32(8): 641~650.
    [86] Kramer, R. H., & Karpen, J. W. Spanning binding sites on allosteric proteins with polymer-linked dimers[J]. Nature, 1998, 395: 710~713.
    [87] Kryger, G., Silman, I., & Sussman, J. L. Structure of acetylcholinesterase complexed with E2020 (Ariceptò): implications for the design of new anti-Alzheimer drugs[J]. Structure, 1999, 7: 297~307.
    [88] Lamberth C. Alkyne chemistry in crop protection[J]. Bioorganic & Medicinal Chemistry, 2009, 17: 4047~4063.
    [89] LeBoulluec, K. L., Mattson, R. J., Mahle, C. D., McGovern, R. T., Nowak, H. P., & Gentile, A. J. Bivalent indoles exhibiting serotonergic binding affinity[J]. Bioorganic & Medicinal Chemistry Letters, 1995, 5: 123~126.
    [90] Lee, R. T., & Lee, Y. C. Affinity enhancement by multivalent lectin-carbohydrate interaction[J]. Glycoconjugate Journal, 2000, 17: 543~551.
    [91] Lee, Y. C., & Lee, R. T. Carbohydrate-protein interactions: basis of glycobiology[J]. Accounts of Chemical Research, 1995, 28: 321~327.
    [92] Li, H. B., Zhu, Y. Q., Song, X. W., Hu, F. Z., Liu, B., Li, Y. H., et al. Novel protoporphyrinogen oxidase inhibitors: 3H-pyrazolo[3,4-d][1,2,3]triazin-4-one derivatives[J]. Journal of Agricultural and Food Chemistry, 2008, 56: 9535~9542.
    [93] Liu, J., Zhang, H. Y., Wang, L. M., & Tang, X. C. Inhibitory effect of huperzine B on the cholinesterase activity in mice[J]. Acta Pharmacologica Sinica, 1999, 20(2): 141~145.
    [94] Li, Y., Luo, Y., Xi, Z., Niu, C., He, Y., & Yang, G. Design and syntheses of novel phthalazin-1(2H)-one derivatives as acetohydroxyacid synthase inhibitors[J]. Journal of Agricultural and Food Chemistry, 2006, 54(24): 9135~9139.
    [95] Luedtke, N. W., Lui, Q., & Tor, Y. RNA-ligand interactions: affinity and specificity of aminoglycoside dimers and acridine conjugates to the HIV-1 rev response element[J]. Biochemistry, 2003, 42: 11391~11403.
    [96] Mammen, M., Choi, S., & Whitesides, G. M. Polyvalent interactions in biological systems: implications for design and use of multivalent ligands and inhibitors[J]. Angewandte Chemie International Edition, 1998, 37: 2754~2794.
    [97] Markus, D., Helmut, F., & Dieter, F. Herbicide for use in rice cultivation. DE, 19720367[P]. 1997-11-27.
    [98] Martinez, A., Fernandeza, E., Castroa, A., Condea, S., Rodriguez-Francoa, I., Ba?osb, J., Badiab, A. N-Benzylpiperidine derivatives of 1,2,4-thiadiazolidinone as new acetylcholinesterase inhibitors[J]. European Journal of Medicinal Chemistry, 2000, 35: 913~922.
    [99] McCourt, J. A., Pang, S. S., King-Scott, J., Guddat, L. W., & Duggleby, R. G. Herbicide-binding sites revealed in the structure of plant acetohydroxyacid synthase[J]. Proceedings of the NationalAcademy of Sciences USA, 2006, 103: 569~573.
    [100] Metcalf, R. L., & Fukuto, T. R. Carbamate insecticides, effects of chemical structure on intoxication and detoxication of phenyl N-methylcarbamates[J]. Journal of Agricultural and Food Chemistry, 1965, 13(3): 220~231.
    [101] Michael, G., Helga, F., Uwe, H., & Juergen, B. Substituted pyrazolylpyrazole derivatives. US, 5840653[P]. 1998-11-24.
    [102] Miller, D. J., Macek, M. B., & Shur, B. D. Complementarity between sperm surfaceβ-1,4- galactosyl-transferase and egg-coat ZP3 mediates aperm-egg binding[J]. Nature, 1992, 357: 589~593.
    [103] Mu?oz-Ruiz, P., Rubio, L., García-Palomero, E., Dorronsoro, I., del Monte-Millán, M., Valenzuela, R., et al. Design, synthesis, and biological evaluation of dual binding site acetylcholinesterase inhibitors: new disease-modifying agents for Alzheimer’s disease[J]. Journal of Medicinal Chemistry, 2005, 48: 7223~7233.
    [104] Nakatani, M., Kaku, K., & Yoshimura, T. Isoxazoline derivatives and herbicides containing the same as the active ingredient. US, 6841519[P]. 2005-1-11.
    [105] Nakatani, M., Kugo, R., & Miyazaki, M. Isoxazoline derivative and herbicide comprising the same as active ingredient. US, 7238689[P]. 2007-1-3.
    [106] Nakatani, M., Ito, M., & Miyazaki, M. Pyrazole derivatives and process for the production thereof. US, 7256298[P]. 2007-8-14.
    [107] Pang, Y. P., Quiram, P., Jelacic, T., Hong, F., & Brimijoin, S. Highly potent, selective, and low cost bis-tetrahydroaminacrine inhibitors of acetylcholinesterase: steps toward novel drugs for treating Alzheimr’s disease[J]. Journal of Biological Chemistry, 1996, 271: 23646~23649.
    [108] Paul, C. J., Cameron, H. B., & Harold, W. R. Heterocyclic and carbocyclic-substituted benzoic acids and synthesis thereof. WO, 9602515[P]. 1996-02-01.
    [109] Porpiglia, P. J., Nakatani, M., Ueno, R., & Yamaji, Y. KIH-485: a new broad spectrum herbicide[J]. Weed Science Society of America (Abstract), 2005, 45: 94.
    [110] Portoghese, P. S., & Takemori, A. E. TENA, a selective kappaopioid receptor antagonist[J]. Life Sciences, 1985, 36: 801~805.
    [111] Rampa, A., Bisi, A., Valenti, P., Recanatini, M., Cavalli, A., Andrisano, V., et al. Acetylcholinesterase inhibitors: synthesis and structure–activity relationships of ?-[N-methyl-N-(3-alkylcarbmoyloxyphenyl)-methyl] aminoalkoxy heteroaryl derivatives[J]. Journal of Medicinal Chemistry, 1998, 41: 3976~3986.
    [112] Rampa, A., Piazzi, L., Belluti, F., Gobbi, S., Bisi, A., Bartolini, M., et al. Acetylcholinesterase inhibitors: SAR and kinetic studies on ?-[N-methyl-N-(3-alkylcarbmoyloxyphenyl)-methyl] aminoalkoxy heteroaryl derivatives[J]. Journal of Medicinal Chemistry, 2001, 44: 3810~3820.
    [113] Raves, M. L., Harel, M., Pang, Y. P., Silman, I., Kozikowski, A. P., & Sussman, J. L. Structure of acetyl cholinesterase complexed with the nontropic alkaloid, (-)-huperzine A[J]. Nature Structural Biology, 1997, 4(1): 57~63.
    [114] Piazzi, L., Cavalli, A., Piazzi, L., Cavalli, A., Belluti, F., Bisi, A., et al. Extensive SAR andcomputational studies of 3-{4-[(benzylmethylamino)methyl] phenyl}-6,7-dimethoxy-2H-2-chromenone (AP2238) derivatives[J]. Journal of Medicinal Chemistry, 2007, 50: 4250~4254.
    [115] Piazzi, L., Rampa, A., Bisi, A., Gobbi, S., Belluti, F., Cavalli, A., et al. Recanatini 3-(4-{[Benzyl(methyl)amino]methyl}-phenyl)-6,7-dimethoxy-2H-2-chromenone (AP2238) inhibits both acetylcholinesterase and acetylcholinesterase-induced ?-amyloid aggregation: a dual function lead for Alzheimer’s disease therapy[J]. Journal of Medicinal Chemistry, 2003, 46: 2279~2282.
    [116] Rice, W. G., Supko, J. G., Malspeis, L., Buckheit, R. W. J., Clanton, D. J., Bu, M., et al. Inhibitors of HIV nucleocapsid protein zinc fingers as candidates for the treatment of AIDS[J]. Science, 1995, 270: 1194~1197.
    [117] Robinson, H., Priebe, W., Chaires, J. B., & Wang, A. H. J. Binding of two novel bisdaunorubicins to DNA studied by NMR spectroscopy[J]. Biochemistry, 1997, 36: 8663~8670.
    [118] Selby, T. P. Heteroaryl azole herbicides. WO, 9840379[P]. 1998-09-17.
    [119] Shafferman, A., Kronman, C., Flashmer, Y., Leitner, M., Grosfeld, H., Ordentlich, A., et al. Mutagenesis of human acetylcholinesterase. Idetification of resdues involved in vatalytic activity and in polypeptide folding[J]. The Journal of Biological Chemistry, 1992, 267: 17640~17648.
    [120] Shen, Y. C., Prakash, C. V. S., & Guh, J. H. New pentacyclic polyketide dimeric peroxides from a Taiwanese marine sponge Petrosia elastica[J]. Tetrahedron Letter, 2004, 45: 2463~2466.
    [121] Sikkema, P. H., Robinson, D. E., Nurse, R. E., & Soltani N. Pre-emergence herbicides for potential use in pinto and small red mexican bean (Phaseolus vulgaris) production[J]. Crop Protection, 2008, 27: 124~129.
    [122] Solomon, B., & Bunn, P. A. Clinical activity of pemetrexed: a multitargeted antifolate anticancer agent[J]. Future Oncology, 2005, 1: 733~746.
    [123] Stack, D., & Thompson, R. Covalently linked dimmers of glycopeptide antibiotics. EP, 0801075[P]. 1999-07-07.
    [124] Steele, G. L., Porpiglia, P. J., & Chandler, J. M. Efficacy of KIH-485 on texas panicum (Panicum texanum) and selected broadleaf weeds in corn[J]. Weed Thchnology, 2005, 19: 866~869.
    [125] Sussman, J. L., Harel, M., Frolow, F., Oefner, C., Goldman, A., Toker, L., et al. Atomic structure of acetylcholinesterase from Torpedo californica: a prototypic acetylcholine-binding protein[J]. Science, 1991, 253: 872~879.
    [126] Tanetani, Y., Kaku, K., Kawai, K., Fujioka, T., & Shimizu, T. Action mechanism of a novel herbicide, pyroxasulfone[J]. Pesticide Biochemistry Physiology, 2009, 95: 47~55.
    [127] Thomas, M., & Axel, K. Herbicidal 2-pyrazolyl-6-aryloxyprimidines. CA, 2337109[P]. 2002-09-05.
    [128] Toda, N., Tago, K., Marumoto, S., Takami, K., Ori, M., Yamada, N., et al. Design, synthesis and structure–sctivity relationships of dual inhibitors of acetylcholinesterase and serotonin transporter as potential agents for Alzheimer’s disease[J]. Bioorganic & Medicinal Chemistry, 2003, 11: 1935~1955.
    [129] Trinh, N. H., Hoblyn, J., Mohanty, S., & Yaffe, K. Efficacy of cholinesterase inhibitors in thetreatment of neuropsychiatric symptoms and functional impairment in Alzheimer’s disease[J]. The Journal of the American Medical Association, 2003, 289: 210~216.
    [130] Turpin, J. A., Song, Y., Inman, J. K., Huang, M., Wallqvist, A., Maynard, A., et al. Synthesis and biological properties of novel pyridinioalkanoyl thiolesters (PATE) as anti-HIV-1 agents that target the viral nucleocapsid protein zinc fingers[J]. Journal of Medicinal Chemistry, 1999, 42: 67~86.
    [131] Tuzikov, A. B., Chinarev, A. A., Gambaryan, A. S., Oleinikov, V. A., Klinov, D. V., Matsko, N. B., et al. A bisubstrate analog inhibitor for ahpha(1-2)-fucosyltransferase[J]. The Journal of Biological Chemistry, 1989, 264: 17174~17181.
    [132] Tuzikov, A. B., Chinarev, A. A., Gambaryan, A. S., Oleinikov, V. A., Klinov, D. V., Matsko, N. B., et al. Polyglycine II nanosheets: supramolecular antivirals[J]. ChemBioChem, 2003, 4: 147~154.
    [133] Uwe, H., Gabriele, D., Helga, F., Jens, G., Gerhard, J., & Richard, R. Substituted pyrazoly- pyrazoles and their use as herbicides. EP, 0542388[P]. 1993-05-19.
    [134] Uwe, H., Gabriele, D., Helga, F., Jens, G., Gerhard, J., & Richard, R. Substituted pyrazoly- pyrazoles and their use as herbicides. US, 5405829[P]. 1995-04-11.
    [135] Vicentini, C. B., Mares, D., Tartari, A., Manfrini, M., & Forlani, G. Synthesis of pyrazole derivatives and their evaluation as photosynthetic electron transport inhibitors[J]. Journal of Agricultural and Food Chemistry, 2004, 52: 1898~1906.
    [136] Vicentini, C. B., Romagnoli, C., Andreotti, E., & Mares, D. Synthetic pyrazole derivatives as growth inhibitors of some phytopathogenic fungi[J]. Journal of Agricultural and Food Chemistry, 2007, 55: 10331~10338.
    [137] Villanora-Calero, M. A., Eder, J. P., Toppmeyer, D. L., Allen, L. F., Fram, R., Velagapudi, R., et al. Phase I and pharmacokinetic study of LU79553, a DNA intercalating bisnaphthalimide, in patients with solid malignancies[J]. Journal of Clinical Oncology, 2001, 19: 857~869.
    [138] Wang, J., Chen, X., Zhang, W., Zacharek, S., Chen, Y., & Wang, P. G. Enhanced inhibition of human anti-Gal antibody binding to mammalian cells by synthetic R-Gal epitope polymers[J]. Journal of the American Chemical Society, 1999, 121: 8174~8181.
    [139] Weiss, R. B., Sarosy, G., Clagett-Carr, K., Russo, M., & Leyland-Jones, B. Anthracycline analogs the past, present, and future[J]. Cancer Chemotherapy and Pharmacology, 1986, 18: 185~197.
    [140] Welch, J. T. Tetrahedron report number 221: Advances in the preparation of biologically active organo fluorine compounds[J]. Tetrahedron, 1987, 43: 3123~3197.
    [141] Wiley, D. C., & Skehel, J. J. The structure and function of the HA membrane glycoprotein of influenza virus[J]. Annual Review of Biochemistry, 1987, 56: 365~394.
    [142] Wright, D., & Usher, L. Multivalent binding in the design of bioactive compounds[J]. Current Organic Chemistry, 2001, 5: 1107~1131.
    [143] Xu, H., Hu, X. H., Zou, X. M., Liu, B., Zhu, Y. Q., Wang, Y., et al. Synthesis and herbicidal activities of novel 3-N-substituted amino-6-methyl-4-(3-trifluoromethylphenyl)pyridazine derivatives[J]. Journal of Agricultural and Food Chemistry, 2008, 56: 6567~6572.
    [144] Xu, H., Pan, W. H., Song, D. D., & Yang, G. F. Development of an improved liquid phase microextraction technique and its application in the analysis of flumetsulam and its two analogous herbicides in soil[J]. Journal of Agricultural and Food Chemistry, 2007, 55: 9351~9356.
    [145] Xu, H., Zou, X. M., Zhu, Y. Q., Liu, B., Tao, H. L., Hu, X. H., et al. Synthesis and herbicidal activity of novelα,α,α-trifluoro-m-tolyl pyridazinone derivatives. Pest Management Science, 2006, 62:522~530.
    [146] Yamaji, Y., Kataoka, S., Honda, H., Kobayashi, M., Shimizu, T., Inoue, J., et al. Biological properties of KIH-485[J]. Weed Science Society of America (Abstract), 2006, 46: 49.
    [147] Yang, G. Q., Zhao, Q. F., Li, Y. H., Yuan, H. Z., Mei, X. D., & Ning, J. Synthesis of bivalent organophosphorus compounds as acetylcholinesterase inhibitors[J]. Organic Preparations and Procedures International, 2008, 40: 499~504.
    [148] Zagar, C., Hamprecht, G., Menke, O., Schafer, P., Westphalen, K. O., Misslitz, U., et al. Substituted pyrazol-3-ylbenzazoles, their use as herbicides or desiccants/defoliants, and their preparation. US, 6232470[P]. 2001-05-15.
    [149] Zhao, Q. F., Yang, G. Q., Mei, X. D., & Ning, J. Design of novel carbamate acetylcholinesterase inhibitors based on the multiple binding sites of acetylcholinesterase[J]. Journal of Pesticide Sciences, 2008, 33: 371~375.
    [150] Zhao, Q. F., Yang, G. Q., Mei, X. D., & Ning, J. Novel acetylcholinesterase inhibitors: Synthesis and structure-activity relationships of phthalimide alkyloxylphenyl N,N-dimethylcarbamate derivatives[J]. Pesticide Biochemistry and Physiology, 2009, 95: 131~134.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700