用户名: 密码: 验证码:
蛋白质与配体相互作用机理的分子模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着人类基因组测序的完成,以功能基因组学和蛋白质组学为主要研究内容的后基因组时代已经到来。蛋白质是生物体的重要组成成分,在各种生命活动过程中起着不可替代的作用。蛋白质的功能是当前生命科学领域的研究热点问题。蛋白质与配体的相互作用和识别是蛋白质发挥其生物功能的重要途径,在各种生命活动中扮演着非常重要的角色,比如基因调控、信号传导、免疫应答等都离不开蛋白质与配体的相互作用。因此,研究蛋白质与配体的相互作用机制对于理解生物体调控机制至关重要。此外,蛋白质与配体作用机制的研究也为基于结构的新药研发提供必要的理论基础。
     由于采用实验方法测定蛋白质复合物结构尚存在较大的困难,近年来,随着计算机处理能力的不断增强以及理论模拟方法的迅速发展和广泛应用,分子动力学模拟、分子对接和自由能计算等分子模拟方法已经成为研究蛋白质受体与其配体相互作用机制及其动态过程的重要手段。分子模拟方法为从分子、亚基甚至原子层次上了解生命现象及揭示其本质规律提供了很好的手段,并可为实验结果提供有力的理论支持。随着分子模拟的理论完善及技术的进步,分子模拟方法正越来越多地被用于蛋白质结构-功能关系、蛋白质与配体的相互识别以及药物设计的研究工作当中。
     细胞内外物质的交换与转运是维持细胞正常生命活动的重要过程,而周质结合蛋白能够特异性的识别和结合底物,并负责将其运送至细胞膜上相应的受体或转运蛋白,以协助调节营养物质的转运或激活趋化现象。研究周质结合蛋白结合和释放底物的过程对于理解这一生命过程具有非常重要的意义。在本论文中的第3和第4章中,分别以维生素B12结合蛋白和两种亚铁血红素结合蛋白为例,研究了第三类周质结合蛋白的结构-功能关系,并对其与相应底物的相互识别机理做了比较深入的探讨。
     自1981年6月发现首例艾滋病患者以来,艾滋病在全球范围内迅速传播,严重威胁着人类的生命和健康。1983年科学家Barre-Sinoussi及其同事首次确认1型人类免疫缺陷病毒(HIV-1)是引起艾滋病(AIDS)的病原体。整合酶是研发抗HIV-1新药的一个重要靶点。在HIV-1的生命周期中,整合酶负责把病毒DNA整合到宿主的基因组中。因此,研究整合酶与DNA和抑制剂的相互作用机理对于抗HIV-1药物的设计和改造具有重要意义。在论文的第5章中,研究了HIV-1整合酶与香豆素类抑制剂NSC158393的结合模式,并对其抑制机理做出了合理的解释;在第6章中,综合考虑实验信息与模拟结果,构建了一个整合酶与DNA的复合物结构,该复合物模型可被用于虚拟筛选或其它基于受体的药物设计工作。
     本论文主要工作内容包括以下两部分:
     1.第三类周质结合蛋白工作机理的分子模拟研究
     (1)维生素B12周质结合蛋白BtuF工作机理的分子模拟研究
     在本工作中,利用拉伸分子动力学模拟等方法研究了BtuF的工作机理及其与底物维生素B12之间的相互作用,并利用Jarzynski方程计算出了B12解离过程中的平均力势。鉴于B12在外力作用下从BtuF解离前后的自由能变化较大,说明BtuF-B12复合物结构处于较稳定闭合状态,在天然状态下,BtuF可能需要发生较大的构象变化以促进B12的解离。根据对BtuF-B12复合物主成分分析的结果,发现BtuF展现出明显的“开-合”和“扭转”运动的趋势,这与第一、二类周质结合蛋白所采用的“捕蝇草”工作机制相吻合。最后对BtuF的柔性进行了分析,发现位于B12结合口袋最外侧的Trp44和Gln45在BtuF结合和释放B12的过程中起门控作用。
     (2)亚铁血红素周质结合蛋白ShuT和PhuT工作机理的分子模拟研究
     模拟结果表明,ShuT和PhuT的柔性比以往认为的要大很多。通过监测ShuT/PhuT的N/C-端结构域之间的距离变化,发现在未与底物结合的情况下,ShuT和PhuT都展现出了较明显的“开-合”运动。此外,根据区域运动分析,发现自由态的ShuT/PhuT的确在模拟中呈现明显的区域性运动,再次说明“开-合”运动可能是ShuT/PhuT所固有的运动模式。根据主成分分析的结果,发现无论是否结合heme,二者都具有“开-合”和“扭转”两种运动的趋势。根据高斯网络模型给出的结果,发现位于ShuT/PhuT的linker的中点附近的残基可能在它们的区域性运动中充当铰链区。根据模拟结果可以推测,ShuT和PhuT可能采用所谓的“捕蝇草”工作机制来结合和释放其底物。
     2. HIV-1整合酶与抑制剂相互作用的分子模拟研究
     (1) HIV-1整合酶与香豆素类抑制剂NSC158393的结合模式与抑制机理的分子模拟研究
     用多构象分子对接方法分别获得了野生型整合酶及W132G、C130S两个突变型整合酶与香豆素类IN抑制剂NSC158393的复合物结构,并用分子动力学模拟对复合物结构进行了优化和修正,最后用MM-GBSA方法找到了结合NSC158393的关键残基。总体来说,NSC158393与128-136肽段结合,但是在三个体系中的具体结合模式各不相同。通过分析野生型IN与NSC158393的复合物的模拟结果,发现NSC158393不但可以影响IN二聚体的稳定性或干扰多聚体的形成,更重要的是,它可以显著地降低140~149功能loop区的柔性。相比于野生型IN,NSC158393不能抑制两个突变性IN的140~149功能loop区的柔性,也不能很好的干扰IN二聚体的稳定性,因此无法有效地抑制整合过程。根据MM-GBSA给出的结果,发现W131、G134和K136这三个残基对于NSC158393的结合至关重要。特别是W131,可能对于NSC158393与整合酶的相互识别是必不可少的。
     (2) HIV-1整合酶与DNA复合物的构建及其与二酮酸类抑制剂结合模式的分子模拟研究
     在本工作中,综合考虑实验信息和SMD模拟的结果构建了一个IN-DNA复合物模型,并利用分子对接,得到了两组IN抑制剂与IN-DNA复合物的结合模式。根据对接结果发现,尽管骨架结构不同,两组IN抑制剂与IN-DNA复合物的结合模式比较类似:其类二酮酸基团都与Mg2+相互作用,且其卤代苯基团都插入loop区附近的一个疏水口袋中。由此可以推测这两组IN抑制剂的作用机理可能比较相似。根据结合能分解发现,化合物1与T66、D116、F139和I141等氨基酸残基之间有较强的相互作用,而这些氨基酸残基已被证明对于IN催化活性或抑制剂的结合有重要作用。本工作中的主要结论均与之前的实验或模拟工作相符,说明该模型可以为今后的基于受体的IN抑制剂合理设计和改造提供一定帮助。
With the completion of the human genome project, the post-genomic era, which mainly focuses on functional genomics and proteomics, has come. Proteins are important components of organisms,playing indispensable role in many kinds of life processes. The relationship between structure and function of protein is one of the pioneering and hot issues in the current life science researches. The interactions and recognition between protein and ligand is the main way through which does the protein exert its biological functions, playing crucial role in various life activities, such as gene regulation, signal transduction and immune response. Therefore, the study of the interaction mechanism between protein and ligand is of great significance for understanding the regulatory mechanisms of organisms, and also providing necessary theoretical basis for the research and development of new drugs.
     Since determining structure of protein complex with experimental approach is still challenging, recently, with the continuous progress in computers’processing ability and the rapid development and extensive application of theoretical simulation, molecular modeling methods, such as molecular dynamics (MD) simulation, molecular docking and free energy computation, have become important tools for exploring the interaction process of protein with its ligand. Molecular modeling not only enables us to understand and reveal the essence of life phenomena in the level of molecule, subunit or even atom, but also provides strong theoretical support to experimental results. With the improvement of molecular modeling theory and technology advances, molecular modeling methods are increasingly being used in the research of protein structure-function relationship, protein-ligand mutual recognition, as well as rational drug design.
     Exchange and transport of substances between environment and the inside of a cell is vital for the cell to maintain its normal life activity. Periplasmic binding protein (PBP) can recognize and bind substrate specifically, and is responsible for its delivery to the corresponding receptors or transporter proteins in the cell membrance to help regulate the translocation of nutrients or initiate chemotaxis. Study on the binding and unbinding processes of PBPs is very helpful for us to understand the substances exchange and transport process. As exemplified by the B12 binding protein BtuF and the two heme binding protein ShuT and PhuT, the structure-function relationship and the mutual recognition mechanism of the third class PBPs are thoroughly discussed in Chapter 3 and 4, respectively.
     Since was first discovered in June 1981, Acquired Immune Deficiency Syndrome (AIDS) speeded rapidly on a global scale and soon become a serious threat to human life and health. In the year of 1983, Barre-Sinousi and colleagues first identified the human immunodeficiency virus type 1 (HIV-1) as the pathogens of AIDS. HIV-1 integrase (IN) is an important target for the design and development of novel anti-HIV drugs. In the life cycle of HIV, IN is responsible for the integration of viral DNA into the host chromosome. Consequently, the study on the recognition mechanism of IN with inhibitors is important for the design and modification of the anti-HIV drugs. In Chapter 5 of this dissertation, the binding modes of HIV-1 IN with the coumarin-containing IN inhibitor NSC158393 is explored, and the inhibitory mechanism of this inhibitor is explained. In Chapter 6, a complex structure of HIV IN and DNA was constructed and this complex model can be used in virtual screening or other receptor-based drug design. The main content of this dissertation includes the following two parts:
     1. Study on the mechanism of the third class preriplasmic binding protein with molecular modeling
     (1) Study on the mechanism of the BtuF periplasmic binding protein for vitamin B12 with molecular modeling
     In this work, the steered molecular dynamics simulation (SMD) and other molecular modeling methods were employed on the B12-bound BtuF to investigate the energetics and mechanism of BtuF, and a potential of mean force along the postulated vitamin B12 unbinding pathway was constructed through Jarzynski's equation. The large free energy differences of the postulated B12 unbinding process inticates that the B12-bound structure is in a stable closed state and some conformation changes may be necessary to the B12 unbinding. From the result of the principal component analysis, we found that the BtuF-B12 complex shows clear opening-closing and twisting motion tendencies which are consistent with the so-called“Venus-flytrap”mechanism taken by the first and the second periplasmic binding proteins (PBPs). The intrinsic flexibility of BtuF was also explored. Based on these results, it is found that the Trp44-Gln45 pair situated at the mouth of the B12 binding pocket may act as a gate in the B12 binding and unbinding process.
     (2) Study on the mechanism of the bacterial periplasmic heme binding proteins ShuT and PhuT with molecular modeling
     By performing a series of long time MD simulations on the ShuT and the PhuT, the dynamics properties and functions of the two PBPs were investigated. The flexibilities of the two proteins are much higher than previously assumed. Through monitoring the distance changes between the N/C-terminal domains of ShuT and PhuT, it was found that the two PBPs, when in unbound state, exhibit obvious opening–closing motions. Based on the results of the domain motion analysis, large scale conformational transitions were found in all heme-free runs of ShuT and PhuT, hinting that the domain motions of the two PBPs may be intrinsic. On the basis of the results of the principle component analysis, distinct opening–closing and twisting motion tendencies were observed not only in the heme-free, but also in the heme-bound simulations of the two PBPs. The Gaussian network model was applied in order to analyze the hinge bending regions. The most important bending regions, which may act as hinges, of ShuT and PhuT are all located around the midpoints of their respective linker. In conclusion, the two heme binding protein ShuT and PhuT may also take the so-called“Venus-flytrap”mechanism during the process of capturing and releasing their substrates.
     2. Study on the interactions between HIV-1 integrase and inhibitors with molecular modeling
     (1) Study on the inhibitory mechanism and binding mode of the coumarin compound NSC158393 to HIV-1 integrase with molecular modeling
     In this work, the binding modes of the wild type IN core domain and the two mutants (W132G and C130S) with the 4-hydroxycoumarin compound NSC158393 were first obtained by using the“relaxed complex”molecular docking approach combined with MD simulations, and then the Molecular Mechanics Generalized Born Surface Area (MM-GBSA) method was employed to evaluate the key residues in the binding of HIV-1 IN with NSC158393. In principle, NSC158393 binds the 128-136 peptides of IN, however, the specific binding modes for the three systems are various. According to the simulation results for the complex of the wild type IN and the inhibitor, NSC158393 can not only diminish the stability of the IN dimmer and disturb the formation of IN multimers, but also highly affect the flexibility of the functional 140-149 loop. Comparing with the wild type IN, NSC158393 can not effectively affect the flexibility of the functional 140-149 loop in the two mutants, and it can not interfere with the stability of the IN monomers either. Therefore, NSC158393 can not efficiently inhibit the integration process catalyzed by the two mutants. Three key binding residues (W131, K136, and G134) were discovered by energy decomposition calculated with the MM-GBSA method. Characterized by the largest binding affinity, W131 is likely to be indispensable for the binding of NSC158393.
     (2) Study on the binding modes of the HIV integrase-DNA complex to some integrase inhibitors with molecular modeling
     In the current work, a model for complex of IN and viral DNA was built by combining experimental data with the results of SMD simulation. According to the results of molecular docking, the inhibitors of the second group share a similar binding model with those of the first group, though they have no common scaffold. This suggests that these inhibitors may share a similar inhibitory mechanism. In principle, these compounds interact the Mg2+ ion with their DKA-like moieties and make hydrophobic interactions with a pocket around the functional 140-149 loop with their halogenated-benzene moieties. Finally, the interactions between IN and one of these inhibitors were explored to understand their binding modes. Some key residues for ligand binding, such as T66、D116、F139 and I141, are identified according to the calculation on the interactions, and all of which have been proved to be important for DNA recognition or the catalytic activity of IN. All main findings of this work are in good accordance with previous experiment or simulation works and the newly built model of the IN-DNA complex is helpful for the subsequent research on the design of IN inhibitors.
引文
1 H. M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. N. Bhat, H. Weissig, I. N. Shindyalov, P. E. Bourne, The Protein Data Bank. Nucl Acids Res. 2000, 28(1): 235~242
    2 J. M. Goodfellow, D. S. Moss, Computer Modeling of Biomolecular Process. Ellis Horwood: New York, 1992
    3 A. Warshel, Computer Modeling of Chemical Reactions in Enzymes and Solutions. Jonh Wiley & Sons: New York, 1991
    4 D. E. Koshland, Application of a Theory of Enzyme Specificity to Protein Synthesis. Proceedings of the National Academy of Sciences of the United States of America. 1958, 44(2): 98~104
    5 W. F. v. Gunsteren, H. J. C. Berendsen, Computer Simulation of Molecular Dynamics: Methodology, Applications, and Perspectives in Chemistry. Angewandte Chemie International Edition in English. 1990, 29(9): 992~1023
    6阎隆飞,孙之荣,蛋白质分子结构.清华大学出版社:北京, 1999
    7 B. K. Shoichet, I. D. Kuntz, Protein Docking and Complementarity. Journal of Molecular Biology. 1991, 221(1): 327~346
    8 T. Langer, R. D. Hoffmann, R. Mannhold, H. Kubinyi, G. Folkers, Pharmacophores and Pharmacophore Searches. John Wiley&Sons: Weinheim, 2006; 32
    9 C. Hansch, R. M. Muir, T. Fujita, P. P. Maloney, F. Geiger, M. Streich, The Correlation of Biological Activity of Plant Growth Regulators and Chloromycetin Derivatives with Hammett Constants and Partition Coefficients. Journal of the American Chemical Society. 1963, 85(18): 2817~2824
    10 R. Cramer, D. Patterson, J. Bunce, Comparative Molecular Field Analysis (Comfa). 1. Effect of Shape on Binding of Steroids to Carrier Proteins. Journal of the American Chemical Society. 1988, 110(18): 5959~5967
    11 R. Tam, M. H. Saier, Jr., Structural, Functional, and Evolutionary Relationships among Extracellular Solute-Binding Receptors of Bacteria. Microbiol Mol Biol Rev. 1993, 57(2): 320~346
    12 F. A. Quiocho, P. S. Ledvina, Atomic Structure and Specificity of Bacterial Periplasmic Receptors for Active Transport and Chemotaxis: Variation of Common Themes. Molecular Microbiology. 1996, 20(1): 17~25
    13 C. Felder, R. Graul, A. Lee, H.-P. Merkle, W. Sadee, The Venus Flytrap of Periplasmic Binding Proteins: An Ancient Protein Module Present in Multiple Drug Receptors. The AAPS Journal. 1999, 1(2): 7~26
    14 M. A. Dwyer, H. W. Hellinga, Periplasmic Binding Proteins: A Versatile Superfamily for Protein Engineering Current Opinion in Structural Biology. 2004, 14(4): 495~504
    15 G. Richarme, T. D. Caldas, Chaperone Properties of the Bacterial Periplasmic Substrate-Binding Proteins. Journal of Biological Chemistry. 1997, 272(25): 15607~15612
    16 W. K?ster, Abc Transporter-Mediated Uptake of Iron, Siderophores, Heme and Vitamin B12. Research in Microbiology. 2001, 152(3-4): 291~301
    17 A. J. M. Driessen, B. P. Rosen, W. N. Konings, Diversity of Transport Mechanisms: Common Structural Principles. Trends in Biochemical Sciences. 2000, 25(8): 397~401
    18 A. L. Davidson, J. Chen, Atp-Binding Cassette Transporters in Bacteria. Annual Review of Biochemistry. 2004, 73(1): 241~268
    19 M. Gottesman, S. Ambudkar, Overview: Abc Transporters and Human Disease. Journal of Bioenergetics and Biomembranes. 2001, 33(6): 453~458
    20 N. Cadieux, C. Bradbeer, E. Reeger-Schneider, W. Koster, A. K. Mohanty, M. C. Wiener, R. J. Kadner, Identification of the Periplasmic Cobalamin-Binding Protein Btuf of Escherichia Coli. J Bacteriol. 2002, 184(3): 706~717
    21 E. L. Borths, K. P. Locher, A. T. Lee, D. C. Rees, The Structure of Escherichia Coli Btuf and Binding to Its Cognate Atp Binding Cassette Transporter. Proceedings of the National Academy of Sciences. 2002, 99(26): 16642~16647
    22 N. K. Karpowich, H. H. Huang, P. C. Smith, J. F. Hunt, Crystal Structures of the Btuf Periplasmic Binding Protein for Vitamin B12 Suggest a Functionally Important Reduction in Protein Mobility Upon Ligand Binding. Journal of Biological Chemistry. 2002, 278: 8429~8434
    23 R. N. Hvorup, B. A. Goetz, M. Niederer, K. Hollenstein, E. Perozo, K. P. Locher, Asymmetry in the Structure of the Abc Transporter-Binding Protein Complex Btucd-Btuf. Science. 2007, 317(5843): 1387~1390
    24 W. W. Ho, H. Li, S. Eakanunkul, Y. Tong, A. Wilks, M. Guo, T. L. Poulos, Holo- and Apo-Bound Structures of Bacterial Periplasmic Heme-Binding Proteins. J Biol Chem. 2007, 282(49): 35796~35802
    25 C. Kandt, Z. Xu, D. P. Tieleman, Opening and Closing Motions in the Periplasmic Vitamin B12 Binding Protein Btuf. Biochemistry. 2006, 45(44): 13284~13292
    26 M. E. Newcomer, G. L. Gillilandg, F. A. Quiochol, L-Arabinose-Binding Protein-Sugar Complex at 2.4 Resolution. Stereochemistry and Evidence for a Structural Change. Journal of Biological Chemistry. 1981, 256(24): 13213-13217
    27 B. H. Oh, J. Pandit, C. H. Kang, K. Nikaido, S. Gokcen, G. F. Ames, S. H. Kim, Three-Dimensional Structures of the Periplasmic Lysine/Arginine/Ornithine-Binding Protein with and without a Ligand. Journal of Biological Chemistry. 1993, 268(15): 11348~11355
    28 Y. J. Sun, J. Rose, B. C. Wang, C. D. Hsiao, The Structure of Glutamine-Binding Protein Complexed with Glutamine at 1.94 a Resolution: Comparisons with Other Amino Acid Binding Proteins. Journal of Molecular Biology. 1998, 278: 219~229
    29 C. D. Hsiaob, Y. J. Suna, J. Rosec, B. C. Wang, The Crystal Structure of Glutamine-Binding Protein Fromescherichia Coli. Journal of Molecular Biology. 1996, 262(2): 225~242
    30 A. J. Sharff, L. E. Rodseth, J. C. Spurlino, F. A. Quiocho, Crystallographic Evidence of a Large Ligand-Induced Hinge-Twist Motion between the Two Domains of the Maltodextrin Binding Protein Involved in Active Transport and Chemotaxis. Biochemistry. 1992, 31(44): 10657~10663
    31 Y. H. Lee, R. K. Deka, M. V. Norgard, J. D. Radolf, C. A. Hasemann, Treponema Pallidum Troa Is a Periplasmic Zinc-Binding Protein with a Helical Backbone. Nat Struct Mol Biol. 1999, 6: 628~633
    32 Y. H. Lee, M. R. Dorwart, K. R. O. Hazlett, R. K. Deka, M. V. Norgard, J. D. Radolf, C. A. Hasemann, The Crystal Structure of Zn(Ii)-Free Treponema Pallidum Troa, a Periplasmic Metal-Binding Protein, Reveals a Closed Conformation. J Bacteriol. 2002, 184(8): 2300~2304
    33 M. C. Lawrence, P. A. Pilling, V. C. Epa, A. M. Berry, A. D. Ogunniyi, J. C. Paton, The Crystal Structure of Pneumococcal Surface Antigen Psaa Reveals a Metal-Binding Site and a Novel Structure for a Putative Abc-Type Binding Protein. Structure. 1998, 6(12): 1553~1561
    34 T. E. Clarke, S.-Y. Ku, D. R. Dougan, H. J. Vogel, L. W. Tari, The Structure of the Ferric Siderophore Binding Protein Fhud Complexed with Gallichrome. Nat Struct Mol Biol. 2000, 7(4): 287~291
    35 F. Barre-Sinoussi, J. Chermann, F. Rey, M. Nugeyre, S. Chamaret, J. Gruest, C. Dauguet, C. Axler-Blin, F. Vezinet-Brun, C. Rouzioux, W. Rozenbaum, L. Montagnier, Isolation of a T-Lymphotropic Retrovirus from a Patient at Risk for Acquired Immune Deficiency Syndrome (Aids). Science. 1983, 220(4599): 868~871
    36 J. C. Chermann, F. Barre-Sinoussi, C. Dauguet, F. Brun-Vezinet, C. Rouzioux, W. Rozenbaum, L. Montagnier, Isolation of a New Retrovirus in a Patient at Risk for Acquired Immunodeficiency Syndrome. Antibiotics and Chemotherapy. 1983, 32: 48~53
    37曾毅,陈启明,耿运琪,艾滋病及其有关病毒.南开大学出版社:天津, 1999;第一版
    38 R. A. Fouchier, M. H. Malim, Nuclear Import of Human Immunodeficiency Virus Type-1 Preintegration Complexes. Advances Virus Research. 1999, 52: 275~299
    39 G. R. Whittaker, M. Kann, A. Helenius, Viral Entry into the Nucleus. Annual Review of Cell and Developmental Biology. 2000, 16(1): 627~651
    40 M. Miller, C. Farnet, F. Bushman, Human Immunodeficiency Virus Type 1 Preintegration Complexes: Studies of Organization and Composition. J Virol. 1997, 71(7): 5382~5390
    41 E. Arts, M. Wainberg, Mechanisms of Nucleoside Analog Antiviral Activity and Resistance During Human Immunodeficiency Virus Reverse Transcription. Antimicrob Agents Chemother. 1996, 40(3): 527~540
    42 E. Race, E. Dam, V. Obry, S. Paulous, F. Clavel, Analysis of Hiv Cross-Resistance to Protease Inhibitors Using a Rapid Single-Cycle Recombinant Virus Assay for Patients Failing on Combination Therapies. AIDS. 1999, 13: 2061~2068
    43徐玉文,赵桂森,刘永久,人免疫缺陷病毒整合酶抑制剂的研究现状.药学进展. 2002,
    26(3): 138~142
    44 Y. Pommier, C. Marchand, N. Neamati, Retroviral Integrase Inhibitors Year 2000: Update and Perspectives. Antiviral Research. 2000, 47: 139~148
    45 R. Dayam, R. Gundla, L. Q. Al-Mawsawi, N. Neamati, Hiv-1 Integrase Inhibitors: 2005-2006 Update. Medicinal Research Reviews. 2008, 28(1): 118~154
    46 K. Ramkumar, E. Serrao, S. Odde, N. Neamati, Hiv-1 Integrase Inhibitors: 2007-2008 Update. Medicinal Research Reviews. 2010, 9999(9999): n/a
    47 D. Bizub-Bender, J. Kulkosky, A. M. Skalka, Monoclonal Antibodies against Hiv Type 1 Integrase: Clues to Molecular Structure. AIDS Research and Human Retroviruses. 1994, 10(9): 1105~1115
    48 S. Emery, A. Winston, Raltegravir: A New Choice in Hiv and New Chances for Research. The Lancet. 2009, 374(9692): 764~766
    49 C. Hicks, Roy M. Gulick, Reviews of Anti-Infective Agents: Raltegravir: The First Hiv Type 1 Integrase Inhibitor. Clinical Infectious Diseases. 2009, 48(7): 931~939
    50 E. Serrao, S. Odde, K. Ramkumar, N. Neamati, Raltegravir, Elvitegravir, and Metoogravir: The Birth of "Me-Too" Hiv-1 Integrase Inhibitors. Retrovirology. 2009, 6(1): 25
    51 K. A. Vincent, V. Ellison, S. A. Chow, P. O. Brown, Characterization of Human Immunodeficiency Virus Type 1 Integrase Expressed in Escherichia Coli and Analysis of Variants with Amino-Terminal Mutations. J Virol. 1993, 67(1): 425~437
    52 M. Cai, R. Zheng, M. Caffrey, R. Craigie, G. M. Clore, A. M. Gronenborn, Solution Structure ofthe N-Terminal Zinc Binding Domain of Hiv-1 Integrase. Nat Struct Mol Biol. 1997, 4(7): 567~577
    53 V. Ellison, J. Gerton, K. A. Vincent, P. O. Brown, An Essential Interaction between Distinct Domains of Hiv-1 Integrase Mediates Assembly of the Active Multimer. Journal of Biological Chemistry. 1995, 270(7): 3320~3326
    54 T. S. Heuer, P. O. Brown, Photo-Cross-Linking Studies Suggest a Model for the Architecture of an Active Human Immunodeficiency Virus Type 1 Integrase?DNA Complex?. Biochemistry. 1998, 37(19): 6667~6678
    55 A. Engelman, R. Craigie, Identification of Conserved Amino Acid Residues Critical for Human Immunodeficiency Virus Type 1 Integrase Function in Vitro. J Virol. 1992, 66(11): 6361~6369
    56 J. Kulkosky, K. S. Jones, R. A. Katz, J. P. G. Mack, Residues Critical for Retroviral Integrative Recombination in a Region That Is Highly Conserved among Retroviral/Retrotransposon Integrases and Bacterial Insertion Sequence Transposases. Mol Cell Biol. 1992, 12(5): 2331~2338
    57 P. Polard, M. Chandler, Bacterial Transposases and Retroviral Integrases. Mol Microbiol. 1995, 15(1): 13~23
    58 A. D. Leavitt, L. Shiue, H. E. Varmus, Site-Directed Mutagenesis of Hiv-1 Integrase Demonstrates Differential Effects on Integrase Functions in Vitro. Journal of Biological Chemistry. 1993, 268(3): 2113~2119
    59 P. M. Cannon, W. Wilson, E. Byles, S. M. Kingsman, A. J. Kingsman, Human Immunodeficiency Virus Type 1 Integrase: Effect on Viral Replication of Mutations at Highly Conserved Residues. Journal of Virology. 1994, 68(8): 4768~4775
    60 A. Engelman, A. B. Hickman, R. Craigie, The Core and Carboxyl-Terminal Domains of the Integrase Protein of Human Immunodeficiency Virus Type 1 Each Contribute to Nonspecific DNA Binding. J Virol. 1994, 68(9): 5911~5917
    61 C. Vink, A. A. M. O. Groeneger, R. H. A. Plasterk, Identification of the Catalytic and DNA-Binding Region of the Human Immunodeficiency Virus Type I Integrase Protein. Nucl Acids Res. 1993, 21(6): 1419~1425
    62 A. P. A. M. Eijkelenboom, R. A. P. Lutzke, R. Boelens, R. H. A. Plasterk, R. Kaptein, K. H?rd, The DNA-Binding Domain of Hiv-1 Integrase Has an Sh3-Like Fold. Nature Structural Biology 1995, 2: 807~810
    63 R. A. P. Lutzke, R. H. A. Plasterk, Structure-Based Mutational Analysis of the C-Terminal DNA-Binding Domain of Human Immunodeficiency Virus Type 1 integrase: Critical Residues for Protein Oligomerization and DNA Binding. J Virol. 1998, 72(6): 4841~4848
    64 S. Chow, K. Vincent, V. Ellison, P. Brown, Reversal of Integration and DNA Splicing Mediated by Integrase of Human Immunodeficiency Virus. Science. 1992, 255(5045): 723~726
    65 F. D. Bushman, A. Engelman, I. Palmer, P. Wingfield, R. Craigie, Domains of the Integrase Protein of Human Immunodeficiency Virus Type 1 Responsible for Polynucleotidyl Transfer and Zinc Binding. Proceedings of the National Academy of Sciences of the United States of America. 1993, 90(8): 3428~3432
    66 J. C. H. Chen, J. Krucinski, L. J. W. Miercke, J. S. Finer-Moore, A. H. Tang, A. D. Leavitt, R. M. Stroud, Crystal Structure of the Hiv-1 Integrase Catalytic Core and C-Terminal Domains: A Model for Viral DNA Binding. Proc Natl Acad Sci U S A. 2000, 97(15): 8233~8238
    67 J.-Y. Wang, H. Ling, W. Yang, R. Craigie, Structure of a Two-Domain Fragment of Hiv-1Integrase: Implications for Domain Organization in the Intact Protein. EMBO J. 2001, 20(24): 7333~7343
    68 A. Engelman, F. D. Bushman, R. Craigie, Identification of Discrete Functional Domains of Hiv-1 Integrase and Their Organization within an Active Multimeric Complex. The EMBO Journal. 1993, 12(8): 3269~3257
    69 T. M. Fletcher, M. A. Soares, S. McPhearson, H. Hui, M. Wiskerchen, M. A. Muesing, G. M. Shaw, A. D. Leavitt, J. D. Boeke, B. H. Hahn, Complementation of Integrase Function in Hiv-1 Virions. EMBO J. 1997, 16(16): 5123~5138
    70 F. M. I. Van den Ent, A. Vos, R. H. A. Plasterk, Dissecting the Role of the N-Terminal Domain of Human Immunodeficiency Virus Integrase by Trans-Complementation Analysis. J Virol. 1999, 73(4): 3176~3183
    71 G. V. Kalpana, A. Reicin, G. S. W. Cheng, M. Sorin, S. Paik, S. P. Goff, Isolation and Characterization of an Oligomerization-Negative Mutant of Hiv-1 Integrase. Virology. 1999, 259(2): 274~285
    72 C. Petit, O. Schwartz, F. Mammano, Oligomerization within Virions and Subcellular Localization of Human Immunodeficiency Virus Type 1 integrase. J Virol. 1999, 73(6): 5079~5088
    73 T. M. Jenkins, A. Engelman, R. Ghirlando, R. Craigie, A Soluble Active Mutant of Hiv-1 Integrase: Involvement of Both the Core and Carboxyl Terminal Domains in Multimerization. Journal of Biological Chemistry. 1996, 271(13): 7712~7718
    74 S. A. Chow, In Vitro Assays for Activities of Retroviral Integrase. Methods. 1997, 12(4): 306~317
    75 P. Gallay, S. Swingler, J. Song, F. Bushman, D. Trono, Hiv Nuclear Import Is Governed by the Phosphotyrosine-Mediated Binding of Matrix to the Core Domain of Integrase. Cell. 1995, 83(4): 569~576
    76 Y. Goldgur, R. Craigie, G. H. Cohen, T. Fujiwara, T. Yoshinaga, T. Fujishita, H. Sugimoto, T. Endo, H. Murai, D. R. Davies, Structure of the Hiv-1 Integrase Catalytic Domain Complexed with an Inhibitor: A Platform for Antiviral Drug Design. Proc Natl Acad Sci U S A. 1999, 96(23): 13040~13043
    77 G. Bujacz, M. Jaskólski, J. Alexandratos, A. Wlodawer, G. Merkel, R. A. Katz, A. M. Skalka, The Catalytic Domain of Avian Sarcoma Virus Integrase: Conformation of the Active-Site Residues in the Presence of Divalent Cations. Structure. 1996, 4(1): 89~96
    78 J. Lubkowski, F. Yang, J. Alexandratos, A. Wlodawer, H. Zhao, T. R. Burke, N. Neamati, Y. Pommier, G. Merkel, A. M. Skalka, Structure of the Catalytic Domain of Avian Sarcoma Virus Integrase with a Bound Hiv-1 Integrase-Targeted Inhibitor. Proceedings of the National Academy of Sciences of the United States of America. 1998, 95(9): 4831~4836
    79 L. De Luca, A. Pedretti, G. Vistoli, M. Letizia Barreca, L. Villa, P. Monforte, A. Chimirri, Model of Full-Length Hiv-1 Integrase Complexed with Viral DNA as Template for Anti-Hiv Drug Design. Biochem Biophys Res Commun 2003, 310(4): 1083~1088
    80 L. De Luca, A. Pedretti, G. Vistoli, M. Letizia Barreca, L. Villa, P. Monforte, A. Chimirri, Analysis of the Full-Length Integrase-DNA Complex by a Modified Approach for DNA Docking. Biochemical and Biophysical Research Communications. 2003, 310(4): 1083~1088
    81 L. D. Wang, C. L. Liu, W. Z. Chen, C. X. Wang, Constructing Hiv-1 Integrase Tetramer and Exploring Influences of Metal Ions on Forming Integrase-DNA Complex. Biochemical and Biophysical Research Communications. 2005, 337(1): 313~319
    82 R. G. Karki, Y. Tang, T. R. Burke, M. C. Nicklaus, Model of Full-Length Hiv-1 Integrase Complexed with Viral DNA as Template for Anti-Hiv Drug Design. Journal of Computer-Aided Molecular Design. 2004, 18(12): 739~760
    83 N. Neamati, S. Sunder, Y. Pommier, Design and Discovery of Hiv-1 Integrase Inhibitors. Drug Discovery Today. 1997, 2(11): 487~498
    84 M. Sato, T. Motomura, H. Aramaki, T. Matsuda, M. Yamashita, Y. Ito, H. Kawakami, Y. Matsuzaki, W. Watanabe, K. Yamataka, S. Ikeda, E. Kodama, M. Matsuoka, H. Shinkai, Novel Hiv-1 Integrase Inhibitors Derived from Quinolone Antibiotics. J Med Chem. 2006, 49(5): 1506~1508
    85 P. J. King, W. E. Robinson, Jr., Resistance to the Anti-Human Immunodeficiency Virus Type 1 compound L-Chicoric Acid Results from a Single Mutation at Amino Acid 140 of Integrase. J Virol. 1998, 72(10): 8420~8424
    86 H. Zhao, N. Neamati, H. Hong, A. Mazumder, S. Wang, S. Sunder, G. W. A. Milne, Y. Pommier, T. R. Burke, Coumarin-Based Inhibitors of Hiv Integrase1. Journal of Medicinal Chemistry. 1997, 40(2): 242~249
    87 A. Mazumder, S. Wang, N. Neamati, M. Nicklaus, S. Sunder, J. Chen, G. W. A. Milne, W. G. Rice, T. R. Burke, Y. Pommier, Antiretroviral Agents as Inhibitors of Both Human Immunodeficiency Virus Type 1 Integrase and Protease. Journal of Medicinal Chemistry. 1996, 39(13): 2472~2481
    88 P. Cherepanov, G. Maertens, P. Proost, B. Devreese, J. Van Beeumen, Y. Engelborghs, E. De Clercq, Z. Debyser, Hiv-1 Integrase Forms Stable Tetramers and Associates with Ledgf/P75 Protein in Human Cells. Journal of Biological Chemistry. 2003, 278(1): 372~381
    89 L. Du, Y. Zhao, J. Chen, L. Yang, Y. Zheng, Y. Tang, X. Shen, H. Jiang, D77, One Benzoic Acid Derivative, Functions as a Novel Anti-Hiv-1 Inhibitor Targeting the Interaction between Integrase and Cellular Ledgf/P75. Biochemical and Biophysical Research Communications 2008, 375(1): 139~144
    90 M. Karplus, G. A. Petsko, Molecular Dynamics Simulations in Biology. Nature. 1990, 347(6294): 631~639
    91 M. Karplus, J. A. McCammon, Molecular Dynamics Simulations of Biomolecules. Nat Struct Mol Biol. 2002, 9(9): 646~652
    92 S. J. Weiner, P. A. Kollman, D. T. Nguyen, D. A. Case, An All Atom Force Field for Simulations of Proteins and Nucleic Acids. Journal of Computational Chemistry. 1986, 7(2): 230~252
    93 W. Jorgensen, J. Tirado-Rives, The Opls [Optimized Potentials for Liquid Simulations] Potential Functions for Proteins, Energy Minimizations for Crystals of Cyclic Peptides and Crambin. Journal of the American Chemical Society. 1988, 110(6): 1657~1666
    94 B. Brooks, R. Bruccoleri, B. Olafson, D. States, S. Swaminathan, M. Karplus, Charmm: A Program for Macromolecular Energy, Minimization, and Dynamics Calculations. Journal of Computational Chemistry. 1983, 4(2): 187~217
    95 P. A. Madden, M. Wilson, 'Covalent' Effects in 'Ionic' Systems. Chemical Society Reviews. 1996, 25: 339~350
    96 M. A. Van der hoef, P. A. Madden, Novel Simulation Model for Many-Body Multipole Dispersion Interactions. Molecular Physics: An International Journal at the Interface Between Chemistry and Physics. 1998, 94(3): 417~433
    97 W. D. Cornell, P. Cieplak, C. I. Bayly, I. R. Gould, K. M. Merz, D. M. Ferguson, D. C. Spellmeyer, T. Fox, J. W. Caldwell, P. A. Kollman, A Second Generation Force Field for theSimulation of Proteins, Nucleic Acids, and Organic Molecules. J Am Chem Soc. 1995, 117(19): 5179~5197
    98 A. D. MacKerell, D. Bashford, M. Bellott, R. L. Dunbrack, J. D. Evanseck, M. J. Field, S. Fischer, J. Gao, H. Guo, S. Ha, D. Joseph-McCarthy, L. Kuchnir, K. Kuczera, F. T. K. Lau, C. Mattos, S. Michnick, T. Ngo, D. T. Nguyen, B. Prodhom, W. E. Reiher, B. Roux, M. Schlenkrich, J. C. Smith, R. Stote, J. Straub, M. Watanabe, J. Wiorkiewicz-Kuczera, D. Yin, M. Karplus, All-Atom Empirical Potential for Molecular Modeling and Dynamics Studies of Proteins. J Phys Chem B. 1998, 102(18): 3586~3616
    99 N. Foloppe, J. A. D. MacKerell, All-Atom Empirical Force Field for Nucleic Acids: I. Parameter Optimization Based on Small Molecule and Condensed Phase Macromolecular Target Data. Journal of Computational Chemistry. 2000, 21(2): 86~104
    100 A. T. Hagler, E. Huler, S. Lifson, Energy Functions for Peptides and Proteins. I. Derivation of a Consistent Force Field Including the Hydrogen Bond from Amide Crystals. Journal of the American Chemical Society. 1974, 96(17): 5319~5327
    101 L. D. Schuler, X. Daura, W. F. v. Gunsteren, An Improved Gromos96 Force Field for Aliphatic Hydrocarbons in the Condensed Phase. Journal of Computational Chemistry. 2001, 22(11): 1205~1218
    102 R. W. Honeycutt, The Potential Calculation and Some Applications. Methods in Computational Physics. 1970, 9: 136~211
    103 L. Verlet, Computer "Experiments" on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules. Physical Review Online Archive (Prola). 1967, 159(1): 98
    104 D. Beeman, Some Multistep Methods for Use in Molecular Dynamics Calculations. Journal of Computational Physics. 1976, 20: 130
    105 C. W. Gear, Numerical Initial Value Problems in Ordinary Differential Equations. Prentice Hall: 1971.
    106陈正隆,徐为人,汤立达,分子模拟的理论与实践.化学工业出版社: 2007
    107 J. P. Ryckaert, G. Ciccotti, H. J. C. Berendsen, Numerical-Integration of Cartesian Equations of Motion of a System with Constraints - Molecular-Dynamics of N-Alkanes. J Comput Phys. 1977, 23(3): 327~341
    108徐筱杰,侯廷军,乔学斌,章威,计算机辅助药物分子设计.化学工业出版社北京, 2004
    109 G. Binnig, C. F. Quate, C. Gerber, Atomic Force Microscope. Physical Review Letters. 1986, 56: 930~933
    110许叶春,沈建华,罗小民,沈旭,陈凯先,蒋华良,拉伸分子动力学模拟配体-受体相互作用.中国科学B辑. 2004, 34(3): 177~187
    111 E. Florin, V. Moy, H. Gaub, Adhesion Forces between Individual Ligand-Receptor Pairs. Science. 1994, 264(5157): 415~417
    112 L. Kale, R. Skeel, M. Bhandarkar, R. Brunner, A. Gursoy, N. Krawetz, J. Phillips, A. Shinozaki, K. Varadarajan, K. Schulten, Namd2: Greater Scalability for Parallel Molecular Dynamics. J Comput Phys. 1999, 151: 283~312
    113 D. A. Case, T. E. C. III, T. Darden, H. Gohlke, R. Luo, K. M. M. Jr., A. Onufriev, C. Simmerling, B. Wang, R. J. Woods, The Amber Biomolecular Simulation Programs. Journal of Computational Chemistry. 2005, 26(16): 1668~1688
    114 H. J. C. Berendsen, l. van der Spoe, R. van Drunen, Gromacs: A Message-Passing Parallel Molecular-Dynamics Implementation. Computer Physics Communications. 1995, 91(1-3): 43~56
    115 E. Lindahl, B. Hess, D. van der Spoel, Gromacs 3.0: A Package for Molecular Simulation and Trajectory Analysis. Journal of Molecular Modeling. 2001, 7(8): 306~317
    116 W. Humphrey, A. Dalke, K. Schulten, Vmd: Visual Molecular Dynamics. J Mol Graph. 1996, 14(1): 33~38
    117 M. Liu, X. J. Cong, P. Li, J. J. Tan, W. Z. Chen, C. X. Wang, Study on the Inhibitory Mechanism and Binding Mode of the Hydroxycoumarin Compound Nsc158393 to Hiv-1 Integrase by Molecular Modeling. Biopolymers. 2009, 91(9): 700~709
    118 M. Liu, J. G. Su, R. Kong, T. G. Sun, J. J. Tan, W. Z. Chen, C. X. Wang, Molecular Dynamics Simulations of the Bacterial Periplasmic Heme Binding Proteins Shut and Phut. Biophysical Chemistry. 2008, 138(1-2): 42~49
    119 M. Liu, T. G. Sun, J. P. Hu, W. Z. Chen, C. X. Wang, Study on the Mechanism of the Btuf Periplasmic-Binding Protein for Vitamin B12 Biophysical Chemistry. 2008, 135(1-3): 19~24
    120 S. Park, K. Schulten, Calculating Potentials of Mean Force from Steered Molecular Dynamics Simulations. The Journal of Chemical Physics. 2004, 120(13): 5946~5961
    121 S. Park, F. Khalili-Araghi, E. Tajkhorshid, K. Schulten, Free Energy Calculation from Steered Molecular Dynamics Simulations Using Jarzynski's Equality. The Journal of Chemical Physics. 2003, 119(6): 3559~3566
    122 J. Moult, M. N. G. James, An Algorithm for Determining the Conformation of Polypeptide Segments in Proteins by Systematic Search. Proteins: Structure, Function, and Genetics. 1986, 1(2): 146~163
    123 R. E. Bruccoleri, M. Karplus, Prediction of the Folding of Short Polypeptide Segments by Uniform Conformational Sampling. Biopolymers. 1987, 26(1): 137~168
    124 K. Lee, C. Czaplewski, S.-Y. Kim, J. Lee, An Efficient Molecular Docking Using Conformational Space Annealing. Journal of Computational Chemistry. 2005, 26(1): 78~87
    125 G. M. Morris, D. S. Goodsell, R. S. Halliday, R. Huey, W. E. Hart, R. K. Belew, A. J. Olson, Automated Docking Using a Lamarckian Genetic Algorithm and an Empirical Binding Free Energy Function. J Comput Chem. 1998, 19(14): 1639~1662
    126 R. Huey, G. M. Morris, A. J. Olson, D. S. Goodsell, A Semiempirical Free Energy Force Field with Charge-Based Desolvation. J Comput Chem. 2007, 28(6): 1145~1152
    127 J. H. Holland, Adaptation in Natural and Artificial Systems. University of Michigan Press: 1975.
    128 J. B. Lamarck, Of the Influence of the Environment on the Activities and Habits of Animals, and the Influence of the Activities and Habits of These Living Bodies in Modifying Their Organization and Structure. Addison-Wesley Longman Publishing Co., Inc.: 1996; p 39~57.
    129 S. Kirkpatrick, C. D. Gelatt, Jr., M. P. Vecchi, Optimization by Simulated Annealing. Science. 1983, 220(4598): 671~680
    130 E. Katchalski-Katzir, I. Shariv, M. Eisenstein, A. A. Friesem, C. Aflalo, I. A. Vakser, Molecular Surface Recognition: Determination of Geometric Fit between Proteins and Their Ligands by Correlation Techniques. Proceedings of the National Academy of Sciences of the United States of America. 1992, 89(6): 2195~2199
    131 R. Chen, L. Li, Z. Weng, Zdock: An Initial-Stage Protein-Docking Algorithm. Proteins: Structure, Function, and Genetics. 2003, 52(1): 80~87
    132 I. A. Vakser, Evaluation of Gramm Low-Resolution Docking Methodology on the Hemagglutinin-Antibody Complex. Proteins: Structure, Function, and Genetics. 1997, 29(S1): 226~230
    133 J. G. Mandell, V. A. Roberts, M. E. Pique, V. Kotlovyi, J. C. Mitchell, E. Nelson, I. Tsigelny, L. F. Ten Eyck, Protein Docking Using Continuum Electrostatics and Geometric Fit. Protein Eng. 2001, 14(2): 105~113
    134 A. Berchanski, B. Shapira, M. Eisenstein, Hydrophobic Complementarity in Protein-Protein Docking. Proteins: Structure, Function, and Bioinformatics. 2004, 56(1): 130~142
    135 P. Aloy, E. Querol, F. X. Aviles, M. J. E. Sternberg, Automated Structure-Based Prediction of Functional Sites in Proteins: Applications to Assessing the Validity of Inheriting Protein Function from Homology in Genome Annotation and to Protein Docking. Journal of Molecular Biology. 2001, 311(2): 395~408
    136 I. D. Kuntz, J. M. Blaney, S. J. Oatley, R. Langridge, T. E. Ferrin, A Geometric Approach to Macromolecule-Ligand Interactions. J Mol Biol. 1982, 161(2): 269~288
    137 B. Luty, Z. Wasserman, P. Stouten, N. Hodge, M. Zacharias, A. McCammon, A Molecular Mechanics/Grid Method for Evaluation of Ligand-Receptor Interactions. Journal of Computational Chemistry. 1995, 16(4): 454~464
    138 J. S. Taylor, R. M. Burnett, Darwin: A Program for Docking Flexible Molecules. Proteins: Structure, Function, and Bioinformatics. 2000, 41(2): 173~191
    139 C. H. Li, X. H. Ma, W. Z. Chen, C. X. Wang, A Protein-Protein Docking Algorithm Dependent on the Type of Complexes. Protein Eng. 2003, 16(4): 265~269
    140 J. J. Gray, S. Moughon, C. Wang, O. Schueler-Furman, B. Kuhlman, C. A. Rohl, D. Baker, Protein-Protein Docking with Simultaneous Optimization of Rigid-Body Displacement and Side-Chain Conformations. Journal of Molecular Biology. 2003, 331(1): 281~299
    141 C. Wang, O. Schueler-Furman, D. Baker, Improved Side-Chain Modeling for Protein-Protein Docking. Protein Sci. 2005, 14(5): 1328~1339
    142 H.-J. B?hm, Ludi: Rule-Based Automatic Design of New Substituents for Enzyme Inhibitor Leads. Journal of Computer-Aided Molecular Design. 1992, 6(6): 593~606
    143 C. Zhang, S. Liu, Y. Zhou, Accurate and Efficient Loop Selections by the Dfire-Based All-Atom Statistical Potential. Protein Science. 2004, 13(2): 391~399
    144 G. Moont, H. A. Gabb, M. J. E. Sternberg, Use of Pair Potentials across Protein Interfaces in Screening Predicted Docked Complexes. Proteins: Structure, Function, and Genetics. 1999, 35(3): 364~373
    145 C. Zhang, G. Vasmatzis, J. L. Cornette, C. DeLisi, Determination of Atomic Desolvation Energies from the Structures of Crystallized Proteins. Journal of Molecular Biology. 1997, 267(3): 707~726
    146 M. Rarey, B. Kramer, T. Lengauer, G. Klebe, A Fast Flexible Docking Method Using an Incremental Construction Algorithm. Journal of Molecular Biology. 1996, 261(3): 470~489
    147 C. M. Venkatachalam, X. Jiang, T. Oldfield, M. Waldman, Ligandfit: A Novel Method for the Shape-Directed Rapid Docking of Ligands to Protein Active Sites. Journal of Molecular Graphics and Modelling. 2003, 21(4): 289~307
    148 A. N. Jain, Surflex: Fully Automatic Flexible Molecular Docking Using a Molecular Similarity-Based Search Engine. Journal of Medicinal Chemistry. 2003, 46(4): 499~511
    149 G. Jones, P. Willett, R. C. Glen, A. R. Leach, R. Taylor, Development and Validation of a Genetic Algorithm for Flexible Docking. J Mol Biol. 1997, 267(3): 727~748
    150 R. A. Friesner, J. L. Banks, R. B. Murphy, T. A. Halgren, J. J. Klicic, D. T. Mainz, M. P. Repasky, E. H. Knoll, M. Shelley, J. K. Perry, D. E. Shaw, P. Francis, P. S. Shenkin, Glide: A NewApproach for Rapid, Accurate Docking and Scoring. 1. Method and Assessment of Docking Accuracy. Journal of Medicinal Chemistry. 2004, 47(7): 1739~1749
    151 T. A. Halgren, R. B. Murphy, R. A. Friesner, H. S. Beard, L. L. Frye, W. T. Pollard, J. L. Banks, Glide: A New Approach for Rapid, Accurate Docking and Scoring. 2. Enrichment Factors in Database Screening. Journal of Medicinal Chemistry. 2004, 47(7): 1750~1759
    152 T. E. Clarke, L. W. Tari, H. J. Vogel, Structural Biology of Bacterial Iron Uptake Systems. Current Topics in Medicinal Chemistry. 2001, 1: 7~30
    153 M. E. Newcomer, G. L. Gilliland, F. A. Quiocho, L-Arabinose-Binding Protein-Sugar Complex at 2.4 Resolution. Stereochemistry and Evidence for a Structural Change. Journal of Biological Chemistry. 1981, 256(24): 13213~13217
    154 J. C. Spurlino, G. Y. Lu, F. A. Quiocho, The 2.3- Resolution Structure of the Maltose- or Maltodextrin-Binding Protein, a Primary Receptor of Bacterial Active Transport and Chemotaxis. Journal of Biological Chemistry. 1991, 266(8): 5202~5219
    155 K. Fukami-Kobayashi, Y. Tateno, K. Nishikawa, Domain Dislocation: A Change of Core Structure in Periplasmic Binding Proteins in Their Evolutionary History. Journal of Molecular Biology. 1999, 286(1): 279~290
    156 D. P. Chimento, A. K. Mohanty, R. J. Kadner, M. C. Wiener, Substrate-Induced Transmembrane Signaling in the Cobalamin Transporter Btub. Nat Struct Mol Biol. 2003, 10(5): 394~401
    157 K. P. Locher, A. T. Lee, D. C. Rees, The E. Coli Btucd Structure: A Framework for Abc Transporter Architecture and Mechanism. Science. 2002, 296(5570): 1091~1098
    158 D. N. Shppard, M. J. Welsh, Structure and Function of the Cftr Chloride Channel. Physiol Rev. 1999, 79(1): 23~45
    159 R. Abele, R. Tampé, Function of the Transport Complex Tap in Cellular Immune Recognition. Biochimica et Biophysica Acta (BBA) - Biomembranes. 1999, 1461(2): 405~419
    160 H. Nikaido, Prevention of Drug Access to Bacterial Targets: Permeability Barriers and Active Efflux. Science. 1994, 264(5157): 382~388
    161 E. L. Borths, B. Poolman, R. N. Hvorup, K. P. Locher, D. C. Rees, In Vitro Functional Characterization of Btucd-F, the Escherichia Coli Abc Transporter for Vitamin B12 Uptake. Biochemistry. 2005, 44(49): 16301~16309
    162 C. Jarzynski, Equilibrium Free-Energy Differences from Nonequilibrium Measurements: A Master-Equation Approach. Physical Review E. 1997, 56(Copyright (C) 2010 The American Physical Society): 5018
    163 C. Jarzynski, Nonequilibrium Equality for Free Energy Differences. Physical Review Letters. 1997, 78(Copyright (C) 2010 The American Physical Society): 2690
    164 H. M. Marques, B. Ngoma, T. J. Egan, K. L. Brown, Parameters for the Amber Force Field for the Molecular Mechanics Modeling of the Cobalt Corrinoids. Journal of Molecular Structure. 2001, 561: 71~91
    165 W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, R. W. Impey, M. L. Klein, Comparison of Simple Potential Functions for Simulating Liquid Water. J Chem Phys. 1983, 79(2): 926~935
    166 A. Amadei, A. Linssen, B. M. , H. Berendsen, J. C. , Essential Dynamics of Proteins. Proteins: Structure, Function, and Genetics. 1993, 17(4): 412~425
    167 J. Liphardt, S. Dumont, S. Smith, I. Tinoco, C. Bustamante, Equilibrium Information from Nonequilibrium Measurements in an Experimental Test of Jarzynski's Equality. Science. 2002, 296(5574): 1832~1835
    168 G. Hummer, A. Szabo, From the Cover: Free Energy Reconstruction from Nonequilibrium Single-Molecule Pulling Experiments. PNAS. 2001, 98(7): 3658~3661
    169 J. Sonne, C. Kandt, G. H. Peters, F. Y. Hansen, M. ?. Jensen, D. P. Tieleman, Simulation of the Coupling between Nucleotide Binding and Transmembrane Domains in the Atp Binding Cassette Transporter Btucd. Biophysical Journal. 2007, 92(8): 2727~2734
    170 H. Valadié, J. J. Lacapcre, Y. H. Sanejouand, C. Etchebest, Dynamical Properties of the Mscl of Escherichia Coli: A Normal Mode Analysis. Journal of Molecular Biology. 2003, 332(3): 657~674
    171 S. Hayward, R. A. Lee, Improvements in the Analysis of Domain Motions in Proteins from Conformational Change: Dyndom Version 1.50. Journal of Molecular Graphics and Modelling. 2002, 21(3): 181~183
    172 T. Haliloglu, I. Bahar, B. Erman, Gaussian Dynamics of Folded Proteins. Physical Review Letters. 1997, 79(16): 3090
    173 S. Kundu, R. L. Jernigan, Molecular Mechanism of Domain Swapping in Proteins: An Analysis of Slower Motions. Biophys J. 2004, 86(6): 3846~3854
    174 I. Bahar, A. R. Atilgan, M. C. Demirel, B. Erman, Vibrational Dynamics of Folded Proteins: Significance of Slow and Fast Motions in Relation to Function and Stability. Physical Review Letters. 1998, 80(12): 2733
    175 L.-W. Yang, I. Bahar, Coupling between Catalytic Site and Collective Dynamics: A Requirement for Mechanochemical Activity of Enzymes. Structure. 2005, 13(6): 893~904
    176 J. G. Su, X. Jiao, T. G. Sun, C. H. Li, W. Z. Chen, C. X. Wang, Analysis of Domain Movements in Glutamine-Binding Protein with Simple Models. Biophys J. 2007, 92(4): 1326~1335
    177 Y. Wang, A. J. Rader, I. Bahar, R. L. Jernigan, Global Ribosome Motions Revealed with Elastic Network Model. Journal of Structural Biology. 2004, 147(3): 302~314
    178 C. Chennubhotla, R. A. J, L. W. Yang, I. Bahar, Elastic Network Models for Understanding Biomolecular Machinery: From Enzymes to Supramolecular Assemblies. Physical Biology. 2005, 2(4): 170~180
    179 O. Keskin, S. R. Durell, I. Bahar, R. L. Jernigan, D. G. Covell, Relating Molecular Flexibility to Function: A Case Study of Tubulin. Biophysical Journal. 2002, 83(2): 663~680
    180 T. A. Tatusova, T. L. Madden, Blast 2 Sequences, a New Tool for Comparing Protein and Nucleotide Sequences. FEMS Microbiology Letters. 1999, 174(2): 247~250
    181 R. Zheng, T. M. Jenkins, R. Craigie, Zinc Folds the N-Terminal Domain of Hiv-1 Integrase, Promotes Multimerization, and Enhances Catalytic Activity. Proc Natl Acad Sci U S A. 1996, 93(24): 13659~13664
    182 S. P. Lee, J. Xiao, J. R. Knutson, M. S. Lewis, M. K. Han, Zn2+ Promotes the Self-Association of Human Immunodeficiency Virus Type-1 Integrase in Vitro. Biochemistry. 1997, 36(1): 173~180
    183 E. Asante-Appiah, A. Skalka, Hiv-1 Integrase: Structural Organization, Conformational Changes, and Catalysis. Adv Virus Res. 1999, 52: 351~369
    184 M. R. Fesen, Y. Pommier, F. Leteurtre, S. Hiroguchi, J. Yung, K. W. Kohn, Inhibition of Hiv-1 Integrase by Flavones, Caffeic Acid Phenethyl Ester (Cape) and Related Compounds. Biochemical Pharmacology. 1994, 48(3): 595~608
    185 T. R. Burke, Jr., M. Fesen, A. Mazumder, J. Yung, J. Wang, A. M. Carothers, D. Grunberger, J. Driscoll, Y. Pommier, K. Kohn, Hydroxylated Aromatic Inhibitors of Hiv-1 Integrase. Journal of Medicinal Chemistry. 1995, 38(21): 4171~4178
    186 A. Mazumder, A. Gazit, A. Levitzki, M. Nicklaus, J. Yung, G. Kohlhagen, Y. Pommier, Effects of Tyrphostins, Protein Kinase Inhibitors, on Human Immunodeficiency Virus Type 1 Integrase. Biochemistry. 1995, 34(46): 15111~15122
    187 L. Q. Al-Mawsawi, V. Fikkert, R. Dayam, M. Witvrouw, T. R. Burke, C. H. Borchers, N. Neamati, Discovery of a Small-Molecule Hiv-1 Integrase Inhibitor-Binding Site. Proceedings of the National Academy of Sciences. 2006, 103(26): 10080~10085
    188 J.-H. Lin, A. L. Perryman, J. R. Schames, J. A. McCammon, Computational Drug Design Accommodating Receptor Flexibility:&Nbsp; the Relaxed Complex Scheme. Journal of the American Chemical Society. 2002, 124(20): 5632~5633
    189 R. Amaro, R. Baron, J. C. McCammon, An Improved Relaxed Complex Scheme for Receptor Flexibility in Computer-Aided Drug Design. Journal of Computer-Aided Molecular Design. 2008, 22(9): 693~705
    190 P. A. Kollman, I. Massova, C. Reyes, B. Kuhn, S. Huo, L. Chong, M. Lee, T. Lee, Y. Duan, W. Wang, O. Donini, P. Cieplak, J. Srinivasan, D. A. Case, T. E. Cheatham, Calculating Structures and Free Energies of Complex Molecules: Combining Molecular Mechanics and Continuum Models. Acc Chem Res. 2000, 33(12): 889~897
    191 W. Wang, O. Donini, C. M. Reyes, P. A. Kollman, Biomolecular Simulations:: Recent Developments in Force Fields, Simulations of Enzyme Catalysis, Protein-Ligand, Protein-Protein, and Protein-Nucleic Acid Noncovalent Interactions. Annual Review of Biophysics and Biomolecular Structure. 2001, 30(1): 211~243
    192 S. Maignan, J.-P. Guilloteau, Q. Zhou-Liu, C. Clément-Mella, V. Mikol, Crystal Structures of the Catalytic Domain of Hiv-1 Integrase Free and Complexed with Its Metal Cofactor: High Level of Similarity of the Active Site with Other Viral Integrases. J Mol Biol. 1998, 282(2): 359~368
    193 G. N. Ramachandran, C. Ramakrishnan, V. Sasisekharan, Stereochemistry of Polypeptide Chain Configurations. Journal of Molecular Biology. 1963, 7: 95~99
    194 G. N. Ramachandran, C. M. Venkatachalam, S. Krimm, Stereochemical Criteria for Polypeptide and Protein Chain Conformations: Iii. Helical and Hydrogen-Bonded Polypeptide Chains. Biophysical Journal. 1966, 6(6): 849~872
    195 J. Gasteiger, M. Marsili, Iterative Partial Equalization of Orbital Electronegativity--a Rapid Access to Atomic Charges. Tetrahedron. 1980, 36: 3219~3228
    196 V. Tsui, D. A. Case, Theory and Applications of the Generalized Born Solvation Model in Macromolecular Simulations. Biopolymers. 2000, 56(4): 275~291
    197 T. Simonson, Macromolecular Electrostatics: Continuum Models and Their Growing Pains. Current Opinion in Structural Biology. 2001, 11(2): 243~252
    198 D. Bashford, D. A. Case, Generalized Born Models of Macromolecular Solvation Effects. Annual Review of Physical Chemistry. 2003, 51(1): 129~152
    199 C. Still, A. Tempczyk, R. Hawley, T. Hendrickson, Semianalytical Treatment of Solvation for Molecular Mechanics and Dynamics. Journal of the American Chemical Society. 1990, 112(16): 6127~6129
    200 J. Weiser, P. S. Shenkin, W. C. Still, Approximate Atomic Surfaces from Linear Combinations of Pairwise Overlaps (Lcpo). Journal of Computational Chemistry. 1999, 20(2): 217~230
    201 J. Greenwald, V. Le, S. L. Butler, F. D. Bushman, S. Choe, The Mobility of an Hiv-1 Integrase Active Site Loop Is Correlated with Catalytic Activity. Biochemistry. 1999, 38(28): 8892~8898
    202 R. D. Lins, J. M. Briggs, T. P. Straatsma, H. A. Carlson, J. Greenwald, S. Choe, J. AndrewMcCammon, Molecular Dynamics Studies on the Hiv-1 Integrase Catalytic Domain. Biophys J. 1999, 76(6): 2999~3011
    203 M. L. Barreca, K. W. Lee, A. Chimirri, J. M. Briggs, Molecular Dynamics Studies of the Wild-Type and Double Mutant Hiv-1 Integrase Complexed with the 5citep Inhibitor: Mechanism for Inhibition and Drug Resistance. Biophys J. 2003, 84(3): 1450~1463
    204 M. C. Lee, J. Deng, J. M. Briggs, Y. Duan, Large-Scale Conformational Dynamics of the Hiv-1 Integrase Core Domain and Its Catalytic Loop Mutants. Biophys J. 2005, 88(5): 3133~3146
    205 F. Dyda, A. B. Hickman, T. M. Jenkins, A. Engelman, R. Craigie, D. R. Davies, Crystal Structure of the Catalytic Domain of Hiv-1 Integrase: Similarity to Other Polynucleotidyl Transferases. Science. 1994, 266(5193): 1981~1986
    206 Y. Goldgur, F. Dyda, A. B. Hickman, T. M. Jenkins, R. Craigie, D. R. Davies, Three New Structures of the Core Domain of Hiv-1 Integrase: An Active Site That Binds Magnesium. Proc Natl Acad Sci U S A. 1998, 95(16): 9150~9154
    207 M. L. Barreca, F. Ortuso, N. Iraci, L. De Luca, S. Alcaro, A. Chimirri, Tn5 Transposase as a Useful Platform to Simulate Hiv-1 Integrase Inhibitor Binding Mode. Biochem Biophys Res Commun. 2007, 363(3): 554~560
    208 X. Chen, M. Tsiang, F. Yu, M. Hung, G. S. Jones, A. Zeynalzadegan, X. Qi, H. Jin, C. U. Kim, S. Swaminathan, J. M. Chen, Modeling, Analysis, and Validation of a Novel Hiv Integrase Structure Provide Insights into the Binding Modes of Potent Integrase Inhibitors. J Mol Biol. 2008, 380(3): 504~519
    209 D. R. Davies, I. Y. Goryshin, W. S. Reznikoff, I. Rayment, Three-Dimensional Structure of the Tn5 Synaptic Complex Transposition Intermediate. Science. 2000, 289(5476): 77~85
    210 T. G. Sun, C. H. Li, W. Z. Chen, C. X. Wang, A Novel Back-Door Pathway for Glutamine Release from Glnbp Revealed by Steered Molecular Dynamics Simulation. Journal of Molecular Structure: THEOCHEM. 2009, 905(1-3): 51~58
    211 M. ?. Jensen, S. Park, E. Tajkhorshid, K. Schulten, Energetics of Glycerol Conduction through Aquaglyceroporin Glpf. Proceedings of the National Academy of Sciences of the United States of America. 2002, 99(10): 6731~6736
    212 A. Heifetz, S. Pal, G. R. Smith, Protein-Protein Docking: Progress in Capri Rounds 6-12 Using a Combination of Methods: The Introduction of Steered Solvated Molecular Dynamics. Proteins: Structure, Function, and Bioinformatics. 2007, 69(4): 816~822
    213 H. Jin, M. Wright, R. Pastor, M. Mish, S. Metobo, S. Jabri, R. Lansdown, R. Cai, P. Pyun, M. Tsiang, X. Chen, C. U. Kim, Tricyclic Hiv Integrase Inhibitors: Potent and Orally Bioavailable C5-Aza Analogs. Bioorganic & Medicinal Chemistry Letters. 2008, 18(4): 1388~1391
    214 M. Donghi, O. D. Kinzel, V. Summa, 3-Hydroxy-4-Oxo-4h-Pyrido[1,2-a]Pyrimidine-2-Carb-oxylates--a New Class of Hiv-1 Integrase Inhibitors. Bioorganic & Medicinal Chemistry Letters. 2009, 19(7): 1930~1934
    215 T. M. Jenkins, D. Esposito, A. Engelman, R. Craigie, Critical Contacts between Hiv-1 Integrase and Viral DNA Identified by Structure-Based Analysis and Photo-Crosslinking. EMBO J. 1997, 16(22): 6849~6859
    216 A. Brigo, K. W. Lee, F. Fogolari, G. I. Mustata, J. Briggs, M. , Comparative Molecular Dynamics Simulations of Hiv-1 Integrase and the T66i/M154i Mutant: Binding Modes and Drug Resistance to a Diketo Acid Inhibitor. Proteins: Structure, Function, and Bioinformatics. 2005, 59(4): 723~741
    217 A. Chen, I. T. Weber, R. W. Harrison, J. Leis, Identification of Amino Acids in Hiv-1 and Avian Sarcoma Virus Integrase Subsites Required for Specific Recognition of the Long Terminal Repeat Ends. Journal of Biological Chemistry. 2006, 281(7): 4173~4182
    218 N. Jing, C. Marchand, J. Liu, R. Mitra, M. E. Hogan, Y. Pommier, Mechanism of Inhibition of Hiv-1 Integrase by G-Tetrad-Forming Oligonucleotides in Vitro. Journal of Biological Chemistry. 2000, 275(28): 21460~21467
    219 R. R. Drake, N. Neamati, H. Hong, A. A. Pilon, P. Sunthankar, S. D. Hume, G. W. A. Milne, Y. Pommier, Identification of a Nucleotide Binding Site in Hiv-1 Integrase. Proceedings of the National Academy of Sciences of the United States of America. 1998, 95(8): 4170~4175

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700