用户名: 密码: 验证码:
面向机器人自主导航的仿真关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
机器人在国防、民用、科研等领域都有着广泛的应用前景,在计算机技术里一直处于研究的前沿。机器人的自主导航系统庞大、技术复杂,在研究和实验过程中迫切需要真实度高、实时性好的仿真系统以验证各类算法的有效性,为智能感知,路径规划等模块提供预研与技术验证等支持。
     本文针对构建面向机器人自主导航技术所需要的关键技术展开,以计算机图形学和虚拟现实技术为基础,进行了如越野环境的渲染,传感器仿真算法,以及虚拟实验环境的构造等研究,并取得一定成果,其中包括:
     针对野外越野场景的地形渲染的需要,提出了利用GPU实现的四叉树地形渲染算法,通过GPU提高四叉树的构建速度,在此基础上提出了以GPU实现的四叉树遍历,场景分割,裂缝消除和多边形化等技术。取得了较传统算法更为精确的渲染效果和3-4倍渲染速度的提升。同时,通过将处理大尺寸场景常用的clipmap技术引入四叉树构造技术中,拓展了该技术在大尺寸场景上的应用空间。并提出了一系列裂缝消除,数据调度和渲染优化策略。实验证明该算法结合了动态算法和固定网格算法的优点,没有预处理的需求,因此运行期对数据传输的依赖很低,同时几乎没有带宽需求,在低CPU负载的情况下可以获得很高的帧速率,是应用前景很广泛的地形渲染技术。
     针对传感器仿真的需要,本文提出利用GPU硬件实现的激光雷达和光学摄像机仿真技术。通过引入环境纹理、bump map和位移纹理等技术,实现这两类自主机器人上普遍使用的传感器的仿真。对激光雷达的实验表明,该算法普适性好,针对各类雷达都能很好地仿真,同时拥有满意的仿真速度。对光学摄像机的实验表明,仿真算法可以很好地建立虚拟摄像机和仿真摄像机之间的关系,真实度很好,同时算法还可以很好地模拟各类镜头的畸变。由于算法充分利用了GPU结构,本文的算法不仅在速度上有明显优势、可运行于普通桌面系统而无须复杂的大型系统,更重要的是这两种算法充分考虑了现代渲染技术对GPU的依赖,通过GPU执行的仿真算法不仅有效地节约了系统的带宽需要,同时也降低了CPU的负担。
     针对虚拟环境搭建的需要,本文对利用自主机器人上所携带的传感器进行虚拟场景搭建的技术进行了研究。其一是通过激光雷达实现对多边形场景的构建,通过对多边形的筛选,获得可靠的网格。并在此基础上执行网格的简化算法,构造可以满足渲染器渲染需要的网格。实验证明网格的简化算法可以有效地保留模型的特征,大幅度减少冗余多边形,停机策略良好。其二是通过激光雷达和光学传感器所生成的体视数据进行的越野环境数字高程数据的构建,以及平滑、填充等一系列操作,达到构建越野环境的目的,实验证明该算法简单有效,对空白区数据的填充效果良好。
Autonomous robotic technology is wildly used in defense, civil economy and academic researches. As a research combined with image processing, data collection, data fusion, intelligent sensor, pattern recognition, automatic control and system simulation technologies, autonomous robotic technology is one of the hottest areas in computer science. Virtual simulation system as one strong support for intelligent sensor and path land modular is a key technology of autonomous robotic researches.
     This thesis is focus on technologies which is needed for construct the autonomous robot virtual simulation system. Our researches is based on computer graphic and virtual reality technology to development researches on terrain rendering, sensor simulation, and the construction of virtual experiment environments. The results include:
     To solve the outdoor rendering problems, we proposed a GPU-implemented quad-tree based terrain rendering scheme, increasing the speed of quad-tree construction by exploit the stream-structure of GPU. Base on the scheme, we propose GPU-implemented quad-tree traversing, scene division, crack fixing and triangulation schemes, to rendering the DEM, with good rendering results and frame rates. Moreover, by introducing the clipmap technology which is widely used in large scale scene rendering into quad-tree construction, we proposed a set of technology including crack fix strategy, data management scheme and rendering optimization strategy to solve the terrain rendering of large scale scene. The experiments prove that our scheme combined with the advantages of dynamic construction algorithm and fix mesh algorithm, need no preprocessing, lightly reliance to runtime data transmission, with little bandwidth consumption. The experiments also show that our scheme could reach high frame rates with low CPU payload.
     To satisfy the need of sensor simulation, this thesis has also proposed technologies for laser radar and optical camera simulation, which are the most popular sensors on autonomous robot, by exploiting environment texture and bump map features of GPU. The experiment of laser radar simulation shows that our algorithm is efficient for most radar type, with a satisfactory simulation speed, while the experiment of optical camera show that the virtual camera could build relationship with real camera with high reality, also could it simulate various lens distortions. As our method fully consider about the GPU architechture, it could not only reach very high frame rates in ordinary desktop platform, but also reduce the usage of bandwidth and payload of CPU.
     This thesis also presented our researches on virtual experiment environment construction with sensor on autonomous robot. One is construction of polygon environment with laser radar. With a scheme of polygon linkage, mesh simplification to construct the polygon meshes the experiments needed. Experiments show that our mesh simplification strategy could largely reduce the redundant polygons while maintaining the geometry feature of existing meshes, and with good halting strategies. The second is technology of constructing outdoor environment's DEM data by data fusion with laser radar and height field data from optical cameras and a set of operation such as smoothing and blank area filling. Experiment show that our method was simple and efficient, and good at blank area filling.
引文
[1]Jaczkowski J.J.:Robotic Technology Integration for Army Ground Vehicles. in The 20th Conf. on Digital Avionics Systems, pp.1-8,2001.
    [2]Schwartz I.:PRIMUS:autonomous driving robot for military applications. in Proc. SPIE on Unmanned Ground Vehicle Technology Ⅱ, pp.313-323,2000.
    [3]西安交大URL http://ccvai.xjtu.edu.cn/news.do?method=getdetails&id=33
    [4]urban challenge:URL. http://www.darpa.mil/grandchallenge/2007
    [5]Miura J., M Itoh and Y Shirai:Toward Vision-Based Intelligent Navigator:Its Concept and Prototype. IEEE Trans. on Intelligent Transportation Systems,3(2):pp.136-146,2002.
    [6], Baber J., et al.:Cooperative autonomous driving:intelligent vehicles sharing city roads. IEEE Robotics & Automation Magazine,12(1):pp.44-49,2005.
    [7]孙振平,安向京,贺汉根CITAVT-IV—视觉导航的自主车.机器人,24(2):pp.115-121,2002.
    [8]Li Q., N. Zheng and H. Cheng:Springrobot: a prototype autonomous vehicle and its algorithms for lane detection. IEEE Trans. on Intelligent Transportation Systems,5(4):pp. 300-308,2004.
    [9]唐振民,赵春霞,孙怀江,陆建峰,杨静宇:地面自主移动平台信息融合与路径规划系统。南京理工大学学报(J)。第27卷,第1期,2003年,6-10。
    [10]刘华军:面向智能车辆的道路环境理解技术研究,南京理工大学博士论文,2006
    [11]成伟明:移动机器人自主导航中的路径规划与跟踪控制技术研究,南京理工大学博士论文,2007
    [12]Kuc R and Siegel MW:Physically based simulation model for acoustic sensor robot navigation. IEEE Transactions on Pattern Analysis and Machine Intelligence. Vol.6, pp.766—778.2009
    [13]Craighead J., Murphy R., Burke J. and Goldiez B.:A survey of commercial & open source unmanned vehicle simulators. IEEE International Conference on Robotics and Automation,, pp.852-857,2007,IEEE
    [14]Jain A., Balaram J., Cameron J. and et al.:Recent developments in the ROAMS planetary rover simulation environment.[C] Aerospace Conference,2004. Proceedings. (2004)Vol.2 pp.861-876, IEEE
    [15]Gerkey B., Vaughan R.T. and Howard A.:The player/stage project:Tools for multi-robot and distributed sensor systems. Proceedings of the 11th international conference on advanced robotics. pp.317-323,2003
    [16]Michel O.:Webots: Symbiosis between virtual and real mobile robots. Virtual Worlds (1998) pp.254-263.Springer
    [17]桑建学:越野环境下自主车仿真系统的研究.国防科技大学博士学位论文.2006
    [18]Burdea G. and Coiffet P.:Virtual reality technology[J]. Presence:Teleoperators & Virtual Environments.2003,12(6),pp.663--664, MIT Press
    [19]Sutherland I.E.:Ahead-mounted three dimensional display[C]. Proceedings of the December 9-11,1968, fall joint computer conference, part I. pp.757--764,1968, ACM.
    [20]Brooks Jr F.P., Ouh-Young M., Batter J.J. et al.:Project GROPE Haptic displays for scientific visualization. Proceedings of the 17th annual conference on Computer graphics and interactive techniques.1990, pp.177--185, ACM
    [21]Cruz-Neira C., Sandin D.J., and DeFanti T.A.:Surround-screen projection-based virtual reality:the design and implementation of the CAVE[C]. Proceedings of the 20th annual conference on Computer graphics and interactive techniques.1993, pp.135--142, ACM.
    [22]Gaskell R., Collier. J.B., Husman, L.E. and Chen, RL:Synthetic environments for simulated missions. Aerospace Conference,2001, IEEE Proceedings. vol.7,2002
    [23]Pomerantz M.I., Jain A. and Myint S.:Dspace:Real-Time 3D Visualization System for Spacecraft Dynamics Simulation. Third IEEE International Conference on Space Mission Challenges for Information Technology,2009. SMC-IT 2009. pp.237--245,2009,IEEE
    [24]杨艳春:虚拟环境下月球车仿真试验系统及其若干关键技术研究,上海交通大学博士论文,2009
    [25]张浩峰等,面向室外自然环境的移动机器人视觉仿真系统.系统仿真学报,18(3):pp.701-705,2006.
    [26]wikipedia url:http://en.wikipedia.org/wiki/Flight_simulator
    [27]UOI url:http://www.nads-sc.uiowa.edu/
    [28]Larsen C.R., Soerensen J.L., Grantcharov T.P. and et al.:Effect of virtual reality training on laparoscopic surgery:randomised controlled trial. British Medical Journal. vol.338(may 142),2009, Br Med Assoc
    [29]Jain A., Guineau J., Lim C., Lincoln W., and et. al:ROAMS:Planetary Surface Rover Simulation Environment, Proceedings of the International Symposium on Artificial Intelligence Robotics and Automation in Space(i-SAIRAS),2003
    [30]Yen J., Jain A. and Balaram J., ROAMS:Rover Analysis, Modeling and Simulation, Proceedings of the International Symposium on Artificial Intelligence Robotics and Automation in Space(i-SAIRAS),1999
    [31]Cameron J. and Jain A. and Huntsberger, T. and Sohl, G. and Mukherjee, R: Vehicle-terrain interaction modeling and validation for Planetary Rovers.2009. Pasadena, CA: Jet Propulsion Laboratory, National Aeronautics and Space Administration,2010.
    [32]Lim C.S. and Jain A.:Dshell++:A Component Based, Reusable Space System Simulation Framework. Third IEEE International Conference on Space Mission Challenges for Information Technology,2009. SMC-IT 2009 pp.229--236,2009, IEEE
    [33]Biesiadecki J.J., Henriques DA and Jain A.:A reusable, real-time spacecraft dynamics simulator. Digital Avionics Systems Conference,1997, vol.2 pp.8--2,2002, IEEE
    [34]Sohl G. and Jain A.:Wheel-Terrain contact modeling in the ROAMS planetary rover simulation. Fifth ASME International Conference on Multibody Systems, Nonlinear Dynamics and Control, Long Beach, CA. pp.89--97,2005
    [35]Chuxin Chen, Mohan M. Trivedi, Clint R. Bidlack. Simulation and Animation of Sensor-Driven Robot. IEEE Transactions on Robotics and Automation. (J) Vol.10, No.5, October 1994,684-704.
    [36]Chuxin Chen, Mohan M. Trivedi, Clint R. Bidlack. Simulation and Graphical Interface for Programming and Visualization of Sensor-based Robot Operation. Proceedings of the 1992 IEEE International Conference on Robotics and Automation, Nice France (C) May 1992.1095-1101.
    [37]J. Wang, M. Lewis, and J. Gennari:Usar:A game based simulation for teleoperation. in Proceedings of the 47th Annual Meeting of the Human Factors and Ergonomics Society, October 2003.
    [38]L. Hohl, R. Tellez, O. Michel, and A. Ijspeert: Aibo and webots:Simulation, wireless remote control and controller transfer. Robotics and Autonomous Systems, vol.54, no.6, p. 472, June 2006.
    [39]MRS, URL:http://msdn.microsoft.com/robotics/
    [40]T. Laue, K. Spiess and T. Rofer:Simrobot - a general physical robot simulator and its application in robocup. in Proceedings of RoboCup 2005:Robot Soccer World Cup Ⅸ, ser. Lecture Notes in Artificial Intelligence,2006, pp.173-183.
    [41]Matlab, URL:http://www.mathworks.com
    [42]Pajarola r., Gobbetti e.:Survey on semi-regular multiresolution models for interactive terrain rendering. The Visual Computer 23,8 (2007),583-605
    [43]State of Utah:Utah GIS Portal. URL http://gis.utah.gov.
    [44]METI & NASA:ASTER GDEM. URL http://www.gdem.astcr.ersdac.or.jp
    [45]Fowler R. J., Little J. J.:Automatic extraction of irregular network digital terrainmodels. In Proc. ACM SIGGRAPH (1979), pp.199-207.
    [46]Peucker T. K., Fowler R. J., Little J. J.:The triangulated irregular network. In Proc. ASP-ACSM Symposium on DTM's (1978).
    [47]Hoppe H.:Smooth view-dependent level-of-detail con-trol and its application to terrain rendering. In Proc. IEEE Visualization (1998), pp.35-42.
    [48]Falby, J., Zyda, M., Pratt, D., Mackey, L.:NPSNET: Hierarchical data structures for realtime 3-dimensional visual simulation Computers & Graphics 17(1),65-69 (1993)
    [49]Lindstrom, P., Koller, D., Hodges, L.F., Ribarsky, W., Faust, N., Turner, G: Level-of-detail management for real-time rendering of phototextured terrain. Tech. rep., Graphics, Visualization, and Us-ability Center, Georgia Tech (1995). TR 95-06
    [50]Garland M., Heckbert P. S.:Fast Polygonal Approximation of Terrains and Height Fields. Tech. Rep. CMU-CS-95-181, Carnegie Mellon University,1995.
    [51]Von Herzen B., Barr A. H.:Accurate triangulations of deformed, intersecting surfaces. In Proc. ACM SIGGRAPH (1987), pp.103-110.
    [52]Lindstrom P., Koller D., Ribarsky W., Hodges L. F., Faust N., Turner G. A.:Real-time, con-tinuous level of detail rendering of heightfields. In Proc. ACM SIGGRAPH (1996), pp. 109-118.
    [53]Duchaineau M., Wolinsky M., Sigeti D. E., Miller M. C., Aldrich C., Mineev-Weinstein M. B.:ROAMing terrain:Real-time optimally adapting meshes. In Proc. IEEE Visualization (1997), pp.81-88.
    [54]Pajarola R.:Large scale terrain visualization using the restricted quadtree triangulation. In Proc. IEEE Visualization (1998), pp.19-26.
    [55]Lindstrom P., Pascucci Ⅴ.:Visualization of large terrains made easy. In Proc. IEEE Visualization (2001), pp.363-370.
    [56]Lindstrom P., Pascucci V.:Terrain simplification simplified:A general framework for view-dependent out-of-core visualization. IEEE TVCG 8,3 (2002),239-254.
    [57]Blow J.:Terrain rendering at high levels of detail. In Proc. Game Developer's Conference (2000).
    [58]Reddy M., Leclerc Y., Iverson L., Bletter N.:Terra Vision Ⅱ:Visualizing massive terrain databases in VRML. IEEE Computer Graphics and Applications 19,2 (1999),30-38.
    [59]Pajarola, R., Antonijuan, M., Lario, R.:QuadTIN:Quadtree based triangulated irregular networks. In:Proceedings IEEE Visualization, pp.395-402. Computer Society Press (2002)
    [60]谭兵徐青马东洋。用约束四叉树实现地形的实时多分辨率绘制[J]计算机辅助设计与图形学学报,2000。15(3):270-276
    [61]Koller D., Lindstrom P., Ribarsky W., Hodges L. F., Faust N., Turner G.:Virtual GIS: A real-time 3D geographic information system. In Proc. IEEE Visualization (1995), pp. 94-100.
    [62]Suter M., Niiesch D.:Automated generation of visual simulation databases using remote sensing and GIS. In Proc. IEEE Visualization (1995), pp.86-93.
    [63]Cignoni, P., Ganovelli, F., Gobbetti, E., et al:BDAM - batched dynamic adaptive meshes for high performance terrain visualization. In: Proceedings EURO-GRAPHICS, pp. 505-514 (2003). Also in Computer Graphics Forum 22(3)
    [64]Cignoni, P., Ganovelli, F., Gobbetti, E., et al:Planet-sized batched dynamic adaptive meshes (P-BDAM). In:Proceedings IEEE Visualization, pp.147-155. Computer Society Press (2003)
    [65]Gobbetti Enrico, Marton Fabio, Cignoni Paolo et al:C-BDAM-Compressed Batched Dynamic Adaptive Meshes for Terrain Rendering. Computer Graphics Forum 25(3). 2006 url:http://vcg.isti.cnr.it/Publications/2006/GMCDG06
    [66]Ulrich T.: Rendering massive terrains using chunked level of detail control. ACM SIGGRAPH Course "Super-size it! Scaling up to Massive Virtual Worlds",2002.
    [67]Schneider J., Westermann R.:GPU-friendly high-quality terrain rendering. Journal of WSCG 14,1-3 (2006),49-56.
    [68]Dick, C., Schneider, J., and Westermann, R.:Efficient geometry compression for GPU-based decoding in realtime terrain rendering Computer Graphics Forum vol.28, pp: 67-83.
    [69]Jonas Bosch, Prashant Goswami and Renato Pajarola:RASTeR:Simple and Efficient Terrain Rendering on the GPU. Eurographics Areas Papers,2009
    [70]Hwa L. M., Duchaineau M. A., Joy k. I.:Adaptive 4-8 texture hierarchies. In Proc. IEEE Visualization (2004),pp.219-226.
    [71]Levenberg J.:Fast view-dependent level-of-detail rendering using cached geometry. In Proc. IEEE Visualization (2002), pp.259-265.
    [72]Cignoni, P., Ganovelli, F., Gobbetti, E., Marton, F., et al:Batched multi triangulation. In:Proceedings IEEE Visualization, pp.207-214. Computer Society Press (2005). URL http://www.crs4.it/vic/cgi-bin/bibpage.cgi?id=?Cignoni:2005:GFM'
    [73]Cignoni, P., Montani, C., Scopigno, R.:A comparison of mesh simplification algorithms. Computers & Graphics 22(1),37-54(1998)
    [74]Lario R., Pajarola R., Tirado F.: Hyperblock QuadTIN:Hyper-block quadtree based triangulated irregular networks. In Proceedings IASTED Invernational Conference on Visualization, Imaging and Image Processing (ⅦP) (2003), pp.733-738.
    [75]Pomeranz, A.A.:ROAM using surface triangle clusters (RUSTiC).Master's thesis, University of California at Davis (2000)
    [76]Pomeranz A. A.:ROAMUsing Surface Triangle Clusters (RUSTiC). Master's thesis, Center for Image Processing and Integrated Computing, University of California, Davis, 2000.
    [77]Lindstrom, P., Koller, D., Ribarsky, W., Hodges, L., Faust, N.:An integrated global GIS and visual simulation system. Tech. Rep. GVU Technical Report 97-0, Georgia Tech Research Institute (1997). Http://www.gvu.gatech.edu/gvu/virtual/VGIS/
    [78]Gerstner T:Multiresolution visualization and compression of global topographic data. GeoInformatica 7,1 (2003),7-32.
    [79]Wahl R., Massing M., Degener P., et al.:Scalable compression and rendering of textured terrain data. Journal of WSCG 12,1-3 (2004),521-528.
    [80]Rottger S., Heidrich W., Slusallek P., at el:Real-time generation of continuous levels of detail for height fields. In Proc. WSCG (1998), pp.315-322.
    [81]王宏武。董士海.一个与视点相关的动态多分辨率地形模型[J].计算机辅助设计与图形学学报,2000。12(8):575-579
    [82]Losasso F., Hoppe H.:Geometry clipmaps:Terrain rendering using nested regular grids. In Proc. ACM SIGGRAPH (2004), pp.769-776.
    [83]Musgrave F. K.:Grid Tracing:Fast Ray Tracing for Height Fields. Tech. Rep. RR-639, Yale University, Department of Computer Science,1988.
    [84]Cohen D., Rich E., Lerner U., Shenkar V.:A real-time photo-realistic visual flythrough. IEEE TVCG 2,3 (1996),255-265.
    [85]Cohen D., Shaked A.:Photo-realistic imaging of digital terrains. Computer Graphics Forum 12,3 (1993),363-373.
    [86]Qu H., Qiu F., Zhang N., Kaufman A., Wan M.:Raytracing height fields. In Proc. Computer Graphics International (2003), pp.202-207.
    [87]Mantler S., Jeschke S.:Interactive landscape visualization using GPU ray casting. In Proc. ACM GRAPHITE (2006), pp.117-126.
    [88]Oliveira M. M., Policarpo F.: An Efficient Representation for Surface Details. Tech. Rep. RP-351, Universidade Federal do Rio Grandedo Sul,2005.
    [89]Policarpo F., Oliveira M. M.:Relief mapping of non-height-field surface details. In Proc. ACM Symposium on Interactive 3D Graphics and Games (2006), pp.55-62.
    [90]Christian Dick, Jens Kruger, and Rudiger Westermannl:GPU ray-casting for scalable terrain rendering. Proc. Eurographics 2009--Areas Papers.2009
    [91]Qing, P. and Kitamura, S. and Sasano, Y. and Nakane, H.:Numerical simulation of the retrieval of aerosol size distribution from multiwavelength laser radar measurements. Applied optics Vol.28. pp.5259-5265,1989.
    [92]Qing, P. and Kitamura, S. and Sasano, Y. and Nakane, H.:Numerical simulation of the retrieval of aerosol size distribution from multiwavelength laser radar measurements. Applied optics Vol.28. pp.5259-5265,1989.
    [93]Salamitou, P. and Dabas, A. and Flamant, P.H.:Simulation in the time domain for heterodyne coherent laser radar. Applied Optics. Vol.34 (3), pp.499-506.1995 OSA
    [94]Frehlich, R.:Simulation of laser propagation in a turbulent atmosphere. Applied Optics. Vol.39 (3). pp.393-397,2000 OSA
    [95]Rohaly, GD and Krishnamurti, TN:An observing system simulation experiment for the Laser Atmospheric Wind Sounder (LAWS)}}, Journal of applied meteorology. Vol.32 (9) pp.1453-1471,1993, American Meteorological Society
    [96]张宇,唐勐,陈锺贤等。直接探测激光雷达系统的建模与仿真。红外与激光工程(J)。第33卷第6期,2004年12月
    [97]易翔,王蔚然。激光雷达系统仿真软件设计与实现。激光与红外(J)。第33卷第3期,2003年6月。
    [98]J. Raczkowsky and K. Mittenbuehler. Simulation of Cameras in Robot Applications. IEEE Computer Graphics & Applications (J). Vol.9, no.l,1989,16-25.
    [99]Tsai R Y:A versatile camera calibration technique for high-accuracy 3D machine vision metrology using off-the-shelf TV cameras and lenses[J].IEEE Trans on Robotics and Automation,1987,3 (4):323-344.
    [100]Tsai R Y:An efficient and accurate camera calibration technique for 3D machine vision. [A] Proc Computer Vision and Pattern Recognition.Miami Beach,FL,IEEE,1986.[C]
    [101]Zhengyou Zhang. A flexible new technique for camera calibration.[A] Int Conf Computer Vision. Kerkyra, Greece, IEEE,1999:666-673.[C]
    [102]马颂德,张正友.计算机视觉[M].北京:科学出版社.1998,ISBN:7030060709
    [103]陆建峰, 唐振民, 杨静宇, 多传感器的联合标定方法. 机器人,19(5):pp.365-371,1997.
    [104]Mel Slater, Anthony Steed, Yiorgos Chrysanthou. Computer Graphics and Virtual Environments From Realism to Real-Time. [M] Addison Wesley Express. ISBN:0-201-62420-6
    [105]M. Peercy, J. Airey, and B. Cabral. Efficient bump mapping hardware. In Computer Graphics. (SIGGRAPH '97 Proceedings) (C), pages 303--306, August 1997.
    [106]Tatarchuk. N, Parallax Occlusion Mapping for Detailed Surface Rendering. Course 26:Advanced Real-Time Rendering in 3D Graphics and Games. Siggraph, Boston (C) August 2006.
    [107]Microsoft: DirectX Software Development Kit. URL: http://www.microsoft.com/directx,
    [108]Greg Turk, Marc Levoy, Zippered Polygon Meshes from Range Images. Computer Graphics (ACM SIGGRAPH'94 Proceedings(1996)), pp.311-318.[C] SIGGRAPH '94 (Orlando, Florida, July 24-29,1994).,
    [109]I. Stamos, P. E. Allen,3-D model construction using range and image data. [C] Computer Vision and Pattern Recognition, Hilton Head Island,2000, p.531-6
    [110]Y. Yu, A. Rerencz, J. Malik, Extracting Objects from Range and Radiance Images, (C) IEEE Trans, Visualization and Computer Graphics,vol.7.,2001
    [111]苏胜利,项志宇,基于二维激光雷达的自动室内三维重建系统.[J]传感技术学报第20卷第5期2007年5月985-989
    [112]Hoppe. H, Progressive meshes. [A] Computer Graphics (SIGGRAPH'96 Proceedings (1996)),99-108.[C]SIGGRAPH'96 (New Orleans Louisiana August 4-9,1996).
    [113]李蔚清,洪云轩,吴慧中。一种基于特征的实时LOD模型生成算法,系统仿真学报(J),2005,Vol.17:429-431
    [114]Matthies, L. and S.A. Shafer, Error Modeling in Stereo Navigation. IEEE Journal of Robotics and Automation,3(3):pp.239-248,1987.
    [115]徐则中,移动机器人的同时定位和地图构建[博士学位论文],浙江大学:杭州,2004.
    [116]林强,基于视觉导航的三维重建研究[硕士学位论文],浙江大学:杭州,2004.
    [117]Miura, J., Y. Negishi, and Y. Shirai. Mobile Robot Map Generation by Integrating Omnidirectional Stereo and Laser Range Finder.in IROS, pp.250-255,2002.
    [118]Tanner, C.C. and Migdal, C.J. and Jones, M.T.:The clipmap:A virtual mipmap. Proceedings of the 25th annual conference on Computer graphics and interactive techniques. pp.151-158.ACM
    [119]Seoane, A. and Taibo, J. and Hernandez, L. and Lopez, R. and Jaspe, A. Hardware-independent clipmapping. Proceedings of the International Conference on Computer Graphics, Visualization and Computer Vision (Plzen, Czech Republic.2007
    [120]Asirvatham, A. and Hoppe, H.:Terrain rendering using GPU-based geometry clipmaps. GPU Gems Vol.2(2) pp.27-46,2005
    [121]Eric Lengyel, Mathematics for 3D Game Programming and Computer Graphics Second Edition (M) Charles River Media

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700