用户名: 密码: 验证码:
亚硝酸盐对铜绿微囊藻生理特性的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
浮游植物占全球初级生产的50%,在淡水水体中主要的藻种是蓝藻门的铜绿微囊藻,水体中氮、磷等营养元素的增加常常引起藻类爆发式的繁殖,形成水华。水华发生时,水体中CO_2浓度下降、pH升高和水体中溶解氧减少,这些条件有利于硝化反应和反硝化反应产生的亚硝酸盐的聚积。另外一些人为的因素也可导致水体中亚硝酸盐浓度的增加。本文研究了亚硝酸盐单独存在时和与硝酸盐、铵盐共存时对铜绿微囊藻生长和生理的影响,探讨了铜绿微囊藻细胞内亚硝酸盐含量的变化对藻生长的影响,对亚硝酸盐影响铜绿微囊藻和四尾栅藻的竞争进行了分析。
     在亚硝酸盐单独存在的条件下,浓度小于5mg/L的亚硝酸盐,对铜绿微囊藻的生长没有明显影响,藻能够以亚硝酸盐为氮源。随着培养基中亚硝酸盐浓度逐渐升高到20mg/L,藻的生长受到抑制直至消亡,此时,铜绿微囊藻的光合速率下降,细胞MDA含量增加,细胞内亚硝酸盐含量增加,表明亚硝酸盐通过抑制铜绿微囊藻的光合作用和升高藻体内氧自由基浓度的方式抑制藻的生长。而藻的CAT酶活性、亚硝酸还原酶活性和藻叶绿素a含量增加可能是藻的一种自我保护措施。
     硝酸盐存在的条件下(240mg/L),铜绿微囊藻在亚硝酸盐浓度为30mg/L的培养基中依然可以生长。而且,在相同的亚硝酸盐浓度条件下,含硝酸盐培养基中的藻相比只含亚硝酸盐培养基中的藻,有更高的光合速率,更小的MDA含量和藻细胞内亚硝酸盐含量。亚硝酸盐的吸收试验也显示硝酸盐存在的条件下,藻对亚硝酸盐吸收的半饱和常数(K_S)增加,这些结果表明硝酸盐能够抑制藻对亚硝酸盐的吸收,从而减少藻细胞内的亚硝酸盐含量,导致亚硝酸盐对藻抑制的减弱。在硝酸盐和亚硝酸盐共存的培养基中,我们还观察到亚硝酸盐被氧化为硝酸盐,表明此条件下可以诱导铜绿微囊藻生成亚硝酸氧化还原酶。
     铵盐存在的培养基中(20mg/L),2mg/L的亚硝酸盐添加,对铜绿微囊藻的生长表现出促进作用,藻的光合速率和细胞内亚硝酸盐含量增加,MDA含量下降。进一步增加亚硝酸盐浓度(4、7、10mg/L),藻的生长受到抑制直至消亡,同时观察到藻的光合速率下降,细胞内亚硝酸盐含量和MDA含量增加。亚硝酸盐的吸收试验显示铵盐存在的条件下,藻对亚硝酸盐吸收的半饱和常数(K_S)减少,表明铵盐能够刺激藻对亚硝酸盐的吸收,增加藻细胞内的亚硝酸盐含量。在一定的范围内,细胞亚硝酸盐含量的增加可以促进藻的生长,但是过高的细胞内亚硝酸盐含量会抑制藻的生长。
     硝酸盐浓度为150mg/L和300mg/L的处理组中,相比低CO_2组,高CO_2组藻的生长更好,光合速率增加,细胞内亚硝酸盐含量和MDA含量减少。而硝酸盐浓度为50mg/L的处理组中,高CO_2组和低CO_2组中,藻的生长变化不明显,光合速率、细胞内亚硝酸盐含量和MDA含量都没有明显变化。而且在相同的亚硝酸盐浓度条件下,藻细胞内亚硝酸盐含量的降低,导致培养基中藻生长的增加,这些结果表明细胞内的亚硝酸盐可能是影响藻生长的主要原因。通过对NO_2~--N:NO_3~--N为0:240和30mg/L:240mg/L两个处理组中细胞内亚硝酸盐含量和培养基中硝酸盐浓度变化的30d观察,发现培养基中亚硝酸盐进入藻体和藻排放亚硝酸盐是同时存在的,当培养基中亚硝酸盐浓度过高时,进入藻体的亚硝酸盐大于藻排放的,导致细胞内亚硝酸盐含量增加。相反,则培养基中亚硝酸盐浓度增加。
     相比单独培养时,混合培养的条件下,铜绿微囊藻和四尾栅藻的生长都受到抑制,但是四尾栅藻的最大生物量与单独培养时藻的最大生物量的比值大于铜绿微囊藻,而且随着亚硝酸盐浓度的增加这种差距越明显,亚硝酸盐浓度为30mg/L时,铜绿微囊藻完全被抑制。表明两种藻之间存在着竞争,四尾栅藻在竞争中更具优势,亚硝酸盐浓度的升高增强了四尾栅藻的竞争优势。通过两种藻的相互化感作用试验,发现两种藻之间存在着化感作用,而且亚硝酸盐浓度增加化感作用增强。这些现象表明上述的竞争结果是化感作用和亚硝酸盐对藻的毒害作用共同造成的。
Phytoplankton account for approximately 50% of global primary production, and Microcystis aeruginosa blooms are dominant in fresh water. The increase of N and P is the main reason for the explosive growth of phytoplankton. During the water blooms, the concentration of CO_2 and dissolved O_2 decrease and pH increases, this could result in the nitrite accumulation by inhibiting oxidation of nitrite to nitrate or reduction of nitrite to ammonium. On the other hand, human activities and industrialization also lead to an increased accumulation of nitrite in the environment. In this study, the effects of nitrite on the growth and physiology of Microcystis aeruginosa were investigated when nitrite as sole nitrogen source, and under the present of nitrate condition or the ammonium condition; The impacts of intracellular nitrite content change on Microcystis aeruginosa growth were studied, and the competition of Microcystis aeruginosa and Scendesmus quadricauda under different nitrite concentrations was analysed..
     When nitrite as sole nitrogen source, Microcystis aeruginosa could take up nitrite for growth, and the growth of alga was not impacted in medium with nitrite concentration below 5mg/L. However, with nitrite concentrations increasing to 20mg/L, the growth of alga was inhibited and photosynthetic activity decreased. Meanwhile, the content of MDA and intracellular nitrite increased. These indicated nitrite inhibited the growth of Microcystis aeruginosa by decreasing photosynthetic activity and increasing the content of oxygen free radical. The increase of chlorophyll a content、CAT activity and nitrite reductase activity might be an adaptive mechanism of alga under high nitrite condition.
     When both nitrate and nitrite as nitrogen source, the Microcystis aeruginosa could grow under nitrite concentration of 30 mg/L. Furthermore, compared to medium with only nitrite, the alga had higher photosynthetic activity and less the content of MDA and intracellular nitrite in medium with both nitrate and nitrite under high nitrite concentration condition. The examination of nitrite uptake also showed the half-saturation constant of alga increased when nitrate appearance. These results revealed that nitrate could inhibit the nitrite uptake, which resulted in the decrease of the intracellular nitrite concentration and the inhibition of nitrite on alga growth weakening. In medium containing both nitrate and nitrite, the nitrite could be oxidized to nitrate, suggesting nitrite oxidoreductase has been conduced.
     When both ammonium and nitrite as nitrogen source, in medium containing nitrite concentration of 2 mg/L, the growth of alga increased, the photosynthetic activities and intracellular nitrite content also showed increase but MDA content decreased compared the medium of nitrite concentration of 0mg/L. With the nitrite concentrations further increasing to 10mg/L, the growth of alga slowed down and even ceased, the photosynthetic activity decreased but the content of intracellular nitrite and MDA increased. The examination of nitrite uptake showed the half-saturation constant of alga decreased when ammonium appearance, indicating ammonium could promote the uptake of nitrite and increase the intracellular nitrite content. In the range of low intracellular nitrite content, the increase of intracellular nitrite could promote the growth of alga, however, too high intracellular nitrite content could inhibit the growth of alga.
     At nitrate concentration of 50mg/L, the growth of alga hadn't significant change in high CO_2 group and low CO_2 group, the intracellular nitrite concentration、the photosynthetic activity and MDA content also remained constant. However, at nitrate concentration of 150mg/L and 300mg/L, the growth of alga tend to be inhibited, the photosynthetic activity of alga decrease but the intracellular nitrite concentration and MDA content were higher in low CO_2 group in contrast with high CO_2 group respectively. In the same way, in the medium with only nitrite, the growth of alga also increased with intracellular nitrite content decreasing. These results showed the increase of intracellular nitrite content was the main reason of the inhibition of growth of alga. By observing the change of intracellular nitrite content and the nitrite concentration in medium containing 0 mg NO_2~--N L~(-1) :240mg NO_3~--N L~(-1) and in medium with 30mg NO_2~--N L~(-1) :240mg NO_3~--N L~(-1), we found there existed nitrite moving in alga and nitrite discharging from alga simultaneously. When the nitrite concentration being high in medium, the nitrite moving in alga was more than nitrite discharging from alga, as a result, the intracellular nitrite content increased. In contrast, the nitrite concentration of medium increased.
     Compared to the sole culturing, under the co-culturing condition the growth of M. aeruginosa and Scendesmus quadricauda were inhibited, indicated that there existed competition between M. aeruginosa and S. quadricauda. In co-culturing condition, with nitrite concentration increasing, S. quadricauda became more dominant in competition, and when nitrite concentration of 30mg/L, the growth of M. aeruginosa was inhibited entirely. The examination of mutual allelopathy showed mutual allelopathy was intensified with the increase of nitrite. Therefore, the result of competition of M. aeruginosa and Scendesmus quadricauda was due to under high nitrite concentration (20mg/L、30mg/L) the worse damage of M. aeruginosa and more intense allelopathy would be revealed.
引文
[1]OECD.Eutrophication of Waters of Monitoring,Assessment and Control[A].OECD Cooperative Program on Monitoring of Inland Waters(Eutrophication Control)[C].Environment Directorate,OECD,Paris,1982.
    [2]Ingrid C.,Jam ie B.Toxic cyanobacteria in water.London and New York.E&FN Spon publish,1999.
    [3]《全国主要湖泊、水库富营养化调查研究》课题组.湖泊富营养化调查规范.北京:中国环境科学出版,1987.
    [4]金相灿等.中国湖泊富营养化.北京:环境科学出版社,1990.
    [5]Vollenweider R A.Elemental and biochemical composition of plankton biomass;some comments and explorations.Arch Hydrobiol,1985,105:11-29.
    [6]Rueter J G.,Peterson R R.Micronutrient effects on cyanobacteria growth and physiology.New Zealand Journal of Marine and Freshwater Research,1987,21:435-445.
    [7]Wurtsbaugh W A.,Home A J.Iron in eutrophic Clear Lake,California:its importance for algal nitrogen fixation and growth.Can J Fish Aquat Sci,1983,40:1419-1429.
    [8]Martin J H.,et al.Iron deficiency limits phytoplankton growth in Antarctic waters.Global Biagechem Cycle,1990,4:5-12.
    [9]蔡启铭.太湖环境生态研究(一).北京:气象出版社,1998.
    [10]徐宁,陈菊芳,王朝晖,等.广东大亚湾藻类水华的动力学分析(Ⅰ)-藻类水华的生消过程及其环境因子的关系.海洋环境科学,2001,20(2):2-6.
    [11]Carmichael W W.Cyanobacteria secondary metabolites-the cyanotoxins.J A Bacteriol,1992,72:445-459.
    [12]易文利,王国栋,等.氮磷比例对铜绿微囊藻生长及部分生化组成的影响.西北农林科技大学学报,2005,33(6):151-154.
    [13]崔力拓,李志伟.氮、磷营养盐组成对铜绿微囊藻生长的影响.河北渔业,2006,5:12-14.
    [14]郑朔方,杨苏文,金相灿.铜绿微囊藻生长的营养动力学.环境科学,2005,26(3):152-156
    [15]Paerl H W.,Bland P T.,Dean B N.,Haibach M E.Adaptation to high-intensity,low-wavelength light among surface blooms of the cyanobacterium Microcystis aeruginosa.A E Microbiol,1985,49:1046-1052.
    [16]Coles J F.,Jones R C.Effect of temperature on photosynthesis-light response and growth of four phytoplankton species isolated from a tidal freshwater river.J Phycol,2000,36:7-16.
    [17]李小龙,耿亚红,李夜光,等.从光合作用特性看铜绿微囊藻(Microcystis aeruginosa) 的竞争优势.武汉植物学研究,2006,24(3):225-230.
    [18]徐涛,宋立荣.三株铜绿微囊藻对外源无机碳利用的研究.水生生物学报,2007,31(2):246-250.
    [19]Carmichael W W.The toxins of cyanobacteria.Scientific American,1994,270:64-70.
    [20]Dawson R M.The toxicology of microcystins.Toxicon,1998,36:953-962.
    [21]Jsuji K.,Nalto S.,et al.Stability of microcystins from cyanobacteria:effect of light on decomposition and isomerization.Environ Sci Technol,1994,28:173-177.
    [22]Utkilen H.,Gjlme N.Iron-stimulated toxin production in Microcystis aeruginosa.Appl Environ Microbiol,1995,61(2):797-800.
    [23]Kieber R J.,Rhines M F.,Willey J D.,et al.Nitrite variability in coastal north Carolina rainwater and its impact on the nitrogen cycle in rain.Envir Sci Techol,1999,33(3):373-377.
    [24]石强,陈江麟,李崇德.渤海硝酸盐氮和亚硝酸盐氮季节循环分析.海洋通报,2001,20(6):32-39.[25]Dore J E.,Karl D M.Nitrite distributions and dynamics at Station ALOHA.Deep-sea Res Ⅱ,1996,43(2-3):385-402.
    [26]潘峰,孙天云,刘铁民.京杭运河(徐州段)亚硝酸盐氮污染分布初探.江苏环境科技,1998,4:17-19.
    [27]Von Der Wiesche M.,Wetzel A.Temporal and spatial dynamics of nitrite accumulation in the river Lahn.Water Res,1998,32(5):1653-1661.
    [28]Gelda P K.,Effier S W.,Brooks C M.Nitrite and the two stages of nitrification in nitrogen polluted Onondaga Lake,New York.J Environ Quality,1999,28(5):1505-1517.
    [29]Payne W J.Reduction of nitrogenous oxides by microorganisms.Bacteriol Rev,1973,37:409-452.
    [30]Drysdale G D.,Kasan H C.,Bux E Assessment of denitrifieation by the ordinary heterotrophic organisms in an NDBEPR activated sludge system.Wat Sci Tech,2001,43(1):147-154.
    [31]Merkel W.,Bohler E.,Frimmel F H.Heterotrophic denitrification-The influence of oxygen and pH value.Acta Hydroch Hydrob,1993,21(5):249-257.
    [32]Schuch R.,Gensicke R.,Merkel K.,Winter J.Nitrogen and DOC removal from wastewater streams of the metal-working industry.Water Res,2000,64(9):295-303.
    [33]Oh J.,Silverstein J.Oxygen inhibition of activated sludge denitrification.Water Res,1999b,33(8):1925-1937.
    [34]Van Rijn J.,Tai Y.,Barak Y.Influence of volatile fatty acids on nitrite accumulation by a Pseudomonas stutzer strain isolated from a denitrifying fluidized bed reactor.Environ Microbiol,1996,62:2615-2620.
    [35]Wilderer P A.,Jones W J.,Dau U.Competition in denitrification systems affecting reduction rate and accumulation of nitrite.Water Res,1987,21:239-245.
    [36]Gomez M A.,Gonzalez-Lopez J.,Hontoria-Garcia E.Influence of carbon source on nitrate removal of contaminated groundwater in a denitrifying submerged filter.J Haz Mat,2000,B80:69-80.
    [37]Cole J.Nitrate reduction to ammonia by enteric bacteria:Redundancy,or a strategy for survival during oxygen starvation?.FEMS Microbiol Lett,1996,136:1-11.
    [38]Kelso B H L.,Smith R V.,Laughlin R J.,Lennox S D.Dissimilatory nitrate reduction in anaerobic sediments leading to river nitrite accumulation.Appl Enivron Microb,1997,63:4679-4685.
    [39]施永生.亚硝酸型生物脱氮技术.给水排水,2000,26(11):21-23.
    [40]Balmelle B.,Nguyen M.,Capdeville B.,et al.Study of factors controlling nitrite build-up in biological processes for water nitrification.Wat Sci Tech,1992,26(5,6):1017-1025.
    [41]徐冬梅,聂梅生,金承基.亚硝酸型硝化实验研究.给水排水,1999,25(7):37-39.
    [42]Antoine A C.Inhibition of nitrification by ammonia and nitrous acid.J W P CF,1976,48(5):835-852.
    [43]Abeling U.,Seyfried C F.Anaerobic-aerobic treatment of high-strength ammonia wastewater nitrogen removal via nitrite.Wat Sci Tech,1992,26(5-6):1007-1015.
    [44]Laanbroek H J.,Gerards S.Competition for limit ingamounts of oxygen between Nitrosomanas europaea and Nitrobacteria winogradskyi grown in mixed continuous cultures.Arch Microbiology,1993,159(6):453-459.
    [45]Weng Y M.,Hotchkiss J H.,Babish J G.N-nitrosamine and mutagenicity formation in Chinese salted fish after digestion.Food Addi Contam,1992,9:29-37.
    [46]Brunning-Fann C S.,Kaneene J B.The effects of nitrate,nitrite and N-nitroso compounds on animal health.Vet Hum Toxicol,1993a,35(3):237-253.
    [47]Alcaraz G.,Espina S.Scope for growth of juvenile grass carp Ctenopharyngodon idella exposed to nitrite.Comp Biochem Physiol,1997,116c(1):85-88.
    [48]Frances J.,Allan G L.,Nowak B F.The effects of nitrite on the short-term growth of silver perch(Bidyanus bidyanus).Aquaculture,1998,163(1-2):63-72.
    [49]Cheng S Y.,Chen J C.Effects of nitrite exposure on the hemolymph electrolyte,respiratory protein and free amino acid levels and water content of Penaeus japonicus.Aquat Toxicol,1998,44:129-139.
    [50]Cheng S Y.,Chen J C.Accumulation of nitrite in the tissues of Penaeus monodon exposed to elevated ambient nitrite after different time periods.Arch Environ Con Tox,2000,39(2):183-192
    [51]Chen J C.,Chin T S.Acute toxicity of nitrite to tiger prawn,Penaeus monodon,larvae.Aquaculture,1988,69:253-262.
    [52]Alcaraz G.,Chiappa C X.,Vanegas C.Temperature tolerance of Penaeus setiferus poslarvae exposed to ammonia and nitrite.Aquat Toxicol,1997,39(3-4):345-353.
    [53]Marco A.,Blaustein A R.The effects of nitrite on the behavior and metamorphosis in cascades frogs(Rana cascadae).Environ Toxicol Chem,1999,18(5):946-949.
    [54] Marco A., Quilchano C., blaustein A R. Sensitivity to nitrate and nitrite in pond-breeding amphibians from the Pacific northwest, USA. Environ Toxicol Chem, 1999, 18(2): 2836-2839.
    [55] Sijbesma W F H., Almeida J S., Reis M A M., Santos H. Uncoupling effect of nitrite during denitrification by Pseudomonas fluorescens:an in vivo P-NMR study. Biotechnol Bioeng, 1996, 52: 176-182.
    [56] Almeida J S., Julio S M., Reis M A M., Carrondo M J T. Nitrite inhibition of denitrification by Pseudomonas fluorescens. Biotechol Bioeng, 1995a, 46: 194-201.
    [57] Yarbrough JM, Rake JB, Eagon RG. Bacterial inhibition effects of nitrite: inhibition of active transport, but not of group translocation, and of intracellular enzymes. Appl Environ Microb, 1980, 39(4): 831-834
    [58] Anthonisen AC, Loehr RC, Prakasam TBS, et al. Inhibition of nitrification by ammonia and nitrous acid. J Water Pollut Control Fed, 1976,48(5): 835-852.
    [59] Parsonage D, Greenfield AJ, Ferguson SJ. The high affinity of Paracoccus denitrificans cells for nitrate as an electron acceptor Analysis of possible mechanisms of nitrate and nitrite movement across the plasma membrane and the basis for inhibition by added nitrite of oxidase activity in permeabilized cells. Biochim Biophys Acta, 1985,807: 81-95.
    [60] Stemler A, Murphy J B. Bicarbonate reversible and irreversible inhibition of PS II by monovalent anions [J].Plant Physiology, 1985, 77:974-977.
    [61] Loranger C, Carpentier R. A fast bioassay for phytotoxicity measurements using immobilized photosynthetic membrane. Biotechol Bioeng, 1994,44: 178-183.
    [62] Rottenberg H. Decoupling of oxidative phosphorylation and photo-phosphorylation. Biochim Biophys Acta, 1990,1018: 1-17.
    [63] Rockel P, Strube F, Rockel A, et al. Regulation of nitric oxide (NO) production by plant nitrate reductase in vivo and in vitro. J Exp Bot, 2002, 53: 103-110.
    [64] Xu YC, Zhao BL. The main origin of endogenous NO in higher non-leguminous plants. Plant Physiol Biochem, 2003,41: 833-838.
    [65] Planchet E, Gupta KJ, Sonoda M, et al. Nitric oxide emission from tobacco leaves and cell suspensions: rate limiting factors and evidence for the involvement of mitochondrial electron transport. Plant J, 2005,41: 732-743.
    [66] Kozlov AV, Stanick K, Nohl H. Nitrite reductase activity is a novel function of mammalian mitochondria. FEBS Lett, 1999, 454: 127-130.
    [67] Beligni MV, Lamattina L. Nitric oxide: a nontraditional regulator of plant growth. Trends in Plant Science, 2001, 6(11): 508-509.
    [68] Kopyra M, Gwozdz ED. Nitric oxide stimulate seed germination and counteracts the inhibitory effect of heavy metals and salinity on root growth of Lupinus liteus. Plant Physiology and Biochemistry, 2003,41: 1011-1017.
    [69] Bredt D S. Endogenous nitric oxide synthesis: Biological functions and pathophysiology. Free Radical Res, 1999, 31(6): 577-596.
    [70] Yang S., Wang J., Cong W., Cai Z L., Ouyang F. Utilization of nitrite as a nitrogen source by Botryococcus braunii. Biotech Lett, 2004, 26: 239-243.
    [71] Abe K., Imamaki A., Hirano M. Removal of nitrate, nitrite, ammonium and phosphate ions from water by the aerial microalga Trentepohlia aurea. J Applied Phycol, 2002, 14: 129-134.
    [72] Garbisu C, Hall D O., Serra J L. Nitrate and nitrite uptake by free-living and immobilized N-starved cells of Phormidium laminosum. J Applied Phycol, 1992, 4: 139-148.
    [73] Vilchez C., Vega J M. Nitrite uptake by Chlamydomonas reinhardtii cells immobilized in calcium alginate. Appl Microbiol Biotechnol, 1994,41: 137-141.
    [74] Neubauer H., Pantel I., Gotz F. Molecular characterization of the nitrite-reducing system of Staphylococcus carnosus. J Bacteriol, 1999, 181: 1481-1488.
    [75] Brunswick P., Cresswell C F. Nitrite uptake into intact pea chloroplasts. I. Kinetics and relationship with nitrite assimilation. Plant Physiol, 1988, 86: 378-383.
    [76] Moir JWB, Wood NJ. Nitrate and nitrite transport in bacteria. CMLS Cell Mol Life Sci, 2001,58:215-224.
    [77] Forde BG. Nitrate transporters in plants: structure, function and regulation. Biochimica et Biophysica Acta, 2000,1465: 219-235.
    [78] Patricia JDR, Marie CVGG, Jean CDRM, Laurence FT. Characterisation and expression analysis of a nitrate transporter and nitrite reductase genes, two members of a gene cluster for nitrate assimilation from the symbiotic basidiomycete Hebeloma cylindrosporum. Curr Genet, 2003,43: 199-205.
    [79] Florencio J., Vega J M. Utilization of nitrate, nitrite and ammonium by Chlamydomonas reinhardtii. Planta, 1983, 158: 288-293.
    [80] Garbayo I., Leon R., Vigara J., Vi lchez C. Inhibition of nitrate consumption by nitrite in entrapped Chlamydomonas reinhardtii cells. Bioresource Technol, 2002, 81: 207-215.
    [81] Quesada A, Fern á ndez E. Expression of nitrate assimilation related genes in Chlamydomonas reinhardtii. Plant Mol Biol, 1994, 24: 185-194.
    [82] Marzluf GA. Genetic regulation of nitrogen metabolism in the fungi. Microbiol Mol Biol Rev, 1997,61: 17-32.
    [83] Galván A., Ferndndez E. Eukaryotic nitrate and nitrite transporters. CMLS Cell Mol Life Sci, 2001, 58: 225-233.
    [84] Parslow J S., Harrison P J., Thompson P A. Saturated uptake kinetics: transient responses of the marine diatom Thalassiosira pseudonana to ammonium, nitrate, silicate or phosphate starvation. Mar Biol, 1984, 83: 51-59.
    [85] Sciandra A., Amara R. Effects of nitrogen limitation on growth and nitrite excretion rates of the dinoflagellate Prorocentrum minimum. Mar Ecol Prog Ser, 1994, 105: 301-309.
    [86] Suzuki I., Sugiyama T., Omata T. Regulation of nitrite reductase activity under CO_2 limitation in the cyanobacterium Synechococcus sp.PCC7942.Plant Physiol,1995,107:791-796.
    [87]Flyrm K J.,Flynn K.Release of nitrite by marine dinoflagellates:development of a mathematical simulation.Marine Biol,1998,130:455-470.
    [88]Solomonson L P.,Barber M J.Assimilatiory nitrate reductase:functional properties and regulation.A Rev Pi Physiol(Plmolec Biol),1990,41:225-253.
    [89]Kiefer D A.,Olson R J.,Holm-Hansen O.Another look at the nitrite and chlorophyll maxima in the central North Pacific.Deep-Sea Res,1976,23:1199-1208.
    [90]Hu H H.,Zhang X.Nitrite utilization by Chaetoceros muelleri under elevated CO_2concentration.World J Microbiol Biotechnol,DOI 10,1007/s 11274-007-9553-x.
    [91]Eddy FB,Williams EM.Nitrite and fresh water fish.Jouranl of Chemical Ecology,1987,3:1-38.
    [92]Saito K,Hiroshi Ishii,Nishida F.Purification of microcystins by DEAE and C_(18) cartridge chromatography.Toxicon,2002,40:97-101.
    [93]王镜岩,朱圣庚,徐长法,等.生物化学.2002,北京:高等教育出版社,213.
    [94]Sukenik A.Light saturated photosynthesis limitation by electron transport or carbon fixation.Biochimica Et Biophysica Acta,1987,891:205-215.
    [95]Bemer T.Photo adaptation and the "package" effect in Dunaliella tertiolecta (Chlorophyceae).Phycology,1989,25:70-78.
    [96]王玉琴.内外生理条件对小麦黄化幼苗叶片亚硝酸还原酶活力的影响.植物生理学通报,1984,4:18-20.
    [97]Luzia VM,Ohara A,Irene MG,et al.Decreased arginine and nitrite levels in nitrate reductase-deficient Arabidopsis thaliana plants impair nitric oxide synthesis and the hypersensitive response to Pseudomonas syringae.Plant Science,2006,171:34-40.
    [98]唐萍,吴国荣,陆长梅等.凤眼莲根系分泌物对栅藻机构及代谢的影响.环境科学学报,2000,20(3):354-359.
    [99]Oncel I,Yurdakulol E,Keles Y,et al.Role of antioxidant defense system and bio-chemical adaptation on stress tolerance of high mountain and steppe plants[J].Acta Oecologica-International Journal of Ecology,2004,26(3):211-218.
    [100]Carpenter SR,Caraco NF,Correll DL,et al.Nonpoint pollution of surface waters with phosphorus and nitrogen.Ecol Appl,1998,8:559-568.
    [101]Galloway JN,Cowling EB.Reactive nitrogen and the world:200 years of change.Ambio,2002,31:64-71.
    [102]Camargo JA,Ward JV.Short-term toxicity of sodium nitrate(NaNO_3) to non-target freshwater invertebrates.Chemosphere,1992,24:23-28.
    [103]Rouse JD,Bishop CA,Struger J.Nitrogen pollution:an assessment of its threat to amphibian survival.Environmental Health Perspectives,1999,107:799-803.
    [104]Crawford NM.Nitrate:nutrient and signal for plant growth.Plant Cell,1995,7:859-868.
    [105]Zhang H,Forde B.An arabidopsis MADS box gene that controls nutrient-induced changes in root architecture. Science, 1998, 279:407-409.
    [106] Dugdale RC. Nutrient limitation in the sea: dynamics, identification, and significance. Limnol Oceanogr, 1967,12: 685-695.
    [107] Sundermeyer KH, Meyer W, Warninghoff B, et al. Membrane-bound nitrite oxidoreductase of nitrobacter: evidence for a nitrate reductase system. Arch Microbiol, 1984, 140: 153-158.
    
    [108] 赵丹,任南琪,马放,等. 生物脱氨微生物学及研究进展. 哈尔滨建筑大学学报,2002,10: 61-62.
    [109] Sivasankar S, Oaks A. Nitrate assimilation in higher plants: the effect of metabolites and light. Plant Physiology and Biochemistry, 1999, 34: 609-620.
    [110] Magalhaes JR, Wilcox GE. Ammonium toxicity development in tomato plants relative to nitrogen form and light intensity. Journal of Plant Nutrient, 1984, 7(10): 1477-1496.
    [111] Zhu Z, Gerendás J, Bendixen R, Schinner K, et al. Different tolerance to light strees in NO_3- and NH_4+ grown Phaseolus vulgaris L. Plant Biol. 2000, 2:558-570.
    [112] Raab TK, Terry N. Nitrogen-source regulation of growth and photosynthesis in Beta vulgaris L. Plant Physiol. 1994, 105:1159-1166.
    [113] Bennett IJ, Mcdavid DAJ, Mccomb JA. The influence of ammonium nitrate, pH and indole butyric acid on root induction and survival in soil of micropropatated Eucalytus globulus. Biol Plant, 2003/2004,47: 355-360.
    [114] Chattopadhyay S, Datta SK, Ray M. In vitro effect of NH4NO3 on growth and alkaloid content of Tylophora indica Merr. Phytomorphism, 1992, 42: 139-144.
    [115] Mehrer I, Mohr H. Ammonium toxicity-description of the syndrome in Synapis alba and the search for its causation. Physiol Plant, 1989, 77: 545-554.
    [116] Woodward AJ, Bennett IJ, Pusswonge S. The effect of nitrogen source and concentration, medium pH and buffering on in vitro shoot growth and rooting in Eucalyptus marginata. Scientia Horticulturae, 2006,110: 208-213.
    [117] Braun G, Malkin S. Regulation of imbalance in light excitation between photosystem II and photosystem I by cations and by energized stste of thylakoid membranes. Biochim BiophysActa, 1990, 1017:79-90.
    [118] Jennings RC, Garlaschi FM, Gerola PD, et al. Proton induced grana formation in chloroplasts. Distribution of chlorophyll protein complexes and photosystem II photochemistry. Biochim Biophys Acta, 1981, 638: 100-107.
    [119] Jajoo A, Bharti S. Effect of anions on PS I mediated electron transport in spinach chloroplasts. J Exp Bot, 1993, 44: 785-790.
    [120] Sinclair J. The influence of anions on oxygen evolution by isolated chloroplasts. Biochim Biophys Acta, 1984, 764: 247-252.
    [121] Maldonado JM, Barro F, Gonzales FA. Nitrate assimilation and protein accumulation in tritordeum. Plant Physiology and Biochemistry, 1996, 34: 721-726.
    [122] Shingles R, Roh MH, Carty REM. Direct measurement of nitrite transport across erythrocyte membrane vesicles using the fluorescent probe,6-methoxy-n-(3-sulfopropyl)quinolinium.J.Bioenerg.Biomembr,1997,29(6):611-616.
    [123]Begon M,Harper JL,Townsend CR.Ecology.Individual,Populations and Communities 3~(rd).Oxford:Blackwell,1996,287.
    [124]Fujimoto N,Sudo R.Nutrient-limited growth of Microcystis aeruginosa and Phomzidium terue and competition under various N:P supply ratios and temperatures.Limnology and Oceanography,1997,42(2):250-256.
    [125]Huisman J,Sharpies J,Stroom J,et al.Changes in turbulent mixing shift competition for light between phytoplankton species.Ecology,2004,85:2960-2970.
    [126]万蕾,朱伟,赵联芳.氮磷对微囊藻和栅藻生长及竞争的影响.环境科学,2007,28(6):1230-1235.
    [127]刘春光,金相灿,邱金泉,等.光照与磷的交互作用对两种淡水藻类生长的影响.中国环境科学,2005,25(1):32-36.
    [128]杨波,除昭升,金相灿,等.CO_2/pH对三种藻生长及光合作用的影响.中国环境科学,2007,27(1):54-57.
    [129]扬威,孙凌,袁有才,等.碱度水平对铜绿微囊藻和四尾栅藻生长和竞争的影响.农业环境科学学报,2007,26(4):1264-1268.
    [130]张民,孔繁翔,史小丽,等.铜绿微囊藻在竞争生长条件下对氧化还原电位降低的响应.湖泊科学,2007,19(2):118-124.
    [131]陈德辉,刘永定,袁峻峰,等.微囊藻和栅藻共培养实验及其竞争参数的计算.生态学报,1999,19(6):908-913.
    [132]李磊,侯文华.荷花和睡莲种植水对铜绿微囊藻生长的抑制作用研究.环境科学,2007,28(10):2180-2186.
    [133]张维昊,周连凤,吴小刚等.菖蒲对铜绿微囊藻的感化作用.中国环境科学,2006,26(3):355-358.
    [134]门玉洁,胡洪营.芦苇化感物质EMA对铜绿微囊藻生长及藻毒素产生和释放的影响.环境科学,2007,28(9):2058-2062.
    [135]Jones G J,Orr P T.Release and degradation of microcystin following algicide treatment of a Microcystis aeruginosa bloom in a recreational lake,as determined by HPLC and protein phosphatase inhibition assay.Water Research,1994,28(4):871-876.
    [136]秦伯强.太湖水环境面临的主要问题、研究动态与初步进展.湖泊科学,1998,10(4):2-9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700