用户名: 密码: 验证码:
激光焊接加铜中间层镍钛合金和不锈钢复合弓丝抗腐蚀性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
正畸临床上对矫治弓丝的应用大多遵循弓丝尺寸由细到粗,弓丝刚度由小到大的顺序,通常先使用镍钛弓丝,然后逐步过渡到使用不锈钢弓丝。单独应用镍钛弓丝或不锈钢弓丝存在着很多不足之处,特别是牙弓不同部位的牙齿需要安放不同刚度和性能的弓丝情况下,单纯使用一种弓丝无法满足临床的需要。复合矫治弓丝(Composite Arch wire, CAW)是将镍钛合金弓丝和不锈钢弓丝连接成一根包含两种材质的矫治弓丝,能在需要移动的牙段应用镍钛弓丝,需要提供支抗的牙段应用不锈钢弓丝,利用力量柔和的镍钛弓丝直接作用于错位牙,有效移动牙齿;同时利用不锈钢弓丝较大的刚度来加强支抗牙的稳定,防止负移动的发生。2011年吉林大学材料学院李洪梅、孙大谦采用激光焊接加中间层的方法研制出符合临床需求的复合弓丝。加铜中间层激光焊接复合弓丝性能优良,满足正畸矫治弓丝使用性能的要求,于2011年获得专利。新一代的激光焊接加铜中间层复合弓丝性能优良,其应用于正畸临床将会大大提高矫治的效率,带领正畸矫正技术进入一个新的发展阶段。
     新一代的激光焊接加铜中间层复合弓丝由两端的镍钛部分和不锈钢部分构成,两种材料都会因腐蚀而导致金属离子的析出,此外,复合弓丝焊接头处引入了同样有可能引起毒性反应的铜元素,在焊接过程之后复合弓丝是否能够具备相当的抗腐蚀能力,铜离子的析出量是否在生物安全范围内是目前亟需研究的问题,因此需要通过一系列的实验研究来探索复合弓丝在模拟口腔环境下的抗腐蚀性能。同其他合金材料一样,复合弓丝的抗腐蚀能力也依赖于表面钝化膜的形成,在钝化膜受到破坏时自我修复能力不足,则可能引起深层材料的腐蚀,导致有害离子的析出。
     口腔是一个极其复杂的环境,在一种新型生物材料应用于临床前,有必要谨慎的研究其发挥功能的环境以及与环境的相互作用关系,特别是口腔中各种可能引起材料腐蚀性能变化的因素,如pH值、氯离子、氟离子以及各种蛋白质的参与,都应逐一探索和讨论;尤其是复合弓丝应用于临床时,不是处于一个静态的唾液浸泡过程,而是不断受到矫正错位牙的扭正力以及咀嚼时食物的推挤力,因此还有必要进行复合弓丝的应力腐蚀研究;复合弓丝的激光焊接不只是让自体金属发生重熔再结晶,熔区元素成份有改变,有铜元素的介入会发生原电池阳极腐蚀,因此对复合弓丝进行相关的电化学实验研究也是十分重要的。综上,理化性能和机械性能优良的激光焊接加铜中间层复合弓丝的抗腐蚀性能在其应用临床时是极其重要的,但相关研究仍未见报道。
     本文模拟口腔实际环境对激光焊接加铜中间层镍钛形状记忆合金和不锈钢复合弓丝的抗腐蚀性能进行了研究。通过静态浸泡实验和电化学实验,以及加速腐蚀实验的结果,初步评价了复合弓丝在不同的pH值、氟离子浓度、蛋白浓度和负载值下的金属离子析出情况以及表面腐蚀微观形貌,结合电化学实验结果、失重和离子析出结果,得出了复合弓丝在不同侵蚀性环境中的抗腐蚀性能参数,进一步判定复合弓丝的抗腐蚀性能和生物安全性,为复合弓丝的临床应用奠定基础,也为其进一步改良和临床应用提供了实验和理论依据。本研究结合临床使用条件,模拟口腔环境全面的对复合弓丝进行材料学和生物学的评价,为复合弓丝在临床的使用和推广提供基础,并为口腔用新型金属材料的抗腐蚀性研究提供实验路线和参考。
     在不同pH人工唾液和含氯溶液腐蚀情况:含氯溶液中复合弓丝失重量和铜离子析出量明显大于人工唾液组,酸性唾液组失重和铜离子析出略高于中性唾液组。环状极化过程中,三种介质的保护电位都高于自腐蚀电位,材料的再钝化能力有限。中性唾液组的点蚀电位高于酸性唾液组,但腐蚀电流密度低于酸性组。中性唾液组复合弓丝表面相对平滑,含氯溶液中腐蚀后表面更加粗糙,裂隙的直径较人工唾液组更大,深度也明显增加。酸性唾液组的腐蚀形貌与中性组相似,略有严重趋势但程度不及含氯溶液组。复合弓丝在人工唾液中的抗腐蚀能力高于含氯溶液,酸碱度的改变会影响复合弓丝在人工唾液中的腐蚀情况,酸性条件使保护性氧化膜更容易破裂,导致离子析出和腐蚀加速。
     含氟溶液中,低氟溶液的腐蚀电位与单纯人工唾液相似,但高氟溶液腐蚀电位明显降低,在阴极极化后,电流迅速增大。单纯人工唾液组的极化曲线呈现出滞后环状,含氟溶液的环状回扫曲线有与先前扫描重合的趋势。扫描电镜下见含氟组有明显的点状腐蚀坑,高氟组腐蚀坑直径和深度大于低氟组,铜离子的析出量和重量损耗也较多。随着氟浓度的增加,复合弓丝的抗腐蚀能力减弱,复合弓丝在低氟溶液中具有较强的抗腐蚀能力,高氟溶液能够降低复合弓丝的抗腐蚀性能,然而,即使氟加速了复合弓丝的腐蚀进程,但整体的铜离子析出量仍然在WHO规定限度以内。
     含蛋白溶液中,低浓度蛋白溶液复合弓丝腐蚀电位明显降低,两种浓度的蛋白溶液点蚀电位均低于单纯唾液组。静态腐蚀后低蛋白组表面更粗糙,有数目较多的点蚀坑的出现。随蛋白浓度的升高,表面腐蚀并未明显加重,腐蚀坑的深度和数目都不及低蛋白组。低蛋白组铜离子的析出量在三组腐蚀介质中最多,高蛋白溶液静态腐蚀后与单纯唾液组相比,铜离子的析出量有增加,但失重量并未明显增加。总的来说,复合弓丝焊接区在含蛋白的溶液中表现出良好的抗腐蚀性能,低浓度的蛋白溶液降低了复合弓丝的抗腐蚀性能,高浓度的蛋白溶液会减少这种效应。蛋白质可以在材料表面形成薄膜,作为离子扩散的屏障,虽然可以减少铜离子的析出,但是也阻碍了人工唾液中钙、磷离子的沉积。高浓度蛋白并没有使腐蚀明显加速,可能是由于蛋白沉积在样品表面的厚度增加,进一步阻碍了氧的侵入和离子的析出,但是具体的机制仍有待于进一步的研究表明。
     不同pH条件和不同氟浓度人工唾液中的应力腐蚀:复合弓丝浸泡于酸性、中性和含氟人工唾液四周后表面无明显降解发生,无论是否施加应力;施加应力组在三点弯曲应力的张力侧表面更加粗糙,随着弯曲位移的增大,中间层表面更加粗糙,腐蚀坑呈现不规则的形貌,能谱分析结果见金属表面腐蚀坑的主要元素成分含有氧和磷。无论酸性还是中性人工唾液,应力的施加都会导致铜离子析出增加,增加量与施加的应力位移成正比。三点弯曲应力作为外加载荷,能够引起复合弓丝的形变引起材料表面氧化膜的点状破裂,随后裂隙在金属表面延伸加剧保护膜的破损,腐蚀介质因此而接触到保护膜下方的暴露金属引起进一步的腐蚀。在应力作用下,氢离子渗入材料并沿着位移施加点扩散。随后氢离子和氟离子结合,形成侵蚀性更强的氢氟酸,加速中间层铜离子的溶解。在高氟和大应力的协同作用下,复合弓丝中间层的抗腐蚀能力明显减弱,但高氟环境和大应力情况在临床上甚为少见。
     总的来说,复合弓丝在模拟口腔环境的腐蚀过程中表现出良好的抗腐蚀能力。在无机离子、有机蛋白和应力的加速腐蚀条件下,复合弓丝仍然表现出较好的抗腐蚀性能,满足临床正畸弓丝应用的需求。电化学实验和静态腐蚀实验是检测口腔用金属材料的重要手段,结合两种实验的结果可以评估不同模拟口腔环境的腐蚀条件对金属材料腐蚀行为的影响及材料的抗腐蚀能力,本实验的结果为口腔金属材料的进一步发展和改良提供相应的理论依据。
The clinical application of the orthodontic archwire mostly follow the size andstiffness ascending order, which usually starts from the first use of nickel-titaniumarch wire, and then gradually transforms to the use of stainless steel arch wire. Thereare many shortcomings of using nickel-titanium or stainless steel arch wire alone.The use of one simple kind of arch wire could not meet clinical needs, especiallyunder the circumstances that different parts of the dental arch require the placementof different stiffness and performance of arch wires. Composite archwire (CAW) isformed by solder connection of nickel-titanium and stainless steel arch wire.Nickel-titanium part could be used in the part of dental arch which containsmalposed teeth, and stainless steel part could be used in the part which need toprovide anchorge. CAW combines the advantages of the individual material tocorrect malposed teeth whilst maintain the stability of anchored teeth. Li Hongmeiand Sun Daqian from the department of Materials process in Jilin Universitydeveloped the new CAW which could satisfy clinical needs in2011by using laserwelding and copper interlayer, and the design was patented in2011. CAW withcopper interlayer helds good mechanical properties and the application of CAW inclinical treatment will lead orthodontic technology into a new stage of development.
     The corrosion of nickel-titanium part and stainless steel part in CAW would result inthe precipitation of metal ion, in addition, the interlayer of CAW contains purecopper metal. Whether the precipitation of copper ions in oral after welding is withinthe limit of biosafety is urgently needed to be tested. Similar as other alloy materials,the corrosion resistance of CAW is also dependent on the passivation film formed onthe surface, the repairation ability of which to is limited. The damage of passivationfilm may cause further etch of deep material, leading to harmful ion precipitation.The effects of corrosion on CAW contain mainly three aspects: First, the reduction of mechanical properties like tensile and elastic strength, or even breakage in clinic.Secondly, the damage of oxide film on the wire surface. The corrosion concave couldincrease friction and prolong the clinical course of orthodontic treatment. Thirdly,the local oral tissue and systemic adverse reactions caused by the release of metalions after corrosion.
     The oral cavity is an extremely complex environment with a variety of factors whichcould effect the corrosion of material, such as the pH value, chloride, fluoride andvarious proteins. Before the clinical application of a new type of biological material,it is necessary to carefully study and explore the environment in which it mustfunction and also it effect. It is also important to discuss the stress corrosion of CAW,since it is not simple soaking in a static condition when used in clinic, but isconstantly subjected to the twisting force of correcting misaligned teeth, as well aschewing food pushing force. Laser welding was not a simple autologous metalremelting recrystallization process, the elements in the melting zone are changedwhere brings the involvement of copper. The primary cell anode corrosion of copperwould occur, therefore it is necessary to study the related electrochemical corrosionof CAW. In summary, the corrosion resistance of laser welding CAW with excellentphysical and mechanical properties in its clinical application is extremely important,but the related research has not yet been studied.
     In this study, the corrosion resistance of laser welding CAW with copper interlayer insimulated oral cavity environment was studied. A preliminary evaluation of the metalion release and micro-appearance surface corrosion of CAW was explored throughstatic immersion test and electrochemical assay in different pH value, fluoride ionconcentration, protein concentration and load values. The corrosion resist anceparameters in various aggressive environments were obtained by combining theelectrochemical results with weight loss and ion precipitation results. The corrosionresistance and bio-security of CAW was predicted not only to determine and lay thefoundation the clinical application of CAW in the process of clinical application, butalso to provide experimental and theoretical basis for its further improvement. In this study, the comprehensive materials science and biology evaluation of CAW by acombination of clinical condition and simulated oral environment, could provide abasis for its clinical use and promotion, and provide experimental route and referenceto the corrosion resistance studies with other new oral metal materials.
     The corrosion condition of CAW in chlorine solution and artificial saliva at differentpH: the copper ions precipitate and weight loss were significantly greater in chlorinesolution than artificial saliva group, and the weight loss and copper ions precipitatein acidic saliva group were slightly above the neutral group. The protective potentialof three medium is higher than the corrosion potential in cyclic polarization processindicates the limited capacity of re-passivation. Pitting potential was higher and andcorrosion current densities were lower in acidic saliva group than neutral group. Thesurface of CAW after electrochemical corrosion is relatively smooth, but there arealso a small number of cracks generated, especially in chlorine solution with morerough, deeper, and etch pits. The corrosion morphology in acidic saliva was similarto neutral saliva, but not severe as chlorine solution group. The corrosion resistanceof CAW in artificial saliva was higher than in chlorine solution, and acidity changescould affect the corrosion resistance in artificial saliva. The protective oxide film ismore prone to rupture in acidic condition, leading to accelerate ion precipitation andcorrosion.
     In different values of fluorine-containing solution: the corrosion potential oflow-fluoride solution was similar as simple artificial saliva, but significantly lowercorrosion potential was found in high-fluoride solution with the current increasingrapidly after cathodic polarization. The cyclic retrace curve in fluorinated solutionhas the trend of coincide with the previous scan, whereas the polarization curve ofsimple artificial saliva group shows a typical hysteresis loop. The microscopemorphology of fluorinated group showed obviously visible etch pit, andhigh-fluoride group appear greater diameter and depth of corrosion pits thanlow-fluoride group, along with greater copper ion precipitation amount and weightloss. With the increase of the concentration of fluoride, the corrosion resistance of CAW decreased. CAW has strong corrosion resistance in low fluoride solution, andhigh-fluoride could reduce the corrosion resistance. However, even fluorideaccelerate the corrosion process of CAW, the overall amount of copper ionsprecipitation still within the specified limit of WHO.
     In different values of protein-containing solution: the corrosion potential oflow-protein group was significantly reduced. The corrosion current densities of threegroups were similar. The microstructure of low-protein group were rough with pits,but were not significantly increased as the values of protein concentration. Theprecipitation amount of copper ions in low-protein group was most, but the weightloss was not obvious. In general, CAW showed good corrosion resistance in solutionscontaining protein. Low protein concentration reduces the corrosion resistance ofCAW, while high concentrations of protein would reduce this effect. Protein couldform film on the surface as ion diffusion barrier, while the precipitation of copperions can be reduced as well as hinder calcium and phosphorus ions from artificialsaliva deposited. The reason for high protein concentrations did not significantlyaccelerate the corrosion process may be the increase of deposited protein layerthickness on the sample surface, which further hinder the intrusion of oxygen ions.However the specific mechanism remains to be further studied.
     The corrosion condition of CAW under stress conditions and different acidities ordifferent concentrations of fluoride: the surface of CAW was intact withoutsignificant degradation occurs after immersed in acidic and neutral artificial saliva,regardless of the applied stress; the tension side of three-point bending stress showedrougher surface with the increase of bending displacement. The corrosion p its oninterlayer also showed irregular morphology. The main elements composition ofinterlayer contain oxygen and phosphorus according to the energy spectrum analysis.Applied stress would cause increase of copper ions precipitation either in acidic orneutral saliva, and the amount of increase is proportional to the increase of appliedstress. Three-point bending stress as the applied load, could cause deformation ofCAW and the rupture of oxide film on the surface. Then the rupture subsequently extended to exacerbate the breakage of the metal protective film which made thebottom metal expose to corrosive media leading to further erosion. Three-pointbending stress can cause rupture of the passivation film of interlayer surface,followed by hydrogen ions penetrate in the point of displacement and spread alongthe stress. Then hydrogen and fluoride ions could combine to form corrosivehydrofluoric acid and accelerate the dissolution of copper interlayer. Under thesynergy action of high fluorine and large stress, the corrosion resistance of CAWinterlayer significantly reduced, which is an even rare condition in clinical treatment.
     Overall, CAW showed good corrosion resistance in simulated oral environment. Itstill exhibits corrosion resistance in inorganic ion, organic protein and applied stressthat could meet the needs of clinical orthodontic arch wire applications.Electrochemical experiment and static corrosion experiment are important means todetect oral metallic materials corrosive resistance, and combine the results of thesetwo methods could effective assess the influence of different simulated oralenvironment on the corrosion behavior of metallic materials and corrosion resistanceof the material. The test methods and results in this study could provide theappropriate theoretical basis for further development and improvement of dentalmetallic materials.
引文
[1]H. Funakubo.Shape Memory Alloys[M]. Cordon and Breach Science Publishers,1984.
    [2]Castleman LS, Motzkin SM, Alicandri FP, Bonawit VL. Biocompatibilityof nitinol alloyas an implant material[J]. J Biomed Mater Res1976,10:695–731.
    [3]WaymanCM.Materialandtheshapememoryeffeet.ASM News,1997;5:4.
    [4]S. Shabalovskaya. On the nature of the biocompatibility and medical applications of NiTishape memory and superelasticalloys[J].BioMed. Mater. Eng.1996,6:267–289.
    [5]The Alloy That Remembers[N], Time,1968-09-13.
    [6]F. Gyunter, P. Sisolyatin and P. Tomerkhanova. Superelastic and shape memoryimplants.Maxillofacial Surgery,Traumatology, Orthopaedics, and Neurosurgery[M].Tomsk:Tomsk University Publishing,1995.
    [7]Y.Y. Bao. A clinical study of orthodontic application of NiTi alloy[J]. ChineseStomatology,1983,18:15-17.
    [8]K.R. Dai, X.F. Zhang, C.T. Yu et aI. Orthopaedic application of shape memorycompression staple[J]. Chinese1. Surg.1983,21:343-345.
    [9]Kerong Dai. Studies and applications of NiTi shapememory alloys in the medical field inChina[J]. Bio-Medical Materials and Engineering,1996,6:233-240.
    [10]Walsh EG, Holton AD, Brott BC, Venugopalan R, AnagiotosAS. Magnetic resonancephase velocity mapping through NiTistents in a flow phantom model[J]. J Magn ResonImaging2004,21:59–65.
    [11]G. Dambaev, PH. Gyunter, A. Radionchenko et al. Opportunities for application of Ni-Tialloys in surgery[M].First Int.Conf. Shape Memory and Superelastic CA:Technologies.Pacific Grove,1994,461–464.
    [12]Park H S, Kwon T G, Kwon O W. Treatment of open bite with microscrew implantanchorage[J]. American journal of orthodontics and dentofacial orthopedics,2004,126(5):627-636.
    [13]Drake SR, Wayne DM, Powers JM, Asgar K. Mechanical properties of orthodontic wiresin tension, bending, and torsion[J]. Am J Orthod.1982,82(3):206-10.
    [14]秦葵庆,杨凤芝,刘克付.一种新的镍钛牙弓丝[J].稀有金属,1995,19(6).
    [15]Gardner L, Nethercot D A. Experiments on stainless steel hollow sections—Part1:Material and cross-sectional behaviour[J]. Journal of Constructional Steel Research,2004,60(9):1291-1318.
    [16]Ashraf M, Gardner L, Nethercot D A. Compression strength of stainless steelcross-sections[J]. Journal of Constructional Steel Research,2006,62(1):105-115.
    [17]魏宝明.金属腐蚀理论及应用[M].北京:化学工业出版社,1984,156.
    [18]曾宪平.不锈钢结构的特点和研究状况[J].现代装饰(理论),2011(07).
    [19]J. A. HELSEN, H. J. BREME.Metals asBiomaterials[M].New York: Wiley,1998,2(3).
    [20]Zhang F, Kang E T, Neoh K G, et al. Surface modification of stainless steel by graftingof poly (ethylene glycol) for reduction in protein adsorption[J]. Biomaterials,2001,22(12):1541-1548.
    [21]Lee M K. Stainless steel door: U.S. Patent D389,921[P].1998-1-27.
    [22]Kusy R P, Whitley J Q. Effects of sliding velocity on the coefficients of friction in amodel orthodontic system[J]. Dental Materials,1989,5(4):235-240.
    [23]朱红,马炳岿,杜辉.正畸弓丝材料的研究进展[J].材料工程,1996(07).
    [24]Kapila S, Sachdeva R. Mechanical properties and clinical applications of orthodonticwires[J]. American Journal of Orthodontics and Dentofacial Orthopedics,1989,96(2):100-109.
    [25]Bednar J R, Gruendeman G W, Sandrik J L. A comparative study of frictional forcesbetween orthodontic brackets and arch wires[J]. American Journal of Orthodontics andDentofacial Orthopedics,1991,100(6):513-522.
    [26]许天民,林久祥.正畸弓丝的性能及其临床应用[J].国外医学口腔医学分册,1992,19(2).
    [27]Andreasen G, Barrett R D. An evaluation of cobalt-substituted nitinol wire inorthodontics[J]. American Journal of Orthodontics,1973,63(5):462-470.
    [28]Andreasen G, Wass K, Chan KC. A review of superelasticand thermodynamic Nitinolwire[J]. Quintessence Int1985,9:623–6.
    [29]Goldberg J, Burstone C J. An evaluation of beta titanium alloys for use in orthodonticappliances[J]. Journal of dental research,1979,58(2):593-599.
    [30]Burstone C J, Goldberg A J. Beta titanium: a new orthodontic alloy[J]. American journalof orthodontics,1980,77(2):121-132.
    [31]Burstone C J,Variable-modulus orthodontics[J]. American journal of orthodontics,1981,80(1):1-16.
    [32]Iramaneerat K, Hisano M, Soma K. Dynamic analysis for clarifying occlusal forcetransmission during orthodontic archwire application: difference between ISW andstainless steel wire[J]. Journal of medical and dental sciences,2004,51(1):59-66.
    [33]李红梅. TiNi形状记忆合金与不锈钢异种材料激光焊研究[D].长春:吉林大学材料学院,2011.
    [34]李明高.TiNi形状记忆合金与不锈钢的连接[D].长春:吉林大学材料学院,2006.
    [35]栗卓新,李国栋,魏琪.不锈钢焊接冶金的研究进展.中国机械工程,2005,16(2):184-187.
    [36]Shi-xiong Lü, Zhong-lin YANG, Hong-gang DONG. Welding of shape memory alloy tostainless steel for medical occlude[J]. Trans. Nonferrous Met. Soc. China23(2013)156160
    [37]牛济泰. TiNi形状记忆合金丝焊接工艺的研究.宇航材料工艺,1994,5:12-16.
    [38]Pouquet J, Miranda R M, Quintino L, et al. Dissimilar laser welding of NiTi to stainlesssteel[J]. The International Journal of Advanced Manufacturing Technology,2012,61(1-4):205-212.
    [39]薛松柏,吕晓春,董键等. TiNi合金连接技术的研究现状及发展趋势[J].焊接,2003,11:5-9
    [40]朱宪春,欧阳喈,邱小明,孙大谦.复合矫治弓丝接头的力学性能及接头组织观察[J].现代口腔医学杂志,2005(03).
    [41]林兴南,孙新华,朱宪春复合矫治弓丝配合减数矫治拥挤错位前牙的力学分析[J].上海口腔医学,2006,12:15(6).
    [42]李明高,孙大谦,邱小明,孙德新,殷世强.TiNi形状记忆合金连接技术的研究进展[J].材料导报,2006(02).
    [43]D.Q. Sun, H.M. Li,2011.A new method of TINi shape memory alloy and austeniticstainless steel different Kind of material connection, CN Patent CNIO2152017.
    [44]孙皎.我国口腔材料研究五年回顾[J].口腔材料器械杂志,2009,18(1):5-10.
    [45]张锐.现代材料分析方法[M].北京:化学工业出版社,2007.
    [46]陈治清.口腔生物材料学[M].北京:化学工业出版社,2004.
    [47]孙皎.口腔生物材料学[M].人民卫生出版社,2011.
    [48]Wirz, J.Sch digung des Parodontes durchzahn rztliche Werkstoffe[J]. Zahn rztlicheWelt,1993,102:146-162.
    [49]Schmalz G, Garhammer P. Biological interactions of dental cast alloys with oraltissues[J]. Dental materials,2002,18(5):396-406.
    [50]Geis-Gerstorfer J. Nichtedellmetallegierung [Base metalalloys]. Zahn rztlicheWerkstoffe und ihre Verarbeitung[J]. German:Dental materials and theirprocessing,1996.
    [51]Stoll R, Fischer C, Springer M, et al. Marginal adaptation of partial crowns cast in puretitanium and in a gold alloy–an in vivo study[J]. Journal of oral rehabilitation,2002,29(1):1-6.
    [52]Covington J S, McBride M A, Slagle W F, Disney A L.Quantization of nickel andberyllium leakage from base metalcasting alloys[J]. Journal of ProstheticDentistry,1985,54:127-136.
    [53]Nelson S K, Wataha J C, Neme A M L, et al. Cytotoxicity of dental casting alloyspretreated with biologic solutions[J]. The Journal of prosthetic dentistry,1999,81(5):591-596.
    [54]Nelson S K, Wataha J C, Lockwoodc P E. Accelerated toxicity testing of casting alloysand reduction of intraoral release of elements[J]. The Journal of prosthetic dentistry,1999,81(6):715-720.
    [55]Geurtsen W. Biocompatibility of dental casting alloys[J]. Critical Reviews in OralBiology&Medicine,2002,13(1):71-84.
    [56]López-Alías J F, Martinez-Gomis J, Anglada J M, et al. Ion release from dental castingalloys as assessed by a continuous flow system: Nutritional and toxicologicalimplications[J]. Dental Materials,2006,22(9):832-837.
    [57]Elshahawy W, Watanabe I, Koike M. Elemental ion release from four different fixedprosthodontic materials[J]. Dental Materials,2009,25(8):976-981.
    [58]Wataha J C, Khajotia S S. Effect of pH on element release from dental casting alloys[J].The Journal of prosthetic dentistry,1998,80(6):691-698.
    [59]Lappalainen R, Yli-Urpo A. Release of elements from some gold alloys and amalgams incorrosion[J]. European Journal of Oral Sciences,1987,95(4):364-368.
    [60]Wataha J C, Malcolm C T. Effect of alloy surface composition on release of elementsfrom dental casting alloys[J]. Journal of oral rehabilitation,1996,23(9):583-589.
    [61]Schmalz G, Arenholt‐Bindslev D, Hiller K A, et al. Epithelium‐fibroblast co‐culturefor assessing mucosal irritancy of metals used in dentistry[J]. European journal of oralsciences,1997,105(1):86-91.
    [62]Schmalz G, Langer H, Schweikl H. Cytotoxicity of dental alloy extracts andcorresponding metal salt solutions[J]. Journal of dental research,1998,77(10):1772-1778.
    [63]Zhang X, Gelderblom H R, Zierold K, et al. MorpHological findings and energydispersive X-ray microanalysis of oral amalgam tattoos[J]. Micron,2007,38(5):543-548.
    [64]Rechmann P. Demonstration of mercury and selenium inamalgam tattoos[J]. DtschZahn rztl Z1994,49:151-153.
    [65]Wing K, Olsson K, Goldin J. Penetration of metallic ions from restorations into teeth[J].The Journal of prosthetic dentistry,1968,20(6):531-540.
    [66]Kratzenstein B, Sauer KH, Weber H. In vivo corrosion studiesof gold-containingalloys[J]. Dtsch Zahn rztl Z,1986,41:1272-1276.
    [67]Kratzenstein B, Sauer KH, Weber H. In-vivo corrosion pHenomenaof cast restorationsand their interactions with the oralcavity[J]. Dtsch Zahn rztl Z,1988,43:343-348.
    [68]Reuling N, Wisser W, Jung A, et al. Release and detection of dental corrosion productsin vivo: development of an experimental model in rabbits[J]. Journal of biomedicalmaterials research,1990,24(8):979-991.
    [69]Begerow J. Long term urinary platinum, palladium, and gold excretion of patients afterinsertion of noble metal dental alloys[J]. Biomarkers,1999,4(1):27-36.
    [70]Hugger A, Begerow J, Dunemann L, Stüttgen U. Levels ofplatinum and gold in urineafter placement of precious alloyrestorations[J]. Dtsch Zahn rztl Z,2000,55:267-271.
    [71]Traisnel M, Le Maguer D, Hildebrand H, et al. Corrosion of surgical implants[J]. ClinicalMaterials,1990,5(2):309-318.
    [72]Wataha J C, Craig R G, Hanks C T. The release of elements of dental casting alloys intocell-culture medium[J]. Journal of dental research,1991,70(6):1014-1018..
    [73]Wataha J C, Lockwood P E. Release of elements from dental casting alloys intocell-culture medium over10months[J]. Dental Materials,1998,14(2):158-163.
    [74]Gettleman L, Cocks H, Darmiento L A, et al. Materials Science Measurement of in vivoCorrosion Rates in Baboons, and Correlation with in vitro Tests[J]. Journal of dentalresearch,1980,59(4):689-707.
    [75]Bumgardner J D, Johansson B I. Effects of titanium‐dental restorative alloy galvaniccouples on cultured cells[J]. Journal of biomedical materials research,1998,43(2):184-191.
    [76]Yang J, Shanbhag A, Lilien J, et al. Human neutrophil response to short‐term exposureto pH‐75cobalt‐based alloy[J]. Journal of biomedical materials research,1992,26(9):1217-1230.
    [77]Canay S, Hersek N, Culha A, et al. Evaluation of titanium in oral conditions and itselectrochemical corrosion behaviour[J]. Journal of oral rehabilitation,1998,25(10):759-764.
    [78]Khan M A, Williams R L, Williams D F. Conjoint corrosion and wear in titaniumalloys[J]. Biomaterials,1999,20(8):765-772.
    [79]Schmalz G, Langer H, Schweikl H. Cytotoxicity of dental alloy extracts andcorresponding metal salt solutions[J]. Journal of dental research,1998,77(10):1772-1778.
    [80]R. Michel. Trace metal analysis in biocompatibility testing[M]. CRC:Critical ReviewsBiocompatibility,1987,3:235–317.
    [81]Matsumoto K, Tajima N, Kuwahara S. Correction of scoliosis with shape-memoryalloy[J]. Nihon Seikeigeka Gakkai zasshi,1993,67(4):267-274.
    [82]Ryh nen J. Biocompatibility evaluation of nickel-titanium shape memory metal alloy[M].Oulun yliopisto,1999.
    [83]Ryh nen J, Niemi E, Serlo W, et al. Biocompatibility of nickel‐titanium shape memorymetal and its corrosion behavior in human cell cultures[J]. Journal of biomedicalmaterials research,1997,35(4):451-457.
    [84]Faccioni F, Franceschetti P, Cerpelloni M, et al. In vivo study on metal release fromfixed orthodontic appliances and DNA damage in oral mucosa cells[J]. Americanjournal of orthodontics and dentofacial orthopedics,2003,124(6):687-693.
    [85]Yamamoto A, Honma R, Sumita M. Cytotoxicity evaluation of43metal salts usingmurine fibroblasts and osteoblastic cells[J]. Journal of biomedical materials research,1998,39(2):331-340.
    [86]Geurtsen W. Crown and restoration margin[J]. Dtsch Zahn rztlZ,1990,45:380-386.
    [87]Geurtsen W, Marx R. Use of titanium in conservative dentistry[J].Zahn rztlWelt.1990,99:977-980.
    [88]Yoshida K, Tanagawa M, Kamada K, et al. Silica coatings formed on noble dentalcasting alloy by the sol‐gel dipping process[J]. Journal of biomedical materialsresearch,1999,46(2):221-227.
    [89]Yoshida K, Kamada K, Sato K, et al. Thin sol‐gel‐derived silica coatings on dentalpure titanium casting[J]. Journal of biomedical materials research,1999,48(6):778-785.
    [90]Woody R D, Huget E F, Horton J E. Apparent cytotoxicity of base metal casting alloys[J].Journal of Dental Research,1977,56(7):739-743.
    [91]Shanbhag A, Yang J, Lilien J, et al. Decreased neutrophil respiratory burst on exposureto cobalt‐chrome alloy and polystyrene in vitro[J]. Journal of biomedical materialsresearch,1992,26(2):185-195.
    [92]J. P. Simpson, F. Geret, S. A. Brown, and K. Merritt. Retrieved FracturePlates: Implantand Tissue Analysis. Implant Retrieval: Materialand Biological Analysis[M],NBSSpecial Publication,1981,395-422.
    [93]Torgersen S, Gjerdet N R, Erichsen E S, et al. Metal particles and tissue changes adjacentto miniplates A retrieval study[J]. Acta Odontologica,1995,53(2):65-71.
    [94]Coleman R PH, Herrington J, Scales J T. Concentration of wear products in hair, blood,and urine after total hip replacement[J]. British medical journal,1973,1(5852):527.
    [95]Screws P, Nail-plates F. Corrosion of orthopaedic implants[J].1959.
    [96]Peltonen L. Nickel sensitivity in the general population[J]. Contact Dermatitis,1979,5(1):27-32.
    [97]Putters J L M, Sukul K, De Zeeuw G R, et al. Comparative cell culture effects of shapememory metal (Nitinol), nickel and titanium: a biocompatibility estimation[J].European surgical research,1992,24(6):378-382.
    [98]Gawkrodger D J. Nickel sensitivity and the implantation of orthopaedic prostheses[J].Contact Dermatitis,1993,28(5):257-259.
    [99]Castleman LS, Motzkin SM. The biocompatibility of nitinol.Biocompatibility of clinicalimplant materials[C], Boca Raton: CRC Press,1981,129-154.
    [100]Sanders JO, Sanders AE, More R, Ashman RB. A preliminaryinvestigation ofshapememory alloy in the surgical correction ofscoliosis[J]. Spine,1993,18:1640-1646.
    [101]Berger‐Gorbet M, Broxup B, Rivard C, et al. Biocompatibility testing of NiTi screwsusing immunohistochemistry on sections containing metallic implants[J]. Journal ofbiomedical materials research,1996,32(2):243-248.
    [102]Cisse O, Savadogo O, Wu M, et al. Effect of surface treatment of NiTi alloy on itscorrosion behavior in Hanks’ solution[J]. Journal of biomedical materials research,2002,61(3):339-345.
    [103]Tan L, Crone W C. Surface characterization of NiTi modified by plasma source ionimplantation[J]. Acta Materialia,2002,50(18):4449-4460.
    [104]J. Ryh nen, Biocompatibility evaluation of nickel-titanium shape memory metal alloy.Dissertation[C], Oulu:Oulun Yliopista,1999.
    [105]G. Riepe, C. Heintz, N. Chakfe, M. Morlock, W. Gros-Fengels and H. Imig.Degradation of Stentor device after implantationin human beings. Third Int. Conf.Shape Memory and Superelastic Technologies, CA:Pacific Grove,2000.
    [106]Pound B G. The electrochemical behavior of nitinol in simulated pHysiologicalsolutions[J]. Journal of Biomedical Materials Research Part A,2008,85(4):1103-1113.
    [107]Benatti O M, Miranda W G, Muench A. In vitro and in vivo corrosion evaluation ofnickel-chromium-and copper-aluminum-based alloys[J]. The Journal of ProstheticDentistry,2000,84(3):360-363.
    [108]Sarkar N K, Greener E H. Corrosion behavior of the tin-containing silver-mercury phaseof dental amalgam[J]. Journal of Dental Research,1974,53(4):925-932.
    [109]Hunt N P, Cunningham S J, Golden C G, et al. An investigation into the effects ofpolishing on surface hardness and corrosion of orthodontic archwires[J]. The AngleOrthodontist,1999,69(5):433-440.
    [110]Huang H H. Variation in surface topograpHy of different NiTi orthodontic archwires invarious commercial fluoride-containing environments[J]. Dental materials,2007,23(1):24-33.
    [111]Huang H H. Corrosion resistance of stressed NiTi and stainless steel orthodontic wiresin acid artificial saliva[J]. Journal of Biomedical Materials Research Part A,2003,66(4):829-839.
    [112]Sutow E J, Jones D W. A crevice corrosion cell configuration[J]. Journal of DentalResearch,1979,58(4):1358-1363.
    [113]Eliades T, Athanasiou A E. In vivo aging of orthodontic alloys: implications forcorrosion potential, nickel release, and biocompatibility[J]. The Angle Orthodontist,2002,72(3):222-237.
    [114]Williams R L, Brown S A, Merritt K. Electrochemical studies on the influence ofproteins on the corrosion of implant alloys[J]. Biomaterials,1988,9(2):181-186.
    [115]Platt J A, Guzman A, Zuccari A, et al. Corrosion behavior of2205duplex stainlesssteel[J]. American journal of orthodontics and dentofacial orthopedics,1997,112(1):69-79.
    [116]Ph. Gyunter, P. Sisolyatin and P. Tomerkhanova. Superelastic and shape memoryimplants. Maxillofacial Surgery,Traumatology,Orthopaedics, and Neurosurgery[C],Tomsk:Tomsk University Publishing,1995.
    [117]Sorensen J A, Engelman M J. Ferrule design and fracture resistance of endodonticallytreated teeth[J]. The Journal of prosthetic dentistry,1990,63(5):529-536.
    [118]Di Schino A, Kenny J M. Effect of grain size on the corrosion resistance of a highnitrogen-low nickel austenitic stainless steel[J]. Journal of materials science letters,2002,21(24):1969-1971.
    [119]罗辉,赵忠魁,冯立明,周峥.焊接工艺参数对奥氏体不锈钢焊接接头腐蚀行为的影响[J].热加工工艺.2005(06).
    [120]Lewis A L, Tolhurst L A, Stratford P W. Analysis of a phosphorylcholine-basedpolymer coating on a coronary stent pre-and post-implantation[J]. Biomaterials,2002,23(7):1697-1706.
    [121]Lenard D, Bayley C, Noren B. Detection of selective phase corrosion of NickelAluminum Bronze in sea water by electrochemical frequencymodulation[C]//Proceedings of the2009DOD Corrosion Conference, Washington, DC.2009.
    [122]Liu I H, Lee T M, Chang C Y, et al. Effect of load deflection on corrosion behavior ofNiTi wire[J]. Journal of dental research,2007,86(6):539-543.
    [123]Thurow R.Elasticligature,binding forces,and anchorage fixation[J].American Journal ofOrthodontics,1975,67:694.
    [124]Chuprina F G. Examination of the process of oxidation of titanium nickelide. I.Kinetics[J]. Powder Metallurgy and Metal Ceramics,1989,28(4):310-314.
    [125]R. Vandenkerckhove and E. Temmerman. Electrochemical research on the corrosion ofshape memory NiTi. Proc.Int. Conf. on Shape Memory and SuperelasticTechnologies[C], Belgium: Antverpen,1999.
    [126]Ph. Itin, O. Nalesnik, O. Magel, B. Shevchenko and pH. Shemetov. Corrosion behaviorof TiNi based alloys in the HClwater solutions[J]. Metal Protection,1999,35:373–375.
    [127]Montero‐Ocampo C, Lopez H, Salinas Rodriguez A. Effect of compressive strainingon corrosion resistance of a shape memory (Ni‐Ti alloy in ringer's solution[J]. Journalof biomedical materials research,1996,32(4):583-591.
    [128]Bundy K J, Williams C J, Luedemann R E. Stress-enhanced ion release—the effect ofstatic loading[J]. Biomaterials,1991,12(7):627-639.
    [129]Bundy K J, Vogelbaum M A, Desai PH H. The influence of static stress on thecorrosion behavior of316L stainless steel in Ringer's solution[J]. Journal of biomedicalmaterials research,1986,20(4):493-505.
    [130]Shih C C, Lin S J, Chung K H, et al. Increased corrosion resistance of stent materials byconverting current surface film of polycrystalline oxide into amorphous oxide[J].Journal of biomedical materials research,2000,52(2):323-332.
    [131]Rondelli G, Vicentini B. Evaluation by electrochemical tests of the passive film stabilityof equiatomic Ni‐Ti alloy also in presence of stress‐induced martensite[J]. Journal ofBiomedical Materials Research,2000,51(1):47-54.
    [132]Carroll W M, Kelly M J. Corrosion behavior of nitinol wires in body fluidenvironments[J]. Journal of Biomedical Materials Research Part A,2003,67(4):1123-1130.
    [133]Meyer R D, Meyer J, Taloumis L J. Intraoral galvanic corrosion: Literature review andcase report[J]. The Journal of Prosthetic Dentistry,1993,69(2):141-143.
    [134]Mahler D B. The high-copper dental amalgam alloys[J]. Journal of dental research,1997,76(1):537-541.
    [135]Iijima M, Endo K, Yuasa T, et al. Galvanic corrosion behavior of orthodontic archwirealloys coupled to bracket alloys[J]. The Angle Orthodontist,2006,76(4):705-711.
    [136]Kim H, Johnson J W. Corrosion of stainless steel, nickel-titanium, coatednickel-titanium, and titanium orthodontic wires[J]. The Angle Orthodontist,1999,69(1):39-44.
    [137]Sj gren G, Andersson M, Bergman M. Laser welding of titanium in dentistry[J]. ActaOdontologica,1988,46(4):247-253.
    [138]Angelini E, Pezzoli M, Rosalbino F. Influence of corrosion on brazed joints' strength[J].Journal of dentistry,1991,19(1):56-61.
    [139]Angelini E, Pezzoli M, Rosalbino F. Influence of corrosion on brazed joints' strength[J].Journal of dentistry,1991,19(1):56-61.
    [140]Villermaux F, Tabrizian M, Yahia L H, et al. Corrosion resistance improvement of NiTiosteosynthesis staples by plasma polymerized tetrafluoroethylene coating[J].Bio-Medical Materials and Engineering,1996,6(4):241-254.
    [141]Barwart O. The effect of temperature change on, the load value of Japanese NiTi coilsprings in the superelastic range[J]. American journal of orthodontics and dentofacialorthopedics,1996,110(5):553-558.
    [142]Meling T R, degaard J. Short-term temperature changes influence the force exerted bysuperelastic nickel-titanium archwires activated in orthodontic bending[J]. Americanjournal of orthodontics and dentofacial orthopedics,1998,114(5):503-509.
    [143]Pun D K, Berzins D W. Corrosion behavior of shape memory, superelastic, andnonsuperelastic nickel–titanium-based orthodontic wires at various temperatures[J].Dental Materials,2008,24(2):221-227.
    [144]Wataha J C, Khajotia S S. Effect of pH on element release from dental casting alloys[J].The Journal of prosthetic dentistry,1998,80(6):691-698.
    [145]Watson M, Postlethwaite J. Numerical simulation of crevice corrosion of stainless steelsand nickel alloys in chloride solutions[J]. Corrosion,1990,46(7):522-530.
    [146]Sarkar N K, Redmond W, Schwaninger B, et al. The chloride corrosion behaviour offour orthodontic wires[J]. Journal of Oral Rehabilitation,1983,10(2):121-128.
    [147]Horasawa N, Marek M. Effect of fluoride from glass ionomer on discoloration andcorrosion of titanium[J]. Acta Biomater,2010.6(2):662-666.
    [148]Persson A, Lingstrom P, Bergdahl M, et al. Buffering effect of a propHylactic gel ondental plaque [J]. Clin Oral Investig,2006,10(4):289-295.
    [149]Toumelin-Chemla F, Rouelle F, Burdairon G. Corrosive properties offluoride-containing odontologic gels against titanium[J]. Journal of dentistry,1996,24(1):109-115.
    [150]Reclaru L, Meyer J M. Effects of fluorides on titanium and other dental alloys indentistry[J]. Biomaterials,1998,19(1-3):85-92.
    [151]Watanabe I, Watanabe E. Surface changes induced by fluoride prophylactic agents ontitanium-based orthodontic wires[J]. American journal of orthodontics and dentofacialorthopedics,2003,123(6):653-656.
    [152]Huang H H, Chiu Y H, Lee T H, et al. Ion release from NiTi orthodontic wires inartificial saliva with various acidities[J]. Biomaterials,2003,24(20):3585-3592.
    [153]Walker M P, White R J, Kula K S. Effect of fluoride propHylactic agents on themechanical properties of nickel-titanium-based orthodontic wires[J]. American journalof orthodontics and dentofacial orthopedics,2005,127(6):662-669.
    [154]Eliades T, Athanasiou A E. In vivo aging of orthodontic alloys: implications forcorrosion potential, nickel release, and biocompatibility[J]. The Angle Orthodontist,2002,72(3):222-237.
    [155]Eliades T, Eliades G, Athanasiou A E, et al. Surface characterization of retrieved NiTiorthodontic archwires[J]. The European Journal of Orthodontics,2000,22(3):317-326.
    [156]Matasa C G. Microbial attack of orthodontic adhesives[J]. American Journal ofOrthodontics and Dentofacial Orthopedics,1995,108(2):132-141.
    [157]胥聪敏,张耀亨,程光旭,朱文胜.316L不锈钢在硫酸盐还原菌和铁氧化菌共同作用下的腐蚀行为.材料热处理学报,2006,27(5).
    [158]Takemoto S, Hattori M, Yoshinari M, et al. Corrosion behavior and surfacecharacterization of titanium in solution containing fluoride and albumin [J].Biomaterials,2005,26(8):829-837.
    [159]Brown S A, Merritt K. Fretting corrosion in saline and serum[J]. Journal of biomedicalmaterials research,1981,15(4):479-488.
    [160]Hang R, Ma S, Ji F, et al. Corrosion behavior of NiTi alloy in fetal bovine serum[J].Electrochimica Acta,2010,55(20):5551-5560.
    [161]Coogan T P, Latta D M, Snow E T, et al. Toxicity and carcinogenicity of nickelcompounds[J]. CRC Critical reviews in toxicology,1989,19(4):341-384.
    [162]Wataha J C, Hanks C T, Craig R G. In Vitro effect of metal ions on cellular metabolismand the correlation between these effects and the uptake of the ions[J]. Journal ofbiomedical materials research,1994,28(4):427-433.
    [163]Petoumenou E, Arndt M, Keilig L, et al. Nickel concentration in the saliva of patientswith nickel-titanium orthodontic appliances[J]. American Journal of Orthodontics andDentofacial Orthopedics,2009,135(1):59-65.
    [164]Bass J K, Fine H, Cisneros G J. Nickel hypersensitivity in the orthodontic patient[J].American Journal of Orthodontics and Dentofacial Orthopedics,1993,103(3):280-285.
    [165]Schiff N, Boinet M, Morgon L, et al. Galvanic corrosion between orthodontic wires andbrackets in fluoride mouthwashes[J]. The European Journal of Orthodontics,2006,28(3):298-304.
    [166]Staffolani N, Damiani F, Lilli C, et al. Ion release from orthodontic appliances[J].Journal of dentistry,1999,27(6):449-454.
    [167]潘元海,刘刚,刘湘生. HG-ICP-MS法测定纯镍中痕量As、Sb、Bi、Se、Te、Sn[J].分析实验室.2003,22(3):19-22.
    [168]Pan J, Karlen C, Ulfvin C. Electrochemical study of resistance to localized corrosion ofstainless steels for biomaterial applications[J]. Journal of the Electrochemical Society,2000,147(3):1021-1025.
    [169]Merritt K, Crowe T D, Brown S A. Elimination of nickel, cobalt, and chromiumfollowing repeated injections of high dose metal salts[J]. Journal of biomedicalmaterials research,1989,23(8):845-862.
    [170]Venugopalan R, Trepanier C. Assessing the corrosion behaviour of Nitinol forminimally-invasive device design[J]. Minimally Invasive Therapy&AlliedTechnologies,2000,9(2):67-73.
    [171]Morita M, Sasada T, Hayashi H, et al. The corrosion fatigue properties of surgicalimplants in a living body[J]. Journal of biomedical materials research,1988,22(6):529-540.
    [172]Chu C L, Wang R M, Hu T, et al. XPS and biocompatibility studies of titania film onanodized NiTi shape memory alloy[J]. Journal of Materials Science: Materials inMedicine,2009,20(1):223-228.
    [173]Revie R W. Corrosion and corrosion control[M]. John Wiley&Sons,2008.
    [174]Kruger J. Fundamental aspects of the corrosion of metallic implants[J]. Corrosion andDegradation of Implant Materials. philadelphia, PA: American Society for Testing andMaterials,1979:107-27.
    [175]Fontana M G. Corrosion Engineering,3/E[M]. Tata McGraw-Hill Education,2005.
    [176]ASTM F746-87, Standard test method for pitting or crevice corrosion of metallicsurgical implants. Annual Book ofASTM Standards, pHiladelhia:American Society forTesting and Materials,,1996,13(01)180–185.
    [177]Pessall N, Liu C. Determination of critical pitting potentials of stainless steels inaqueous chloride environments[J]. Electrochimica Acta,1971,16(11):1987-2003.
    [178]Griffin C D, Buchanan R A, Lemons J E. In vitro electrochemical corrosion study ofcoupled surgical implant materials[J]. Journal of biomedical materials research,1983,17(3):489-500.
    [179]Williams D F. physiological and microbiological corrosion[J]. Crit Rev Biocompat,1985,1:1-24.
    [180]Thompson N G, Payer J H. DC Electrochemical test methods[M]. NACE international,1998.
    [181]Jones D A. Principles and prevention of corrosion (2nd ed'96)[J].1996.
    [182]Kelly R G, Scully J R, Shoesmith D, et al. Electrochemical techniques in corrosionscience and engineering[M]. CRC Press,2002.
    [183]Haruyama S, Tsuru T, Mansfeld pH, et al. Electrochemical Corrosion Testing[J]. ASTMSTP,1981,727:167-186..
    [184]Rondelli G, Vicentini B. Localized corrosion behaviour in simulated human body fluidsof commercial Ni–Ti orthodontic wires[J]. Biomaterials,1999,20(8):785-792.
    [185]Bertrand C, Le Petitcorps Y, Albingre L, et al. Prosthodontics: The laser weldingtechnique applied to the non precious dental alloys procedure and results[J]. BritishDental Journal,2001,190(5):255-257.
    [186]Roberge P R. Handbook of corrosion engineering[M]. New York: McGraw-Hill,2000.
    [187]Dean S W. Atmospheric corrosion after80years of study[J]. Materials Performance,1987,26(7):9-11.
    [188]Williams D F. Corrosion of implant materials[J]. Annual review of materials science,1976,6(1):237-266.
    [189]Wever D J, Veldhuizen A G, De Vries J, et al. Electrochemical and surfacecharacterization of a nickel–titanium alloy[J]. Biomaterials,1998,19(7-9):761-769.
    [190]Filip P. Titanium-nickel shape memory alloys in medical applications[M]//Titanium inMedicine. Springer Berlin Heidelberg,2001:53-86.
    [191]Browne M, Gregson P J. Surface modification of titanium alloy implants[J].Biomaterials,1994,15(11):894-898.
    [192]Cheng Y, Cai W, Zhao L C. Effects of Cl ion concentration and pH on the corrosionproperties of NiTi alloy in NaCl solution[J]. Journal of materials science letters,2003,22(3):239-240.
    [193]Sedriks A J. Corrosion of stainless steel,2[J].1996.
    [194]Giacomelli F C, Giacomelli C, De Oliveira A G, et al. Effect of electrolytic ZrO2coatings on the breakdown potential of NiTi wires used as endovascular implants[J].Materials Letters,2005,59(7):754-758.
    [195]Chiu K Y, Cheng F T, Man H C. Corrosion behavior of AISI316L stainless steelsurface-modified with NiTi[J]. Surface and Coatings Technology,2006,200(20):6054-6061.
    [196]Oh K T, Hwang C J, Park Y S, et al. In vitro corrosion resistance of orthodontic superstainless steel wire the effects of stress relieving heat-treatment[J]. Journal of TheElectrochemical Society,2002,149(9): B414-B421.
    [197]Anderko A, Sridhar N, Dunn D S. A general model for the repassivation potential as afunction of multiple aqueous solution species[J]. Corrosion science,2004,46(7):1583-1612.
    [198]Johnson E. Relative stiffness of beta titanium archwires[J]. The Angle Orthodontist,2003,73(3):259-269.
    [199]Huang H H. Surface characterizations and corrosion resistance of nickel–titaniumorthodontic archwires in artificial saliva of various degrees of acidity[J]. Journal ofBiomedical Materials Research Part A,2005,74(4):629-639.
    [200]Wilde B E. A critical appraisal of some popular laboratory electrochemical tests forpredicting the localized corrosion resistance of stainless alloys in sea water[J].Corrosion,1972,28(8):283-291.
    [201]Y. Su, Ven Raman. The quest for Nitinol wire surface quality for medical application.Proceedings of First Int’l Conf.Shape Memory and Superelastic Technologies[C], CA:Pacific Grove,1997,389–394.
    [202]Scully J R. Polarization resistance method for determination of instantaneous corrosionrates[J]. Corrosion,2000,56(2):199-218.
    [203]S. Shabalovskaya, G. Rondelli, F. Itin and J. Anderegg. Surface and corrosion aspects ofNiTi alloys. Third Int. Conf.Shape Memory and Superelastic Technologies[C],CA:Pacific Grove,2000.
    [204]Firstov G S, Vitchev R G, Kumar H, et al. Surface oxidation of NiTi shape memoryalloy[J]. Biomaterials,2002,23(24):4863-4871.
    [205]Chuprina F G. A study of the process of oxidation of titanium nickelide. II. pHasecomposition of the scale[J]. Powder Metallurgy and Metal Ceramics,1989,28(6):468-472.
    [206]Arys A, pHilippart C, Dourov N, et al. Analysis of titanium dental implants after failureof osseointegration: Combined histological, electron microscopy, and X‐raypHotoelectron spectroscopy approach[J]. Journal of biomedical materials research,1998,43(3):300-312.
    [207]Mohlin B, Müller H, dman J, et al. Examination of Chinese NiTi wire by a combinedclinical and laboratory approach[J]. The European Journal of Orthodontics,1991,13(5):386-391.
    [208]Trompette J L, Massot L, Vergnes H. Influence of the oxyanion nature of the electrolyteon the corrosion/passivation behaviour of nickel[J]. Corrosion Science,2013.
    [209]Zhang Z, Wang Z, Jiang Y, et al. Effect of post-weld heat treatment on microstructureevolution and pitting corrosion behavior of UNS S31803duplex stainless steel welds[J].Corrosion Science,2012,62:42-50.
    [210]Xu X, Burgess J O. Compressive strength, fluoride release and recharge offluoride-releasing materials[J]. Biomaterials,2003,24(14):2451-2461.
    [211]Schiff N, Grosgogeat B, Lissac M, et al. Influence of fluoride content and pH on thecorrosion resistance of titanium and its alloys[J]. Biomaterials,2002,23(9):1995-2002.
    [212]Boere G. Influence of fluoride on titanium in an acidic environment measured bypolarization resistance technique[J]. Journal of Applied Biomaterials,1995,6(4):283-288.
    [213]Yokoyama K, Watabe S, Hamada K, et al. Susceptibility to delayed fracture of Ni–Tisuperelastic alloy[J]. Materials Science and Engineering: A,2003,341(1):91-97.
    [214]Ahn H S, Kim M J, Seol H J, et al. Effect of pH and temperature on orthodontic NiTiwires immersed in acidic fluoride solution[J]. Journal of Biomedical Materials ResearchPart B: Applied Biomaterials,2006,79(1):7-15.
    [215]Li X, Wang J, Han E, et al. Influence of fluoride and chloride on corrosion behavior ofNiTi orthodontic wires[J]. Acta Biomaterialia,2007,3(5):807-815.
    [216]Poorqasemi E, Abootalebi O, Peikari M, et al. Investigating accuracy of the Tafelextrapolation method in HCl solutions[J]. Corrosion Science,2009,51(5):1043-1054.
    [217]Chao Zhang, Shuang Zhao, Xiumei Sun, Daqian Sun, Xinhua Sun. Corrosion oflaser-welded NiTi shape memory alloy and stainlesssteel composite wires with a copperinterlayer upon exposure to fluorideand mechanical stress[J]. Corrosion Science,2014,82(5):404-409.
    [218]Johansson B I, Bergman B. Corrosion of titanium and amalgam couples: Effect offluoride, area size, surface preparation and fabrication procedures[J]. Dental Materials,1995,11(1):41-46.
    [219]Takemoto S, Hattori M, Yoshinari M, et al. Corrosion behavior and surfacecharacterization of Ti-20Cr alloy in a solution containing fluoride[J]. Dental materialsjournal,2004,23(3):379.
    [220]International Programme on Chemical Safety. Toxicologicalevaluation of certain foodadditives and contaminants. The26threport of the Joint pH/WHO Expert Committee onFoodAdditives. WHO Food Additives Series, No.17.1982.
    [221]Shabalovskaya S A. Surface, corrosion and biocompatibility aspects of Nitinol as animplant material[J]. Bio-medical materials and engineering,2002,12(1):69-109.
    [222]Nakagawa M, Matsuya S, Shiraishi T, et al. Effect of fluoride concentration and pH oncorrosion behavior of titanium for dental use[J]. Journal of dental research,1999,78(9):1568-1572.
    [223]Tang L, Eaton J W. Inflammatory responses to biomaterials[J]. American journal ofclinical pathology,1995,103(4):466-471.
    [224]Tang L, Eaton J W. Natural responses to unnatural materials: A molecular mechanismfor foreign body reactions[J]. Molecular medicine,1999,5(6):351.
    [225]Werthen M, Sellborn A, K lltorp M, et al. In vitro study of monocyte viability duringthe initial adhesion to albumin-and fibrinogen-coated surfaces[J]. Biomaterials,2001,22(8):827-832..
    [226]Solar R J, Pollack S R, Korostoff E. In vitro corrosion testing of titanium surgicalimplant alloys: an approach to understanding titanium release from implants[J]. Journalof biomedical materials research,1979,13(2):217-250.
    [227]Speck K M, Fraker A C. Anodic Polarization Behavior of Ti-Ni and Ti-6A1-4pH inSimulated pHysiological Solutions[J]. Journal of Dental Research,1980,59(10):1590-1595.
    [228]Hansen D C. The Effect of a Novel Biopolymer on the Corrosion of316L StainlessSteel and Ti6Al4V Alloys in A pHysiologically Relevant Electrolyte[J]. CORROSION2007,2007.
    [229]Contu F, Elsener B, B hni H. Characterization of implant materials in fetal bovineserum and sodium sulfate by electrochemical impedance spectroscopy. I. Mechanicallypolished samples[J]. Journal of biomedical materials research,2002,62(3):412-421.
    [230]Pértile L B, Silva P, Peccin pH B, et al. In vivo human electrochemical properties of aNiTi‐based alloy (Nitinol) used for minimally invasive implants[J]. Journal ofBiomedical Materials Research Part A,2009,89(4):1072-1078.
    [231]Endo K. Chemical modification of metallic implant surfaces with biofunctional proteins(Part1). Molecular structure and biological activity of a modified NiTi alloy surface[J].Dental materials journal,1995,14(2):185-198.
    [232]Schmidt M, Steinemann S G. XPS studies of amino acids adsorbed on titanium dioxidesurfaces[J]. Fresenius' journal of analytical chemistry,1991,341(5-6):412-415.
    [233]Clark G C F, Williams D F. The effects of proteins on metallic corrosion[J]. Journal ofbiomedical materials research,1982,16(2):125-134.
    [234]Wataha J C, Lockwood P E, Mettenburg D, et al. Toothbrushing causes elementalrelease from dental casting alloys over extended intervals[J]. Journal of BiomedicalMaterials Research Part B: Applied Biomaterials,2003,65(1):180-185.
    [235]Denis F A, Hanarp P, Sutherland D S, et al. Protein adsorption on model surfaces withcontrolled nanotopograpHy and chemistry[J]. Langmuir,2002,18(3):819-828.
    [236]Khan M A, Williams R L, Williams D F. The corrosion behaviour of Ti–6Al–4V,Ti–6Al–7Nb and Ti–13Nb–13Zr in protein solutions[J]. Biomaterials,1999,20(7):631-637.
    [237]Sarkar B. Nickel in blood and kidney[J]. Nickel Toxicology,1980:81-84.
    [238]Saboury A A. Application of a new method for data analysis of isothermal titrationcalorimetry in the interaction between human serum albumin and Ni2+[J].The Journal of Chemical Thermodynamics,2003,35(12):1975-1981.
    [239]Heath J C, Webb M. Content and intracellular distribution of the inducing metal in theprimary rhabdomyosarcomata induced in the rat by cobalt, nickel and cadmium[J].British journal of cancer,1967,21(4):768..
    [240]McNamara A, Williams D F. The response to the intramuscular implantation of puremetals[J]. Biomaterials,1981,2(1):33-40.
    [241]Faller M, Richner P. Material selection of safety‐relevant components in indoorswimming pools[J]. Materials and Corrosion,2003,54(5):331-338.
    [242]Watanabe K. Studies on new superelastic NiTi orthodontic wire.(Part1) Tensile andbend test (author's transl)][J]. Shika rikōgaku zasshi. Journal of the Japan Society forDental Apparatus and Materials,1982,23(61):47.
    [243]Krishnan F, Kumar K J. Mechanical properties and surface characteristics of threearchwire alloys[J]. The Angle Orthodontist,2004,74(6):825-831.
    [244]Upadhyay D, Panchal M A, Dubey R S, et al. Corrosion of alloys used in dentistry: areview[J]. Materials Science and Engineering: A,2006,432(1):1-11.
    [245]Wang J, Li N, Rao G, et al. Stress corrosion craclang of NiTi in artificial saliva[J].Dent Mater,2007,23(2):133-137.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700