用户名: 密码: 验证码:
阿维菌素废水厌氧出水深度处理实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
阿维菌素废水属于较难生物处理的高浓度发酵类抗生素废水。目前研究结果表明采用厌氧处理技术能够对阿维菌素废水中污染物取得较好的处理效果,系统出水可以满足《污水综合排放标准》(GB 8978-1996)的要求。2008年8月1日,国家环保部和国家质量监督检验检疫总局制订实施《发酵类制药工业水污染物排放标准》(GB 21903-2008)规定:将现有发酵类抗生素制药企业废水COD的排放标准由300 mg·L~(-1)提高到200 mg·L~(-1)。进一步提高了抗生素生产企业的废水排放标准,由于现有工艺处理效果不能满足新标准的要求,因此,阿维菌素生产企业亟待研发高效经济的阿维菌素废水处理工艺。
     结合河北省某阿维菌素生产企业实际运行情况,本课题以阿维菌素废水厌氧出水为研究对象,针对阿维菌素废水厌氧出水的水质特点开展试验研究,拟采用“磷酸铵镁化学沉淀+生物接触氧化+Fenton高级氧化”对废水进行处理,本课题研究了组合工艺处理阿维菌素废水的可行性及运行性能,在实现达标排放的基础上,对主要工艺参数进行优化,所得结论如下:
     1)根据阿维菌素废水的特点,采用磷酸铵镁化学沉淀工艺(MAP)对废水进行脱氮处理,研究表明搅拌强度、反应物质的摩尔配比、pH值、静沉时间对于MAP晶粒的成长和氨氮的去除效果影响比较明显。试验得到的最佳工艺条件为:pH 8.0~8.5;Mg~(2+):NH_4~+:H_2PO_4-的摩尔配比1.3:1:1。快速(150 r·min~(-1))搅拌2 min;然后慢速(50 r·min~(-1))搅拌5 min;反应时间20 min。在最佳工艺运行条件下,厌氧出水经过磷酸铵镁化学沉淀脱氮处理后,氨氮去除率达到85%以上,出水氨氮浓度为35~50 mg·L~(-1)。
     2)阿维菌素废水厌氧出水经MAP脱氮以后,出水残留的COD仍然较高,实验选用生物接触氧化法进行处理。反应器经过85 d运行,COD容积负荷达到1.05 kgCOD·(m~3·d)~(-1)时,出水COD达到415~450 mg·L~(-1),COD去除率达到50%。系统运行稳定。试验确定出的工艺参数为:HRT为24 h;容积负荷:1.05 kgCOD·(m~3·d)~(-1);溶解氧控制在1.0~2.0 mg·L~(-1)。
     3)由于废水经生物接触氧化处理后,出水COD不能满足国家排放标准的要求,因此,采用Fenton高级氧化技术进一步深度处理。试验考查了初始pH值、H_2O_2投加量以及FeSO_4投加量的影响、反应温度和反应时间等因素对Fenton试剂反应的影响,并对这些影响因子作了单因素分析。试验确定的最佳反应条件为:pH值为5.0,30%的H_2O_2投加量2.0 mL·L~(-1),FeSO_4投加量为50.0 mg·L~(-1),反应时间2.0 h,COD的去除率可以达到55.4%,系统出水COD为175.0 mg·L~(-1),出水COD和NH_3-N均达到了国家对发酵类抗生素废水排放标准的要求。
     综上所述,采用“磷酸铵镁化学沉淀+生物接触氧化+Fenton高级氧化”工艺处理阿维菌素废水,能够满足国家《发酵类制药工业水污染物排放标准》(GB 21903-2008)的相关要求,并能够稳定运行,在技术上具有一定的可行性。本课题为实际工业推广应用,积累了相关的经验数据,对今后该行业废水的深度处理具有一定的借鉴意义。
Avermectin wastewater which is high concentration of antibiotic wastewater is difficult to treatment by biological technology. The study shows that the anaerobic technology for avermectin wastewater treatment has been achieved a level, which can meet the standard of the“Integrated wastewater discharge standard”(GB 8978-1996). But in august of 2008 the discharge standards of water pollutants for pharmaceutical industry was developed and carried out by the Ministry of Environmental Protection of the People’s republic of China. The COD of the pharmaceutical wastewater became 200 mg·L~(-1) instead of 300 mg·L~(-1). Because of new standard the COD of the avermectin wastewater can not meet the request. So the companies which produce avermectin are urgently need the new technology which can treatment the avermectin wastewater effectively and meet the new standard.
     This paper take the avermectin wastewater anaerobic effluent as the research object. The aim of the research is making the avermectin wastewater meet the request of new standard. For this aim we choose the "chemical sedimentation of magnesium ammonium phosphate + biocontacting oxidation + Fenton oxidation" process to treatment the avermectin wastewater. The research studied the treatment technology and optimize the main operation date in Avermectin wastewater treatment. The conclusions are as follows:
     1) According to the characteristics of Avermectin wastewater, using the Chemical sedimentation of magnesium ammonium phosphate (MAP) for wastewater nitrogen removal treatment, the research have shown that mixing intensity, reaction material molar ratio, pH, time for the MAP grain growth and ammonia nitrogen removal effect are more obvious. The optimum conditions of the reaction were determined as follows: pH 8.0~8.5, the reaction molar ratio of Mg~(2+):NH_4~+:H_2PO_4-=1.3:1:1. Fast (150 r·min~(-1)) mixing 2 min; and then slow (50 r·min~(-1)) mixing 5 min; the reaction time is 20 min. In the optimum operating conditions, the anaerobic effluent treatment through the magnesium ammonium phosphate precipitation and its ammonia removal rate reached 85%, and the remaining ammonia concentration of 35~50 mg·L~(-1).
     2) Avermectin wastewater anaerobic effluent by denitrification of MAP, the residual COD of the effluent is still high. The experiment use biological contact oxidation method. The bio-contact oxidation reactor after 85 days running, COD volumetric loading reached 1.05 kgCOD·(m3·d)~(-1), the effluent COD reached 415~450 mg·L~(-1), COD removal rate reached 50%. The system is running stable. Running conditions: HRT, 24 h; volume load: 1.05 kgCOD·(m3·d)~(-1); dissolved oxygen controlled at 1.0~2.0 mg·L~(-1).
     3) As the wastewater by biological contact oxidation treatment, the effluent COD can not meet the requirements of the national emission standards, therefore, using Fenton oxidation technology to further advanced treatment. Experiment examined the influences of reaction in the initial pH value, H_2O_2 dosage, as well as the impact of FeSO4·7H2O dosage, reaction temperature and reaction time on the Fenton reagent, and these effects were made by single-factor analysis. Testing to determine the optimal reaction conditions: when the pH value of 5.0, 30% of H_2O_2 dosage of 2.0mL·L~(-1), FeSO_4dosage of 50.0mg·L~(-1), reaction time 2.0 h, the reaction temperature 20~30℃, COD removal rate reached 55.4%, the effluent COD is 175.0 mg·L~(-1), the effluent COD and NH3-N reached a state of fermentation antibiotic wastewater discharge requirements of the standard.
     In conclusion, the process of "chemical sedimentation of magnesium ammonium phosphate + biological contact oxidation + Fenton Oxidation" can meet the relevant requirements of the discharge standards of water pollutants for pharmaceutical industry (GB 21903-2008). In this condition the system can be operated stablely. This research accumulated the relevant data for the practical industrial application, which plays an important role in the advanced treatment of avermectin wastewater.
引文
[1]张庆茹.兽用阿维菌素类药物剂型研究进展.中国兽医寄生虫病, 2004, 12(1): 41-43
    [2]余宇.阿维菌素:市场空间巨大应用遭遇尴尬.农药市场信息, 2007, 21: 21
    [3]相会强.抗生素废水深度处理全流程试验研究.工业水处理, 2005, 25(1): 42-45
    [4]丁彩梅.抗生素工业废水处理技术的研究进展.医药工程设计, 2006, 27(2): 65-68
    [5]邢子鹏,商佳吉,孙德智.类Fenton氧化-好氧移动床生物膜法处理抗生素发酵废水.环境污染与防治, 2009, 31(1): 1-4
    [6]杨向黎,李源,谢德.浅谈阿维菌素及混剂开发现状.农药科学与管理, 2003, 24(2): 26-28
    [7]严可以,弓爱君,孙翠霞.阿维菌素生产工艺研究进展.现代化工, 2006, 26: 37-39
    [8]廖连安,李正名,方红云. 5-阿维菌素B1a酯的合成及生物活性.高等学校化学学报, 2002, 23(9): 1709-1714
    [9] Y. J. YOON, E. S. KIM, Y.-S. HWANG, et al. Avermectin: Biochemical and Molecular Basis of its Biosynthesis and Regulation. Appl Microbiol Biotechnol, 2004(63): 626-623
    [10] Y. N. KORYSTOV, N. V. ERMAKOVA. Avermectins Inhibit Multidrug Resistance of Tumor Cells. European Journal of Pharmacology, 2004, 493: 57-64
    [11] V. A. DRINYAEY, V. A. MOSIN. Antitumor Effect of Avermectins. European Journal of Pharmacology, 2004, 501: 19-23
    [12] K. ALAA, A. D. SALEH, I. SAMY, et al. Degradation of the Acaricides Abamectin, Flufenoxuron and Amitraz on Saudi Arabian Dates. Food Chemistry, 2007, 100(4): 1590-1593
    [13] R. P. JOSE. The efficiency of Avermectins (Abamectin, Doramectin and Ivermectin) in the Control of Boophilus Microplus, in Artificially Infested Bovines Kept in Field Conditions. Veterinary Parasitology, 2009, 162(1-2): 116-119
    [14]苏建亚,沈晋良.阿维菌素的生物合成与途径工程.生物技术通报, 2003, 6: 18-23
    [15]秦向春,陈繁忠,叶恒朋,等.超高浓度抗生素废水预处理试验.环境工程, 2006, 24(2): 20-22
    [16]阮林高,徐亚同,丁浩.抗生素制药废水处理研究进展.上海化工, 2007, 32(4): 1-4
    [17]李再兴,宋存义,杨景亮. UASB—生物转化器—生物接触氧化工艺处理阿维菌素废水.工业水处理, 2007, 27(3): 27-30
    [18]李再兴,杨景亮,罗人明. UASB处理阿维菌素废水的研究.重庆环境科学, 2002, 24(2): 49-51
    [19]李再兴,杨景亮,刘春艳.阿维菌素对厌氧消化的影响研究.中国沼气, 2001, 19(1): 13-15
    [20]党凤霞,董金霞,罗人明.白腐真菌降解阿维菌素废水的试验研究.污染防治技术, 2006,19(4): 9-10
    [21]董金霞,许伟,罗人明.白腐真菌处理阿维菌素废水优势菌种筛选研究.河北化工, 2006, 29(10): 60-62
    [22]罗人明,梁振青,许伟. UASB-生物接触氧化技术处理阿维菌素高浓度有机废水生产装置的运行与控制.河北化工, 2006, 29(5): 49-51
    [23]吕建伟,李春峰. UASB-水解酸化-接触氧化工艺处理阿维菌素废水.给水排水, 2006, 31(12): 54-55
    [24]陈元彩,龙世明,肖锦.高浓度阿维菌素废水治理与资源回收技术研究.重庆环境科学, 1999, 21(1): 40-43
    [25] H. ROMAN, T. THOMAS, H. KLAUS. Occurrence of Antibiotics in the Aquatic Environment. The Science of the Total Environment, 2006, 225(1): 109-118
    [26] K. G. KARTHIKEYAN, T. MICHAEL. Ourrence of Antibiotics in Wastewater Treatment Facilities in Wisconsin, USA. Science of the Total Environment, 2006, 361: 196-207
    [27]张书军,冯晓西,乌锡康,等.磷酸铵镁沉淀法脱氮机理、应用及沉淀剂循环.环境污染治理技术与设备, 2006, 7(7): 128-132
    [28] Y. JAFFER, T. A. CLARK, P. PEARCE, et al. Potential Phosphorus Recovery by Struvite Formation. Water Research, 2002, 36: 1834~1842
    [29]肖乐业,刘仁军,阮复昌. MAP法处理氨氮废水的过程模拟.燃料与化工, 2009, 40(2): 44-47
    [30] B. LIND, Z. BAN, B. STEFAN. Nutrient Recovery from Human Urine by Struvite Crystallization with Ammonia Adsorption on Zeolite and Wollastonite. Bioresource Technology, 2000, 73: 169-174
    [31] T. ZHANG, L. DING, H. Q. REN. Pretreatment of Ammonium Removal from Landfill Leachate by Chemical Precipitation. Journal of Hazardous Materials, 2009, 166(2-3): 911-915
    [32]魏婧娟,王凯,卢宁. MAP法预处理高氨氮垃圾渗滤液的试验研究.工业用水与废水, 2009, 40(3): 27-29
    [33]郭立萍,白斌,周晓靖. MAP法处理化肥厂高浓度氨氮废水试验研究.新乡师范高等专科学校学报, 2006, 20(2): 31-32
    [34] J. M. CHIMENOS, A. I. FERNANDEZ, G. VILLALBA, et al. Removal of Ammonium and Phosphates from Wastewater Resulting from the Process of Cochineal Extraction Using MgO-containing by-Product, Wat. Res., 2003, 37(7): 1601-1607
    [35]刘小澜,王继徽,黄稳水,等.磷酸铵镁法处理焦化厂高浓度氨氮废水.环境污染治理技术与设备, 2005, 6(3): 65-68
    [36]文艳芬,唐建军,周康根. MAP化学沉淀法处理氨氮废水的工艺研究.工业用水与废水,2008, 39(6): 33-36
    [37]王汉道,肖继波,陈立权.磷酸氨镁-混凝深度处理垃圾渗滤液实验研究.环境科学与技术, 2006, 29(4): 842-851
    [38]曹先仲,陈花果,宋艳辉. pH值控制MAP法脱氮进程的可行性研究.环境工程学报, 2009, 3(3): 493-496
    [39] F. MIJANGOSA, M. KAMELA, G. LESMESA, et al. Synthesis of Struvite by Ion Exchange Isothermal Supersaturation Technique. Reactive & Functional Polymers, 2004, 60 : 151-161
    [40]赵婷,磷酸铵镁化学沉淀法在处理氨氮废水中的研究进展,安全与环境工程. 2007, 14(1): 61-64
    [41]张鹏,周琪. MAP法中镁沉淀药剂的对比.工业水处理, 2007, 27(11): 23-25
    [42] I. STRATFUL, M. D. SCRIMSHAW, J. N. LESTER. Condition Influencing the Precipitation of Magnesium Ammonium Phosphate. Water science and technology, 2001, 35(17): 4191-4194
    [43]吴立,孙力平,李志伟.化学沉淀法处理高浓度氨氮废水的试验研究.四川环境, 2009, 28(1): 24-26
    [44]胡红伟. MAP法处理高浓度氨氮废水的影响因素分析.环境科学与管理, 2008, 33(1): 118-120
    [45]郝瑞刚,谭燕妮,陈春燕. MAP法去除焦化废水氨氮.科技情报开发与经济, 2006, 16(2): 144-146
    [46]李晓燕,胡红伟. MAP法处理焦化氨氮废水的实验研究.平顶山工学院学报, 2008, 17(3): 32-38
    [47]邵文妹,宋玉,黄仁华.鸟粪石沉淀法在汽油精炼废水处理中的应用.工业水处理, 2009, 29(3): 52-54
    [48]庞会从,冯素敏,黄群贤.物化法去除垃圾渗滤液中氨氮综述.河北工业科技, 2006, 23(2): 128-129
    [49]李艳春. UASB/接触氧化工艺处理玉米淀粉废水研究.气象与环境学报, 2009, 25(1): 68-71
    [50]金建华,柴晓煜.水解酸化-生物接触氧化法处理印钞废水的挂膜试验研究.江苏环境科技, 2007, 20(1): 17-19
    [51] K. KUMMER, S. V. MERSCH. Biodegradability of some Antibiotics, Elimination of the Genotoxicity and Affection of Wastewater Bacteria in a Simple Test. Chemosphere, 2000, 40(7): 701-710
    [52]牛天新,郑洁敏,宋亮.生物接触氧化法的研究与应用进展.杭州农业科技, 2008, (4): 27-32
    [53]王国平,邹联沛. UASB-好氧膜生物反应器组合工艺处理抗生素废水.上海大学学报(自然科学版), 2006, 12(3): 316-319
    [54]李静,姚传忠.厌氧-好氧组合工艺处理制药废水的试验研究.工业水处理, 2004, 4(1): 24-26
    [55]朱琳娜,吴超,何争光. Fenton试剂法处理难生物降解有机废水最新进展.能源技术与管理, 2009, 2: 59-62
    [56]陈胜兵,何少华,娄金生,等. Fenton试剂的氧化作用机理及其应用.环境科学与技术, 2004, 27(3): 105-107
    [57]贺江平,陆少峰,李景川等.H2O2试剂在印染中的应用前景研究.印染助剂,2004,21(4):27-31
    [58] W. Caserot.Fenton's Peroxidation and Coagulation Processes for the Treatment of Combined Industrial and Domestic Wastewater.Journal of Hazardous Materials,2006,B136:961-966
    [59]欧丹,吕建伟. Fenton法预处理合成制药废水研究.湖南有色金属, 2009, 25(2): 49-51
    [60] A. ALATONI, S. DOGRUEL. Pret-reatment of Penicillin Formulation Effluent by Advanced Oxidation Processes. Journal of Hazardous Materials, 2004, 112(12):105-113
    [61]徐美娟,王启山. Fenton试剂用于制浆造纸工业废水处理的高级氧化剂.国际造纸, 2005, 24(1): 48-53
    [73] V KAVITHA, K PALANIVELU. Destruction of cresols by Fenton oxidation process. Water Research, 2005, 39(13): 3062-3072
    [62]孟庆尧,邓德才,刘美艳.皮革与化工. 2009, 26(3): 34-36
    [63]苏荣军,陆占国,陈平. Fenton试剂深度处理胃必治制药废水.工业用水与废水, 2008, 39(3): 68-91
    [64] M. I. BADAWY, G. M. YHALY, T. A. GAD-ALLAH. Advanced Oxidation Processes for the Removal of Organophosphorus Pesticides from Wastewater. Desalination, 2006, 194(1/2/3): 166-175
    [65] A. BURBANO, D. DIONYSIOU, M. T. SUIDAN, et al. Oxidation Kinetics and Effect of pH on the Degradation of MTBE with Fenton Reagent. Water Research, 2005, 39(1): 107-118
    [66]左晨燕,何苗,张彭义. Fenton氧化/混凝协同处理焦化废水生物出水的研究.环境科学, 2006, 27(11): 2201-2205
    [67] K. EAKALAK, B. W. ROGER, T. M. HSU, et al. Mineralization and Biodegradability Enhancement of Low Levelp-nitrophenol in Water Using Fenton’s Reagent. Journal of Environmental Engineering,2005, 131(2): 327-332
    [68]刘剑玉,汪晓军. Fenton化学氧化法深度处理精细化工废水.环境科学与技术, 2009, 32(5): 141-143董蓓,颜家保. Fenton试剂·OH生成率的影响因素研究.化学工程师, 2009, 162(3): 14-16
    [69] Y. ZHANG, N. Ren, X. LIU, et al. Study on Application of Fenton Oxidation Method in theTreatment of Medicine Wastewater. High Technology Letters, 2005, 11(2): 221-225
    [70]刘冬莲,黄艳斌.·OH的形成机理及在水处理中的应用.环境科学与技术, 2003, 26(1): 44-46
    [71] R. BOUSSAHELA, D. HARIKB, M. MAMMA. Degradation of Obsolete DDT by Fenton Oxidation with Zero-valent Iron. Desalination, 2007, 206(13): 369-372
    [72]班福忱,李承斌. Fenton试剂法处理苯酚废水的研究.化工技术与开发, 2009, 38(4): 47-49

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700