用户名: 密码: 验证码:
基于肠细胞生长及健脾中药效应的RPS20基因功能鉴定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景和目的
     脾虚证是中医辨证的常见证型,现代医学认为脾虚证的临床表现多与消化吸收和代谢功能异常相关,国内外学者从消化系统、免疫系统、物质能量代谢等角度对脾虚证进行了大量的探索研究,初步阐释脾虚证的现代病理生理学基础。由于中医证候具有系统性和复杂性,局部的研究难以全面地反映脾虚证的本质。近年来,基于基因组学技术的中医证候基因差异表达谱研究,可从整体水平反映中医证候的生物学基础,应用基因芯片等技术对中医证候差异表达基因的探讨分析为阐明中医证候的本质提供了新的思路和方法,并取得了一定的进展。
     本实验室在前期课题对慢性浅表性胃炎脾虚证患者胃粘膜基因差异表达谱的研究中发现,脾虚证患者核糖体蛋白S20(RPS20)等基因表达出现下调趋势,并通过荧光定量PCR验证了RPS20等基因的表达下调呈阳性结果。后续对RPS20基因的体外功能研究结果初步表明核糖体蛋白基因在脾虚证发生发展过程中可能具有重要作用,RPS20基因RNA干扰后大鼠小肠上皮细胞(IEC-6)的形态结构发生改变,细胞的迁移、增殖能力受到抑制,提示RPS20基因表达下调可能影响小肠上皮细胞的消化吸收和粘膜损伤修复功能。此外通过小鼠结肠腺癌细胞(CT26)筛选了针对小鼠RPS20基因的RNA干扰有效序列,重组构建慢病毒RNA干扰表达载体,以期在动物体内对RPS20基因进行后续的功能研究。
     本研究将在前期研究的基础上进一步开展RPS20基因的功能鉴定,通过考察益气健脾中药对PRS20基因RNA干扰后IEC-6细胞受损的形态和功能的作用,从“药物作用”的角度反证前期的研究结果,进一步探讨研究RPS20的基因功能,以支持课题组前期的研究发现。此外,根据前期构建的RNA干扰表达载体包装RNA干扰慢病毒,考察其转染后对CT26细胞生长的影响,进一步验证前期所筛选的RNA干扰序列的有效性,并为后续在小鼠体内采用RNA干扰技术进行RPS20基因功能研究提供技术参考。
     研究方法
     1.采用siRNA转染IEC-6细胞对RPS20基因进行RNA干扰,给予益气健脾中药提取物作用后,检测IEC-6细胞的增殖和迁移能力、细胞形态结构、RPS20表达情况和细胞内的多胺含量。
     (1)IEC-6细胞生长情况的考察:分别采用细胞计数法和xCELLigence实时细胞分析仪(RTCA)考察IEC-6细胞的生长曲线,为后续实验选择合适的细胞接种密度和实验干预时间点提供参考。
     (2)选择RNA干扰的转染条件:在前期合成的siRNA干扰序列的基础上加入荧光表达序列,设置不同的转染条件,采用RTCA检测转染后IEC-6细胞的生长情况,以转染后细胞的生长情况直接反映RNA干扰的效果,并结合转染后细胞的荧光表达情况选择合适的转染条件。
     (3)健脾中药对IEC-6细胞增殖能力的作用:采用RTCA检测益气健脾中药黄芪、甘草、党参提取物对正正常IEC-6细胞和RNA干扰后IEC-6细胞增殖能力的影响,并选择作用效果较明显的中药提取物进行后续实验研究。
     (4)健脾中药对IEC-6细胞迁移能力的作用:采用IEC-6细胞划痕损伤迁移模型,研究黄芪提取物对正正常IEC-6细胞和RNA干扰后IEC-6细胞在划痕损伤后迁移能力的影响。
     (5)健脾中药对IEC-6细胞形态结构的作用:分别采用光学显微镜和透射电镜观察RNA干扰和给予黄芪提取物作用后IEC-6细胞形态和结构的变化情况,考察中药对RNA干扰后IEC-6细胞受损的形态结构的恢复作用。
     (6)健脾中药对IEC-6细胞RPS20表达水平的作用:分别采用荧光定量PCR和Westernblot检测RNA干扰和给予黄芪提取物作用后IEC-6细胞中RPS20mRNA和蛋白的表达水平。
     (7)健脾中药对IEC-6细胞中多胺含量的影响:对RNA干扰和黄芪提取物作用后的IEC-6细胞进行样品处理,采用苯甲酰氯柱前衍生反相高效液相色谱法检测各样品中精脒的含量。
     2.RNA干扰慢病毒对CT26细胞生长的影响:将前期重组构建的针对CT26细胞的慢病毒表达载体与慢病毒包装试剂共转染293FT细胞,包装获得RNA干扰慢病毒,测定病毒滴度并将其转染CT26细胞,采用RTCA检测转染后细胞的生长情况,研究RNA干扰慢病毒对CT26细胞生长的影响。
     研究结果
     1.RNA干扰IEC-6细胞和益气健脾中药的作用:
     (1)IEC-6细胞的生长情况:细胞计数法绘制以1×104cells/well的密度接种于24孔培养板中IEC-6细胞的生长曲线,细胞从接种的第3天开始进入对数生长期,接种后第10天进入缓慢生长的平台期;RTCA检测得到不同接种密度的23代和26代IEC-6细胞的生长曲线,在相同接种密度条件下,23代和26代的IEC-6细胞生长趋势相似,随着接种密度的增大,细胞生长达到平台期的时间缩短。
     (2)RNA干扰的转染条件:RTCA检测结果发现高剂量和中剂量的转染试剂(Lipofectamine2000)对细胞生长有明显毒害作用;不同剂量组合的转染混合物在转染初期对IEC-6细胞生长的抑制作用相近,但在相同转染试剂用量时siRNA剂量的增加能延长对细胞生长抑制作用的持续时间。结合荧光表达的情况,最后选择RNA干扰的转染条件为:E-Plate16培养板中每孔加入0.3μL的Lipofectamine2000和16pmol的siRNA(浓度分别为1.5mg/L和80nmol/L)。
     (3)健脾中药对IEC-6细胞增殖能力的作用:黄芪和党参提取物能促进正正常IEC-6细胞的增殖,甘草对正常IEC-6细胞的作用不明显;RNA干扰后IEC-6细胞的增殖能力下降,而黄芪、甘草和党参提取物都能有效促进RNA干扰后IEC-6细胞的增殖,其中黄芪的效果较优。结果表明健脾中药可在一定程度上逆转RPS20基因干扰引发的IEC-6细胞增殖能力下降的病理表现。
     (4)健脾中药对IEC-6细胞迁移能力的作用:高剂量和中剂量的黄芪提取物能有效促进正常IEC-6细胞在划痕损伤后的迁移能力;RNA干扰后IEC-6细胞的迁移能力显著下降,经黄芪提取物作用后其迁移能力较转染模型组显著提高,但未能恢复到正正常水平。结果表明RPS20基因干扰后IEC-6细胞受损的迁移能力可在健脾中药作用后得到一定程度的恢复。
     (5)健脾中药对IEC-6细胞形态结构的作用:光学显微镜观察发现RNA干扰后IEC-6细胞数目减少,细胞形态改变,细胞间隙增大,给予黄芪提取物作用后细胞受损的形态得到不同程度的改善;透射电镜观察发现RNA干扰后IEC-6细胞胞浆中空泡和溶酶体数目增多,线粒体减少,经治疗后细胞受损结构得到一定程度的改善。
     (6)健脾中药对IEC-6细胞RPS20表达的作用:RNA干扰后IEC-6细胞中RPS20mRNA表达被显著抑制,给予黄芪提取物作用后其表达量有所提高,其中中剂量组与转染模型组比较具有显著差异性;RPS20蛋白表达在RNA干扰后被显著抑制,但经健脾中药作用后RPS20蛋白表达没有提高。
     (7)健脾中药对IEC-6细胞中多胺含量的影响:精脒对照品的回归方程为Y=25.69X—1.337,相关系数R=0.9998,精脒对照品在0.7600~7.600nmol范围内线性良好。检测结果RNA干扰后IEC-6细胞中精脒含量比正正常组增加,但无统计学意义;经黄芪提取物作用后的各组细胞中精脒含量较正正常组显著增加,但与RNA干扰模型组比较无明显差异。
     2.RNA干扰慢病毒对CT26细胞生长的影响:慢病毒滴度为1.2×105TU/mL,RNA干扰慢病毒转染使CT26细胞指数的增长受到明显抑制,转染后30h细胞指数抑制率达到82.24%。结果表明根据前期筛选的RNA干扰序列包装获得的慢病毒转染后能有效抑制CT26细胞中RPS20的表达从而抑制细胞的生长。
     结论
     根据xCELLigence RTCA检测结果和细胞荧光表达情况选择的RNA干扰条件转染IEC-6细胞,可有效抑制IEC-6细胞RPS20的表达,并抑制细胞的增殖和迁移能力,影响细胞的形态结构;给予益气健脾中药黄芪的提取物作用后可提高RNA干扰后IEC-6细胞中RPS20mRNA的表达,促进细胞的增殖和迁移,并在一定程度上改善细胞受损的形态结构;给予益气健脾中药作用后,能改善RPS20表达异常所导致的细胞形态和功能的异常,提示RPS20可能与脾虚证的症状表现之间存在一定联系,本研究从药物作用的角度进一步支持课题组前期对脾虚证差异表达基因的研究发现及对RPS20在IEC-6细胞的生物功能鉴定的研究结果;本研究可为中医证候差异表达基因的功能研究提供参考。
     本研究还验证了前期针对CT26细胞重组构建的慢病毒表达载体可成功用于包装RNA干扰慢病毒,以其转染CT26细胞能有效抑制细胞的生长,提示RNA干扰慢病毒可能用于小鼠体内RNA干扰进行RPS20功能鉴定的后续研究。
Background and Objective
     Spleen deficiency is a common syndrome of Chinese medicine. In modern medicine, the clinical symptoms of spleen deficiency are throught to be relevant to the abnormal functions of digestion, absorption and metabolism. To elucidate the pathophysiology of spleen deficiency, scholars have investigated the syndrome of spleen deficiency from the perspectives of digestive system, immune system, material and energy metabolism, et al. But the recent studies can't fully reflect the essence of spleen deficiency due to the systemic and complex nature of Chinese medicine syndromes. In recent years, reseaches on the differentially expressed gene profiles of Chinese medicine syndromes develops based on the genomic technology, which can reflect the biological basis of Chinese medicine syndromes from the overall level. Exploration of differentially expressed genes in Chinese medicine syndromes based on gene microarray provides new thoughts and methods to interpret the essence of Chinese medicine syndromes and have made some progress.
     In the previous research project on the differentially expressed gene profile of chronic superficial gastritis patients with spleen deficiency syndrome, investigators of our lab found that genes of ribosomal proteins such as ribosomal protein S20(RPS20) showed down-regulated tendency, which was validated by fluorescence quantitative PCR. Subsequently we carried out researches in vitro to identify the gene functions of RPS20on rats'small intestinal epithelial cells (IEC-6) and the research results preliminarily showed that genes of ribosomal protein may play an important role in the process of the development of spleen deficiency syndrome. After RNA interference (RNAi) for RPS20gene, the morphology and structure of IEC-6cells were changed and the migration and proliferation function of IEC-6cells were both suppressed, which indicated that down-regulated expression of RPS20gene may influence the digestion and absorption function and mucosal repair function of intestinal epithelial cells. Besides, in order to identify the gene functions of RPS20in vivo in the future, investigator selected the effective sequence of RNAi for RPS20gene on mice's colonic tumor cells (CT26), recombinated and constructed the RNAi lentiviral vectors for RPS20.
     Based on the previous studies, firstly we aim to carry out further investigations on the gene function of RPS20in this thesis. We will investigate the effects of Chinese medicines that nourish Qi invigorate spleen on the impaired morphology and function of IEC-6after RNAi for RPS20gene, to prove the previous study results from the viewpoint of the medicine effect and to support the findings in the previous researches. Secondly we aim to verify the validity of RNAi sequence for RPS20previously selected on CT26cell and to provide reference for further functional identification of RPS20by RNAi in mice, by producing lentivirus of RNAi for RPS20based on the recombinant lentiviral vector, transfecting CT26cells with it and investigating its effect on the growth of CT26cell.
     Methods
     1. Transfect IEC-6cells with siRNA and treat them with the extract from Chinese medicines that nourish Qi to invigorate spleen. And then determine proliferation, migration, morphology and structure, RPS20expression and polyamine content of IEC-6cells.
     (1) Investigation of the growth conditions of IEC-6cells:Investigate the growth curves of IEC-6cells by the methods of cell counting and xCELLingence real-time cell analyzer (RTCA), to provide reference for choosing the appropriate cell planting density and the right time for interventiont in the following experiments.
     (2) Selection of the transfection condition of RNA interference:Add a sequence expressing fluorescence into the RNAi sequence previously selected. Monitor the growth status of IEC-6cells transfected by different transfection mixtures with xCELLingence RTCA, which can reflect the effect of RNA interference. Select the suitable transfection condition according to the growth status and the fluorescence expression of IEC-6cells.
     (3) Effect of Chinese medicine on proliferation of IEC-6cells:Use xCELLingence RTCA to study the effects of extracts from Radix Astragali, Radix Glycytthizae and Radix Codonopsis on proliferation of normal IEC-6cells and that of IEC-6cells after RNA interference.
     (4) Effect of Chinese medicine on migration of IEC-6cells:Use the migration model of scarification to study the effects of extract from Radix Astragali on migration of normal IEC-6cells and that of IEC-6cells after RNA interference.
     (5) Effect of Chinese medicine on morphology and structure of IEC-6cells:Observe the morphology and structure of IEC-6cells after RNA interference and after treatment with extract from Radix Astragali by phase contrast microscope and transmission electron microscope respectively to investigate the restoring effect of Chinese medicine on the impaired morphology and structure of IEC-6cells after RNA interference.
     (6) Effect of Chinese medicine on RPS20expression of IEC-6cells:Determine the RPS20mRNA and protein expression of IEC-6cells after RNA interference and after treatment with extract from Radix Astragali by quantitative RT-PCR and Westerblot respectively.
     (7) Effect of Chinese medicine on polyamine content of IEC-6cells:Prepare the samples for HPLC determination with IEC-6cells after RNA interference and after treatment with extract from Radix Astragali. And determine the content of spermidine in the samples with the method of HPLC pre-column derivatization.
     2. Effect of lentivirus of RNAi for RPS20on the growth of CT26cells:Co-transfect293FT cells with the recombinant lentiviral vectors against RPS20in CT26cells and packing reagents to produce lentivirus of RNAi for RPS20. Determine the titer of lentiviral stocks and transfect CT26with them. Monitor the growth of CT26post-transfection by xCELLigence RTCA to investigate the effect of lentivirus of RNAi on the growth of CT26cells.
     Results
     1. RNAi for RPS20of IEC-6cells and the effects of Chinese medicines that nourish Qi to invigorate spleen:
     (1) The growth conditions of IEC-6cells:The growth curve of IEC-6cells planted with the density of1×104cells/well in the24-well plate was drawn by cell counting, which showed the cells grew into the logarithmic phase from the3rd day after planted and reached the plateau from the10th day. By xCELLigence RTCA, the growth curves of IEC-6cells of different passages (23rd and26th) planted in different densities were obtained. Cells of23rd and26th passages showed similar growth curves in the same planting density. As the planting density increased, the time of which cells'growth reached the plateau shortened.
     (2) The transfection condition of RNA interference:The results from RTCA showed the transfection agent (Lipofectamine2000) of high and medium dosage was significantly harmful to the cells. Transfection mixtures of different dose-combinations showed similar inhibitory effects on the growth of IEC-6cells at the beginning of transfection, but the inhibitory effects of mixtures with higher dosage of siRNA lasted longer. Considering the fluorescence expression with the growth status of the cells, we selected the transfection condition as follow:0.3μL Lipofectamine2000and16pmol siRNA per well in the E-plate, the concentrations of which were1.5mg/L and80nmol/L respectively.
     (3) Effect of Chinese medicine on proliferation of IEC-6cells:Extracts from Radix Astragali and Radix Codonopsis promoted proliferation of normal IEC-6cells, but the effect of Radix Glycytthizae on normal IEC-6cells was not significant. Proliferation of IEC-6cells after RNA interference was suppressed. Extracts from Radix Astragali, Radix Glycytthizae and Radix Codonopsis significantly promoted proliferation of IEC-6cells after RNA interference. The effect of Radix Astragali was better. The results showed that Chinese medicines that invigorates spleen can restore the pathology of depressed proliferation of IEC-6cells after RNA interference.
     (4) Effect of Chinese medicine on migration of IEC-6cells:High and medium dosage of extract from Radix Astragali could effectively promote migration of normal IEC-6cells which were wounded of scarification. Migration of IEC-6cells after RNA interference was suppressed, which was significantly enhanced after treatment with extract from Radix Astragali, compared with the transfected group. But it wasn't restored to the normal level. The results showed that the impaired function of migration of IEC-6cells after RNA interference can be restored to some extent by Chinese medicines that invigorates spleen.
     (5) Effect of Chinese medicine on morphology and structure of IEC-6cells:It was observed by optical microscope that ceH numbers of IEC-6cells were decreased, cell morphology was changed and intercellular spaces were enlarged after RNA interference, which was improved after treatment with extract from Radix Astragali. The increasing of endochylema vacuolization and lysosome numbers and the reduction of mitochondria was observed by transmission electron microscope. The impaired ultrastructure of cells was restored to some extent after treatment.
     (6) Effect of Chinese medicine on RPS20expression of IEC-6cells:The expressions of RPS20mRNA of IEC-6cells were significantly inhibited after RNA interference, which could be enhanced after treatment with extract from Radix Astragali. The group of medium dosage showed significant difference compared with the group of transfection. The expressions of RPS20protein were also inhibited markedly after RNA interference, but they weren't elevated after treatment.
     (7) Effect of Chinese medicine on polyamine content of IEC-6cells:The regression equation of spermidine was Y=25.69X-1.337and its linear correlation coefficient R=0.9998, which showed spermidine was of good linearity in the range from0.7600to7.600nmol. The contents of spermidine of IEC-6cells after RNA interference were increased but without significant difference compared with control group. The contents of spermidine of IEC-6cells in groups treated with extract from Radix Astragali were markedly higher than that of control groups, but without significant difference compared with the transfection group.
     2. Effect of lentivirus of RNAi for RPS20on the growth of CT26cells:The titer of lentiviral stocks was1.2X105TU/mL. The increasing of cell index of CT26cells was significantly inhibited after transfected by the lentivirus of RNAi and the inhibitory rate of cell index reached82.24%30hours after transfection. The results showed that the RNAi sequence selected previously can be constructed into lentivirus successfully and inhibit the growth of CT26cells after transfection effectively.
     Conelusions
     Transfecting IEC-6cells by the RNA interference condition selected based on the results of xCELLigence RTCA determination and cell fluorescence expression can effectively inhibit RPS20expression of IEC-6cell and also inhibit its ability of proliferation and migration and change its morphology and structure. After treatment with extract from Radix Astragali, the expression of RPS20mRNA of IEC-6cell can be enhanced, the ability of proliferation and migration of IEC-6cell can be promoted and the impaired morphology and structure of IEC-6cell can be restored. The result that the abnormal morphology and function of IEC-6cell initiated by deficient expression of RPS20can be improved after treatment with Chinese medicine that nourishes Qi to invigorate spleen, suggests that RPS20may be relevant to the development of spleen deficiency syndrome and further verified the findings of our previous research on the differentially expressed genes of spleen deficiency syndrome and the results of RPS20functional identification of our research team. Our research can provide a reference for functional identification on differentially expressed genes of Chinese medicine syndromes.
     Results in this thesis also confirmed that the recombinant lentiviral vectors for RPS20on CT26cells can be used to produce lentiviral stock of RNAi successfully and transfecting CT26cells with it can inhibit cell growth effectively, which suggests that lentivirus of RNAi may be used to identify RPS20function in the further study in mice.
引文
[1]陈蔚文,王颖芳,劳绍贤,等.脾气虚证患者基因差异表达研究[J].中国病理生理杂志,2008,24(1):148-152.
    [2]王静.脾气虚证相关基因RPS20在IEC-6细胞的生物功能鉴别[D].博十学位论文.广州:广州中医药大学,2009.
    [3]高小玲.CT26细胞RPS20 miRNA干扰及体内干扰条件的建立[D].博士学位论文.广州:广州中医药大学,2010.
    [4]劳绍贤,赵瞻元,王建华,等.脾虚证胃肠粘膜线粒体研究及其临床意义[J].广州中医学院学报,1991,8(4):264.
    [5]曹小玉,杨智梅,彭成.四君子颗粒抗脾虚动物胃肠细胞损伤的研究[J].成都中医药大学学报,2000,23(3):32-33.
    [6]刘金元,杨冬娣,邱琼新,等.强肌健力口服液对脾虚小鼠胃超微结构的影响[J].中华实用中西医杂志,2007,20(8):735-736.
    [7]杨冬娣,刘金元,陈津岩,等.强肌健力口服液对脾虚小鼠小肠超微结构的影响[J].中华实用中西医杂志,2007,20(17):1515-1516.
    [8]潘德军,吴国英.儿童唾液淀粉酶活性与脾虚证的关系探讨[J].实用医学杂志,2006,22(24):2920.
    [9]杨维益,梁嵘,陈家旭,等.脾气虚证与胰腺外分泌功能关系的临床研究[J].中国中西医结合杂志,1996,16(7):414-415.
    [10]张安仁,朱玉珍,王文春,等.艾灸对脾虚型慢性腹泻患者唾液淀粉酶及血清SIgA含量的影响[J].西南军医,2006,8(3):1-3.
    [11]林传权,陈玉龙,李茹柳,等.利血平对大鼠唾液蛋白白分泌的影响[J].世界华人消化杂志,2009,17(2):1702-1706.
    [12]陈玉龙,张海艇,李茹柳,等.四君子汤对利血平致脾虚大鼠唾液淀粉酶分泌的影响[J].中药新药与临床药理,2010,21(5):465-467.
    [13]胡琳琳,高云芳,何志仙.三种脾虚证模型小鼠消化吸收功能改变的比较研究[J].中国中西医结合杂志,2005,25(9):813-816.
    [14]郭文峰,陈蔚文.脾虚证与营养物质吸收[J].新中医,2006,38(8):8-10.
    [15]李常青.唾液淀粉酶活性比值、D-木糖排泄率和胃电图三者合参对脾气虚证的研究[J].湖南中医学院学报,1998,18(2):8-9.
    [16]陈永辉.健脾止泻颗粒对脾虚泄泻患儿消化吸收与肠道局部免疫功能的影响[J].中国中西医结合消化杂志,2001,9(2):90-91.
    [17]郭文峰,高小玲,李茹柳,等.利血平致大鼠脾虚模型尿D-木糖排泄率与肠黏膜三磷酸腺苷水平的研究[J].中国中西医结合消化杂志,2008,16(4):211-214.
    [18]高小玲,郭文峰,李茹柳,等.四君子汤对脾虚大鼠尿木糖排泄率及肠黏膜ATP的影响[J].中药材,2009,32(8):1242-1245.
    [19]李志,肖国辉,徐州,等.香砂六君颗粒对脾虚患者及大鼠胃肠运动的调节作用[J].世界华人消化杂志,2009,17(5):512-515.
    [20]宋述财,邓中炎,陈群,等.脾虚湿困及其它脾胃虚实证的胃肠道症状与胃电频谱改变[J].广东医学,1997,18(11):757-759.
    [21]张向菊,劳绍贤,罗琦,等.慢性浅表性胃炎脾胃湿热证患者胃电图与胃排空的关系[J].广州中医药大学学报,2001,18(1):43-45.
    [22]曲瑞瑶,曲柏林,曾文红,等.大鼠实验性脾虚证胃电波和胃运动波的研究[J].中国中西医结合杂志,1994,14(3):156.
    [23]宋于刚,姚永莉,刘利民,等.慢性胃病脾虚患者胃窦粘膜胃泌素细胞和分泌生长抑素细胞的变化及其意义[J].中国中西医结合消化杂志,2003,11(3):138-140.
    [24]张仲林,臧志和,钟玲,等.六君子汤对脾虚证大鼠胃肠激素影响的实验研究[J].中成药,2010,32(4):659-661.
    [25]陈贤坤,马媛媛,赵慧,等.强肌健力方及黄芪多糖对脾虚大鼠胃肠激素水平的影响[J].中药新药与临床药理,2011,22(6):590-593.
    [26]刘芳,任平,李月彩.脾虚证与胆囊收缩素的关系[J].中国中西医结合消化杂志,2002,10(5):262-264.
    [27]刘芳,任平,李月彩.脾气虚证与MOT的关系[J].中医药学刊,2004,22(11):2028-2030.
    [28]刘健,戴小华,刘春丽,等.脾气虚证蛋白质代谢动态变化的临床与实验研究[J].中国中医基础医学杂志,1998,4(5):35-37.
    [29]陈芝喜,徐志伟,刘小斌,等.强肌健力口服液影响脾虚小鼠蛋白质合成的效应[J].中国临床康复,2006,10(35):97-99.
    [30]王艳杰,刘日恒,柳春,等.脾气虚证模型大鼠葡萄糖激酶mRNA表达变化的实验研究[J].辽宁中医药大学学报,2007,9(2):145-146.
    [31]马中建,刘红丽.健脾调脂饮治疗高脂血症的临床观察[J].中医药导报,2008,14(5):34-35.
    [32]张晨,赵冰,杨秀捷.健脾降浊方对脾虚型高脂血症大鼠脂质代谢影响的实验研究[J].湖北中医学院学报,2005,7(1):7-10.
    [33]杨维益,梁嵘,李峰.脾气虚证与乳酸代谢[J].河南中医,1997,17(1):23-24.
    [34]顾一煌,任建宁,金宏柱,等.艾灸对小鼠力竭运动后血乳酸影响的观察[J].中医药信息,2008,25(6):48-49.
    [35]顾一煌,金宏柱,吴云川,等.不同的艾灸量对运动后血乳酸影响的观察[J].辽宁中医杂志,2007,34(11):1639-1640.
    [36]王进,张茂林,邱幸凡.补脾法对脾虚证大鼠(59)Fe代谢的药代动力学变化的影响[J].中医药信息,2006,23(3):62-64.
    [37]王进,张茂林,邱幸凡.补脾法对脾虚证大鼠(59)Fe代谢在各器官组织转运分布的影响[J].湖北中医学院学报,2007,9(3):20-22.
    [38]梁民里道,陈英洋,陈小花,等.脾气虚证血清锌、铜、钙、镁、铁的变化及其意义[J].中国医药学报,1992,7(1):22-23.
    [39]陈继业,张萍.脾主运化,抑酶主运化?——论中医藏象理论脾的功能[J].现代中西医结合杂志,2006,15(15):2029-2030.
    [40]李郑生.慢性萎缩性胃炎脾虚证300例分析与实验研究[J].中医药学刊,2001,19(4):367-370.
    [41]薛丽莉,薛金,杜晨光,等.益脾止泻汤对脾虚泄泻大鼠的作用机制研究[J].中国中医急症,2009,18(8):1303-1304.
    [42]刘旺根,王红霞,王雪萍.黄芪建中汤对大鼠脾虚证胃粘膜酶组织化学的影响[J].浙江中医杂志,2004,39(8):355-356.
    [43]刘友章,宋雅芳,劳绍贤,等.胃脘痛患者胃黏膜超微结构研究及中医“脾-线粒体相关”理论探讨[J].中华中医药学刊,2007,25(12):2439-2442.
    [44]宋雅芳,王汝俊,刘友章,等.健脾益气中药对脾虚大鼠肝组织线粒体功能的影响[J].中药新药与临床药理,2009,20(5):423-426.
    [45]王静,王兴娟.健脾益气方对脾气虚型更年期综合征糖脂影响的临床研究[J].复旦学报(医学版),2008,35(6):908-913.
    [46]夏天,李刚,王宗仁,等.脾虚大鼠下丘脑垂体甲状腺轴功能的变化[J].安徽中医学院学报,2001,20(4):42-45.
    [47]李刚,夏天,姬统理.脾虚证大鼠下丘脑-垂体-甲状腺轴功能及下丘脑、胸腺细胞核T3受体水平的变化[J].中国中医基础医学杂志,2002,8(10):58-62.
    [48]陈芝喜,徐志伟,刘小斌,等.强肌健力饮对脾虚大鼠性激素水平的影响[J].放射免疫学杂志,2008,21(1):37-41.
    [49]陈天娥,王秀琴,张华,等.大鼠脾气虚胃溃疡证病结合模型胃肠粘膜局部免疫-神经-内分泌网络的变化[J].解剖学报,2003,34(4):441-444.
    [50]Zhao N, Zhang W, Guo Y, et al. Effects on neuroendocrinoimmune network of Lizhong Pill in the reserpine induced rats with spleen deficiency in traditional Chinese medicine [J]. J Ethnopharmacol, 2011,133(2):454-459.
    [51]肖洪玲,任友权,龙子江,等.小儿健脾颗粒对利血平型脾虚小鼠免疫功能的影响[J].中国中医急症,2008,17(5):671,673.
    [52]蔡琨,俞琦,王平,等.调节肠道微生态对“脾虚”大鼠红细胞免疫的影响[J].甘肃中医,2006,19(8):44-45.
    [53]孙理军,张登本,李怀东,等.大鼠脾虚模型的唾液免疫学研究[J].陕西中医,2004,25(7):665-666.
    [54]刘洪尊,冯端浩,高杉,等.3种脾虚小鼠红细胞膜流动性变化的研究[J].中国中西医结合消化杂志,2003,11(1):15-17.
    [55]修宗昌,唐永祥,潘慧人.脾虚大鼠血及延髓VIP/NO信号转导通路变化[J].四川中医,2006,24(2):29-30.
    [56]Barraclough DL, Sewart S, Rudland PS, et al. Microarray analysis of suppression subtracted hybridisation libraries identifies genes associated with breast cancer progression [J]. Cell Oncol, 2010,32(1-2):87-99.
    [57]Chung KW, Kim SW. Gene expression profiling of papillary thyroid carcinomas in Korean patients by oligonucleotide microarrays [J]. J Korean Surg Soc,2012,82(5):271-280.
    [58]Coda A, Icen M, Smith JR, et al. Global transcriptional analysis of psoriatic skin and blood confirms known disease-associated pathways and highlights novel genomic "hot spots" for differentially expressed genes [J]. Genomics,2012.
    [59]张莹,初同伟.基因表达谱芯片筛选强直性脊柱炎差异表达基因的研究[J].第三军医大学学报,2011,33(10):1044-1047.
    [60]张立华,高学功.中医“证”与“辨证”之浅见[J].时珍国医国药,2002,13(7):412-413.
    [61]朱明丹,杜武勋,姜民,等.中医证候与基因、蛋白质、代谢组学研究思路探讨[J].中国中医基础医学杂志,2010,16(1):69-71.
    [62]王米渠,冯韧,严石林,等.基因表达谱芯片与中医寒证的7类相关基因[J].中医杂志,2003,44(4):288-289.
    [63]吴斌,谭从娥,李炜弘,等.一个家系虚寒证的基因表达谱研究[J].上海中医药杂志,2006,40(11):47-49.
    [64]吴斌,杨丽萍,张天娥,等.热药疗寒的基因表达谱研究[J].中国中药杂志,2006,31(11):914-917.
    [65]杨丽萍,陈四清,丁维俊,等.家系虚寒证与非家系虚寒证基因表达谱比较研究[J].中华中医药杂志,2011,26(7):1478-1481.
    [66]韩冰冰,王世军.比较虚寒证与虚热证模型大鼠肝全基因表达谱的差异[J].北京中医药大学学报,2011,34(10):673-675.
    [67]韩冰冰,王世军,张发艳,等.基因芯片技术研究附子对虚寒证大鼠肝全基因表达谱的影响[J].中国中药杂志,2012,37(4):500-504.
    [68]吴元胜,范瑞强,陈达灿,等.不同证型系统性红斑狼疮患者外周血基因表达谱差异初探[J].广州中医药大学学报,2004,21(4):241-246.
    [69]吕诚,肖诚,赵林华,等.寒热证候类风湿性关节炎患者外周血CD4+T淋巴细胞基因表达谱初步探索[J].中国中医基础医学杂志,2006,12(2):130-133.
    [70]下阶,杨保林,姜燕.冠心病血瘀证相关基因研究[J].世界科学技术,2005,7(1):16-19.
    [71]杨保林,王阶,姜燕.冠心病血瘀证相关基因b13的筛查和临床验证[J].中国中医基础医学杂志,2007,13(1):69-71.
    [72]马晓娟,殷惠军,陈可冀.血瘀证患者差异基因表达谱研究[J].中西医结合学报,2008,6(4);355-360.
    [73]李炜弘,王米渠,下刚,等,冠心病心阳虚证相关差异表达基因分析[J].现代中西医结合杂志,2004,13(24):3219-3222.
    [74]李泽庚,童佳兵,彭波,等.肺气虚证患者T淋巴细胞相关基因的表达研究[J].中华中医药杂志,2006,21(9):536-539.
    [75]李泽庚,童佳兵,彭波,等.慢性阻塞性肺疾病肺气虚证和肺阴虚证患者T淋巴细胞相关基因表达对比研究[J].中国中医药信息杂志,2007,14(12):9-11.
    [76]陈晓玲,高志芬,丁维俊.肾阳虚证患者血液生化、免疫指标与基因表达谱结果的对比研究[J].四川中医,2007,5(5):11-13.
    [77]谭从娥,下米渠.肾阳虚证免疫功能相关基因筛选及其表达分析[J].现代中西医结合杂志,2011,20(22):273]-2732.
    [78]丁汉荣,谭从娥,冯文哲,等.骨关节炎肾阳虚证信号转导差异表达基因分析[J].辽宁中医杂志,2006,33(10):1217-1220.
    [79]杨丽萍,王明臣,王米渠,等.基因芯片技术研究针灸对肾阳虚证骨关节炎患者免疫相关基因表达的影响[J].辽宁中医杂志,2006,33(3):257-258.
    [80]魏敏,赵晓山,孙晓敏,等.亚健康状态肾阳虚证基因差异表达研究[J].南方医科大学学报,2011,31(2):248-251.
    [81]倪红梅,何裕民,方盛泉,等.青少年肾阳虚体质差异表达基因的筛选研究探析[J].江苏中医药,2007,39(10):26-28.
    [82]李炜弘,雍小嘉,范怀昌,等.老龄肾阳虚证的差异表达基因谱分析[J].时珍国医国药,2009,20(5):1210-1212.
    [83]王肃,陈小野,邹世洁,等.利血平脾虚证模型大脑皮层基因表达谱变化的初步研究[J].中医药学刊,2003,21(9):1512-1515.
    [84]下肃,邹世洁,陈小野,等.利血平脾虚证模型海马基因表达谱变化的研究[J].现代中西医结合杂志,2004,13(7):841-844.
    [85]敖慧,彭成,林代华,等.参术胶囊治疗脾虚胃癌转移鼠模型的基因表达谱研究[J].云南中医学院学报,2010,33(1):7-11.
    [86]罗云坚,修宗昌,黄穗平,等.脾气虚证免疫相关基因组学机制初探[J].中国中西医结合杂志,2005,25(4):311-314.
    [87]Chen YL, Chen WW, Wang YF, et al. Bioinformatics research on chronic superficial gastritis of Pi-deficiency syndrome by gene arrays [J]. Chin J Integr Med,2009,15(5):341-346.
    [88]王颖芳,陈蔚文,劳绍贤,等.慢性胃炎脾气虚证与脾胃湿热证的差异表达基因比较[J].中国病理生理杂志,2008,24(2):320-324.
    [89]陈玉龙,陈蔚文,李茹柳,等.溃疡性结肠炎脾胃虚实证候核糖体蛋白基因表达研究[J].中国 中西医结合杂志,2011,31(5):603-607.
    [90]Wool IG. The structure and function of eukaryotic ribosomes [J]. Annu Rev Biochem,1979,48: 719-754.
    [91]Wool IG, Chan YL, Gluck A. Structure and evolution of mammalian ribosomal proteins [J]. Biochem Cell Biol,1995,73(11-12):933-947.
    [92]Uechi T, Tanaka T, Kenmochi N. A complete map of the human ribosomal protein genes:assignment of 80 genes to the cytogenetic map and implications for human disorders [J]. Genomics,2001,72(3): 223-230.
    [93]Kasai H, Nadano D, Hidaka E, et al. Differential expression of ribosomal proteins in human normal and neoplastic colorectum [J]. J Histochem Cytochem,2003,51(5):567-574.
    [94]Wool IG. Extraribosomal functions of ribosomal proteins [J]. Trends Biochem Sci,1996,21(5): 164-165.
    [95]de Jonge HJ, Fehrmann RS, de Bont ES, et al. Evidence based selection of housekeeping genes [J]. PLoS One,2007,2(9):e898.
    [96]Thorrez L, Van Deun K, Tranchevent LC, et al. Using ribosomal protein genes as reference:a tale of caution [J]. PLoS One,2008,3(3):e1854.
    [97]Warner J, McIntosh K. How common are extraribosomal functions of ribosomal proteins [J]. Molecular cell,2009,34(1):3-11.
    [98]He S, Guo GM, Liu FX, et al. Molecular analysis in combination with iodine staining may contribute to the risk prediction of esophageal squamous cell carcinoma [J]. J Cancer Res Clin Oncol,2008, 134(3):307-315.
    [99]Huang XP, Zhao CX, Li QJ, et al. Alteration of RPL14 in squamous cell carcinomas and preneoplastic lesions of the esophagus [J]. Gene,2006,366(1):161-168.
    [100]Sahin F, Qiu W, Wilentz RE, et al. RPL38, FOSL1, and UPP1 are predominantly expressed in the pancreatic ductal epithelium [J]. Pancreas,2005,30(2):158-167.
    [101]Luo LY, Herrera I, Soosaipillai A, et al. Identification of heat shock protein 90 and other proteins as tumour antigens by serological screening of an ovarian carcinoma expression library [J]. Br J Cancer, 2002,87(3):339-343.
    [102]Sengpiel V, Rost T, Gorogh T, et al. S19-mRNA expression in squamous cell carcinomas of the upper aerodigestive tract [J]. Anticancer Res,2004,24(4):2161-2167.
    [103]Welsh JB, Zarrinkar PP, Sapinoso LM, et al. Analysis of gene expression profiles in normal and neoplastic ovarian tissue samples identifies candidate molecular markers of epithelial ovarian cancer [J].Proc Natl Acad Sci U S A,2001,98(3):1176-1181.
    [104]Amsterdam A, Sadler KC, Lai K, et al. Many ribosomal protein genes are cancer genes in zebrafish [J]. PLoS Biol,2004,2(5):E139.
    [105]Lopez CD, Martinovsky G, Naumovski L. Inhibition of cell death by ribosomal protein L35a [J]. Cancer Lett,2002,180(2):195-202.
    [106]Da Costa L, Tchernia G, Gascard P, et al. Nucleolar localization of RPS19 protein in normal cells and mislocalization due to mutations in the nucleolar localization signals in 2 Diamond-Blackfan anemia patients:potential insights into pathophysiology [J]. Blood,2003,101(12):5039-5045.
    [107]Badhai J, Frojmark AS, E JD, et al. Ribosomal protein S19 and S24 insufficiency cause distinct cell cycle defects in Diamond-Blackfan anemia [J]. Biochim Biophys Acta,2009,1792(10):1036-1042.
    [108]Gazda HT, Grabowska A, Merida-Long LB, et al. Ribosomal protein S24 gene is mutated in Diamond-Blackfan anemia [J]. Am J Hum Genet,2006,79(6):1110-1118.
    [109]Cmejla R, Cmejiova J, Handrkova H, et al. Ribosomal protein S17 gene (RPS17) is mutated in Diamond-Blackfan anemia [J]. Hum Mutat,2007,28(12):1178-1182.
    [110]Song MJ, Yoo EH, Lee KO, et al. A novel initiation codon mutation in the ribosomal protein S17 gene (RPS17) in a patient with Diamond-Blackfan anemia [J]. Pediatr Blood Cancer,2010,54(4): 629-631.
    [111]Farrar JE, Nater M, Caywood E, et al. Abnormalities of the large ribosomal subunit protein, Rp135a, in Diamond-Blackfan anemia [J]. Blood,2008,112(5):1582-1592.
    [112]Doherty L, Sheen MR, Vlachos A, et al. Ribosomal protein genes RPS10 and RPS26 are commonly mutated in Diamond-Blackfan anemia [J]. Am J Hum Genet,2010,86(2):222-228.
    [113]Kenmochi N, Yoshihama M, Higa S, et al. The human ribosomal protein L6 gene in a critical region for Noonan syndrome [J]. J Hum Genet,2000,45(5):290-293.
    [114]Rujkijyanont P, Adams SL, Beyene J, et al. Bone marrow cells from patients with Shwachman-Diamond syndrome abnormally express genes involved in ribosome biogenesis and RNA processing [J]. Br J Haematol,2009,145(6):806-815.
    [115]Huichalaf C, Schoser B, Schneider-Gold C, et al. Reduction of the rate of protein translation in patients with myotonic dystrophy 2 [J]. J Neurosci,2009,29(28):9042-9049.
    [116]Wang G, Inaoka T, Okamoto S, et al. A novel insertion mutation in Streptomyces coelicolor ribosomal S12 protein results in paromomycin resistance and antibiotic overproduction [J]. Antimicrob Agents Chemother,2009,53(3):1019-1026.
    [117]Gottesman MM, Fojo T, Bates SE. Multidrug resistance in cancer:role of ATP-dependent transporters [J]. Nat Rev Cancer,2002,2(1):48-58.
    [118]Wang D, Lippard SJ. Cellular processing of platinum anticancer drugs [J]. Nat Rev Drug Discov, 2005,4(4):307-320.
    [119]姜润德,张立新,岳文,等.人鼻咽癌顺铂耐药细胞系(CNE2/DDP)的建立及耐药相关基因的筛选[J].癌症,2003,22(4):337-345.
    [120]翟惠虹,郭新宁,时永全,等.人核糖体蛋白S13与胃癌细胞多药耐药性的实验研究[J].中华消化杂志,2004,24(3):139-142.
    [121]Lee CF, Ling ZQ, Zhao T, et al. Distinct expression patterns in hepatitis B virus- and hepatitis C virus-infected hepatocellular carcinoma [J]. World J Gastroenterol,2008,14(39):6072-6077.
    [122]Plagnol V, Smyth DJ, Todd JA, et al. Statistical independence of the colocalized association signals for type 1 diabetes and RPS26 gene expression on chromosome 12q13 [J]. Biostatistics,2009,10(2): 327-334.
    [123]孙鲁宁,张宁,宋晓宇,等MRPL48基因在代谢综合征诊断中的意义探讨[J].中国全科医学,2011,14(6C):2049-2051.
    [124]孙鲁宁,宋晓宇,张静萍,等.线粒体核糖体蛋白S22对细胞凋亡的影响[J].中国现代医学杂志,2011,21(32):3984-3987,3991.
    [125]Dutca LM, Culver GM. Assembly of the 5'and 3'minor domains of 16S ribosomal RNA as monitored by tethered probing from ribosomal protein S20 [J]. J Mol Biol,2008,376(1):92-108.
    [126]Panagiotidis CA, Huang SC, Canellakis ES. Relationship of the expression of the S20 and L34 ribosomal proteins to polyamine biosynthesis in Escherichia coli [J]. Int J Biochem Cell Biol,1995, 27(2):157-168.
    [127]Rapaport LR, Mackie GA. Influence of translational efficiency on the stability of the mRNA for ribosomal protein S20 in Escherichia coli [J]. J Bacteriol,1994,176(4):992-998.
    [128]Chan HY, Zhang Y, O'Kane CJ. Identification and characterization of the gene for Drosophila S20 ribosomal protein [J]. Gene,1997,200(1-2):85-89.
    [129]Olsvik PA, Lie KK, Jordal AE, et al. Evaluation of potential reference genes in real-time RT-PCR studies of Atlantic salmon [J]. BMC Mol Biol,2005,6:21.
    [130]Ponton F, Chapuis MP, Pernice M, et al. Evaluation of potential reference genes for reverse transcription-qPCR studies of physiological responses in Drosophila melanogaster [J]. J Insect Physiol,2011,57(6):840-850.
    [131]Chu W, Presky DH, Swerlick RA, et al. Human ribosomal protein S20 cDNA sequence [J]. Nucleic Acids Res,1993,21(7):1672.
    [132]McGowan KA, Li JZ, Park CY, et al. Ribosomal mutations cause p53-mediated dark skin and pleiotropic effects [J]. Nat Genet,2008,40(8):963-970.
    [133]Goldstone SD, Lavin MF. Isolation of a cDNA clone, encoding the ribosomal protein S20, downregulated during the onset of apoptosis in a human leukaemic cell line [J]. Biochem Biophys Res Commun,1993,196(2):619-623.
    [134]Kemp EH, Herd LM, Waterman EA, et al. Immunoscreening of phage-displayed cDNA-encoded polypeptides identifies B cell targets in autoimmune disease [J]. Biochem Biophys Res Commun, 2002,298(1):169-177.
    [135]De Bortoli M, Castellino RC, Lu XY, et al. Medulloblastoma outcome is adversely associated with overexpression of EEF1D, RPL30, and RPS20 on the long arm of chromosome 8 [J]. BMC Cancer, 2006,6:223.
    [136]Zhang MX, Zhang YM, Esther J, et al. Effects of yiqi huoxue recipe and Coxsackie virus B type 3 on the expression of ribosomal protein S20 in rat cardiac myocytes [J]. Chin J Integr Med,2011,17(5): 376-380.
    [137]Song Q, Liu G, Hu S, et al. Novel autoimmune hepatitis-specific autoantigens identified using protein microarray technology [J]. J Proteome Res,2010,9(1):30-39.
    [138]Hannon GJ. RNA interference [J]. Nature,2002,418(6894):244-251.
    [139]Guo S, Kemphues KJ. par-1, a gene required for establishing polarity in C. elegans embryos, encodes a putative Ser/Thr kinase that is asymmetrically distributed [J]. Cell,1995,81 (4):611-620.
    [140]Fire A, Xu S, Montgomery MK, et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans [J]. Nature,1998,391(6669):806-811.
    [141]Sashital DG, Doudna JA. Structural insights into RNA interference [J]. Curr Opin Struct Biol,2010, 20(1):90-97.
    [142]Siomi H, Siomi MC. On the road to reading the RNA-interference code [J]. Nature,2009,457(7228): 396-404.
    [143]Novina CD, Sharp PA. The RNAi revolution [J]. Nature,2004,430(6996):161-164.
    [144]Nishikura K. A short primer on RNAi:RNA-directed RNA polymerase acts as a key catalyst [J]. Cell, 2001,107(4):415-418.
    [145]Svoboda P. Off-targeting and other non-specific effects of RNAi experiments in mammalian cells [J]. Curr Opin Mol Ther,2007,9(3):248-257.
    [146]Dunn SR, Phillips WS, Green DR, et al. Knockdown of actin and caspase gene expression by RNA interference in the symbiotic anemone Aiptasia pallida [J]. Biol Bull,2007,212(3):250-258.
    [147]Palmer ML, Fahrenkrug SC, O'Grady SM. RNA interference and ion channel physiology [J]. Cell Biochem Biophys,2006,46(2):175-191.
    [148]Szymanska H. [Genetically engineered mice:mouse models for cancer research] [J]. Postepy Hig Med Dosw (Online),2007,61:639-645.
    [149]Shrey K, Suchit A, Nishant M, et al. RNA interference:emerging diagnostics and therapeutics tool [J]. Biochem Biophys Res Commun,2009,386(2):273-277.
    [150]Juliano R, Alam MR, Dixit V, et al. Mechanisms and strategies for effective delivery of antisense and siRNA oligonucleotides [J]. Nucleic Acids Res,2008,36(12):4158-4171.
    [151]Aigner A. Nonviral in vivo delivery of therapeutic small interfering RNAs [J]. Curr Opin Mol Ther, 2007,9(4):345-352.
    [152]Wu SY, McMillan NA. Lipidic systems for in vivo siRNA delivery [J]. A APS J,2009,11(4): 639-652.
    [153]Wang Y, Li Z, Han Y, et al. Nanoparticle-based delivery system for application of siRNA in vivo [J]. Curr Drug Metab,2010,11(2):182-196.
    [154]Mamot C, Drummond DC, Greiser U, et al. Epidermal growth factor receptor (EGFR)-targeted immunoliposomes mediate specific and efficient drug delivery to EGFR- and EGFRvⅢ-overexpressing tumor cells [J]. Cancer Res,2003,63(12):3154-3161.
    [155]Wen WH, Liu JY, Qin WJ, et al. Targeted inhibition of HBV gene expression by single-chain antibody mediated small interfering RNA delivery [J]. Hepatology,2007,46(1):84-94.
    [156]Cockrell AS, Kafri T. Gene delivery by lentivirus vectors [J]. Mol Biotechnol,2007,36(3):184-204.
    [157]Colin A, Faideau M, Dufour N, et al. Engineered lentiviral vector targeting astrocytes in vivo [J]. Glia,2009,57(6):667-679.
    [158]Boden D, Pusch O, Silbermann R, et al. Enhanced gene silencing of HIV-1 specific siRNA using microRNA designed hairpins [J]. Nucleic Acids Res,2004,32(3):1154-1158.
    [159]Giaever I, Keese CR. Monitoring fibroblast behavior in tissue culture with an applied electric field [J]. Proc Natl Acad Sci U S A,1984,81(12):3761-3764.
    [160]Xing JZ, Zhu L, Jackson JA, et al. Dynamic monitoring of cytotoxicity on microelectronic sensors [J]. Chem Res Toxicol,2005,18(2):154-161.
    [161]Abassi YA, Xi B, Zhang W, et al. Kinetic cell-based morphological screening:prediction of mechanism of compound action and off-target effects [J]. Chem Biol,2009,16(7):712-723.
    [162]Solly K, Wang X, Xu X, et al. Application of real-time cell electronic sensing (RT-CES) technology to cell-based assays [J]. Assay Drug Dev Technol,2004,2(4):363-372.
    [163]Hammerova J, Uldrijan S, Taborska E, et al. Benzo[c]phenanthridine alkaloids exhibit strong anti-proliferative activity in malignant melanoma cells regardless of their p53 status [J]. J Dermatol Sci,2011,62(1):22-35.
    [164]Hakki SS, Bozkurt SB. Effects of different setting of diode laser on the mRNA expression of growth factors and type I collagen of human gingival fibroblasts [J]. Lasers Med Sci,2012,27(2):325-331.
    [165]Jiang A, Gao H, Kelley MR, et al. Inhibition of APE1/Ref-1 redox activity with APX3330 blocks retinal angiogenesis in vitro and in vivo [J]. Vision Res,2011,51(1):93-100.
    [166]Hakki SS, Foster BL, Nagatomo KJ, et al. Bone morphogenetic protein-7 enhances cementoblast function in vitro [J]. J Periodontol,2010,81(11):1663-1674.
    [167]Steinle M, Palme D, Misovic M, et al. Ionizing radiation induces migration of glioblastoma cells by activating BK K(+) channels [J]. Radiother Oncol,2011,101(1):122-126.
    [168]Chung H, Suh EK, Han IO, et al. Keratinocyte-derived laminin-332 promotes adhesion and migration in melanocytes and melanoma [J]. J Biol Chem,2011,286(15):13438-13447.
    [169]Greiner M, Kreutzer B, Jung V, et al. Silencing of the SEC62 gene inhibits migratory and invasive potential of various tumor cells [J]. Int J Cancer,2011,128(10):2284-2295.
    [170]Sherwood CL, Lantz RC, Burgess JL, et al. Arsenic alters ATP-dependent Ca(2)+ signaling in human airway epithelial cell wound response [J]. Toxicol Sci,2011,121(1):191-206.
    [171]Schaefer WR, Fischer L, Deppert WR, et al. In vitro-Ishikawa cell test for assessing tissue-specific chemical effects on human endometrium [J]. Reprod Toxicol,2010,30(1):89-93.
    [172]Scandroglio P, Brusa R, Lozza G, et al. Evaluation of cannabinoid receptor 2 and metabotropic glutamate receptor 1 functional responses using a cell impedance-based technology [J]. J Biomol Screen,2010,15(10):1238-1247.
    [173]Atienza JM, Yu N, Wang X, et al. Label-free and real-time cell-based kinase assay for screening selective and potent receptor tyrosine kinase inhibitors using microelectronic sensor array [J]. J Biomol Screen,2006,11(6):634-643.
    [174]Kirstein SL, Atienza JM, Xi B, et al. Live cell quality control and utility of real-time cell electronic sensing for assay development [J]. Assay Drug Dev Technol,2006,4(5):545-553.
    [175]Irelan JT, Wu MJ, Morgan J, et al. Rapid and quantitative assessment of cell quality, identity, and functionality for cell-based assays using real-time cellular analysis [J]. J Biomol Screen,2011,16(3): 313-322.
    [176]Ehlers A, Scholz J, These A, et al. Analysis of the passage of the marine biotoxin okadaic acid through an in vitro human gut barrier [J]. Toxicology,2011,279(1-3):196-202.
    [177]Sun M, Fu H, Cheng H, et al. A dynamic real-time method for monitoring epithelial barrier function in vitro [J]. Anal Biochem,2012,425(2):96-103.
    [178]Cole KA, Huggins J, Laquaglia M, et al. RNAi screen of the protein kinome identifies checkpoint kinase 1 (CHK1) as a therapeutic target in neuroblastoma [J]. Proc Natl Acad Sci U S A,2011, 108(8):3336-3341.
    [179]Fregni G, Perier A, Pittari G, et al. Unique functional status of natural killer cells in metastatic stage IV melanoma patients and its modulation by chemotherapy [J]. Clin Cancer Res,2011,17(9): 2628-2637.
    [180]Fang Y, Ye P, Wang X, et al. Real-time monitoring of flavivirus induced cytopathogenesis using cell electric impedance technology [J]. J Virol Methods,2011,173(2):251-258.
    [181]Quaroni A, Wands J, Trelstad RL, et al. Epithelioid cell cultures from rat small intestine. Characterization by morphologic and immunologic criteria [J]. J Cell Biol,1979,80(2):248-265.
    [182]Rao JN, Platoshyn O, Golovina VA, et al. TRPC1 functions as a store-operated Ca2+ channel in intestinal epithelial cells and regulates early mucosal restitution after wounding [J]. Am J Physiol Gastrointest Liver Physiol,2006,290(4):G782-792.
    [183]张子理,陈蔚文.党参、黄芪、白术、甘草提取部位对小肠上皮细胞增殖的影响[J].中药药理与临床,2002,18(1):10-12.
    [184]陈蔚文,张子理,下建华,等.党参白术提取物分别和合用诱导IEC-6细胞增殖分化的作用[J].中国药理学通报,2002,18(4):444-447.
    [185]胡灿,李茹柳,王静,等.黄芪和白术提取物对IEC-6细胞迁移的影响[J].中药新药与临床药理,2011,22(1).
    [186]Weiser MM. Intestinal epithelial cell surface membrane glycoprotein synthesis. Ⅰ. An indicator of cellular differentiation [J]. J Biol Chem,1973,248(7):2536-2541.
    [187]Flint N, Cove FL, Evans GS. A low-temperature method for the isolation of small-intestinal epithelium along the crypt-villus axis [J]. Biochem J,1991,280 (Pt 2):331-334.
    [188]Law CS, Leung PY, Ng PK, et al. The involvement of N-G,N-G-dimethyarginine dimethylhydrolase 1 in the proliferative effect of Astragali radix on cardiac cells [J]. J Ethnopharmacol,2011,134(1): 130-135.
    [189]He Y, Zhang X, Zeng X, et al. HuR-mediated posttranscriptional regulation of p21 is involved in the effect of Glycyrrhiza uralensis licorice aqueous extract on polyamine-depleted intestinal crypt cells proliferation [J]. J Nutr Biochem,2012.
    [190]Chen HT, Tsai YL, Chen YS, et al. Dangshen (Codonopsis pilosula) activates 1GF-I and FGF-2 pathways to induce proliferation and migration effects in RSC96 Schwann cells [J]. Am J Chin Med, 2010,38(2):359-372.
    [191]Wang JY, Johnson LR. Luminal polyamines stimulate repair of gastric mucosal stress ulcers [J]. Am J Physiol,1990,259(4 Pt 1):G584-592.
    [192]Nusrat A, Delp C, Madara JL. Intestinal epithelial restitution. Characterization of a cell culture model and mapping of cytoskeletal elements in migrating cells [J]. J Clin Invest,1992,89(5):1501-1511.
    [193]McCormack SA, Viar MJ, Johnson LR. Migration of IEC-6 cells:a model for mucosal healing [J]. Am J Physiol,1992,263(3 Pt 1):G426-435.
    [194]张子理,陈蔚文.黄芪注射液和白术提取部位对小肠上皮细胞移行的影响[J].中草药,2002,33(10):912-915.
    [195]Podolsky DK. Mucosal immunity and inflammation. V. Innate mechanisms of mucosal defense and repair:the best offense is a good defense [J]. Am J Physiol,1999,277(3 Pt 1):G495-499.
    [196]Jung S, Fehr S, Harder-d'Heureuse J, et al. Corticosteroids impair intestinal epithelial wound repair mechanisms in vitro [J]. Scand J Gastroenterol,2001,36(9):963-970.
    [197]胡灿,李茹柳,卢文彪,等.IEC-6细胞迁移药理实验模型建立的研究(英文)[J].中药材,2011,34(5):738-746.
    [198]Brown PO, Botstein D. Exploring the new world of the genome with DNA microarrays [J]. Nat Genet,1999,21(1 Suppl):33-37.
    [199]王春梅,黄晓峰,杨家骥.细胞超微结构与超微结构病理基础[M].第1版.西安:第四军医大学出版社,2004.
    [200]侯家玉,方泰惠.中药药理学[M].第2版.北京:中国中医药出版社,2007.
    [201]Johnson LR, McCormack SA. Healing of Gastrointestinal Mucosa:Involvement of Polyamines [J]. News Physiol Sci,1999,14:12-17.
    [202]胡灿.黄芪和白术对IEC-6细胞迁移过程多胺介导钾通道激活信号通路作用的研究[D].硕十学位论文.广州:广州中医药大学,2010.
    [203]随晶晶,卢文彪,李茹柳,等.高效液相色谱法检测小肠上皮细胞多胺含最[J].中国药理学通报,2011,27(9):1309-1312.
    [204]Gerner EW, Meyskens FL, Jr. Polyamines and cancer:old molecules, new understanding [J]. Nat Rev Cancer,2004,4(10):781-792.
    [205]McCormack SA, Johnson LR. Role of polyamines in gastrointestinal mucosal growth [J]. Am J Physiol,1991,260(6 Pt 1):G795-806.
    [206]Wang JY, Johnson LR. Polyamines and ornithine decarboxylase during repair of duodenal mucosa after stress in rats [J]. Gastroenterology,1991,100(2):333-343.
    [207]McCormack SA, Wang JY, Johnson LR. Polyamine deficiency causes reorganization of F-actin and tropomyosin in IEC-6 cells [J]. Am J Physiol,1994,267(3 Pt 1):C715-722.
    [208]Liu L, Li L, Rao JN, et al. Polyamine-modulated expression of c-myc plays a critical role in stimulation of normal intestinal epithelial cell proliferation [J]. Am J Physiol Cell Physiol,2005, 288(1):C89-99.
    [209]Echandi G, Algranati ID. Defective 30S ribosomal particles in a polyamine auxotroph of Escherichia coli [J]. Biochem Biophys Res Commun,1975,67(3):1185-1191.
    [210]Igarashi K, Kashiwagi K, Kishida K, et al. Defect in the split proteins of 30-S ribosomal subunits and under-methylation of 16-S ribosomal RNA in a polyamine-requiring mutant of Escherichia coli grown in the absence of polyamines [J]. Eur J Biochem,1979,93(2):345-353.
    [211]Kakegawa T, Hirose S, Kashiwagi K, et al. Effect of polyamines on in vitro reconstitution of ribosomal subunits [J]. Eur J Biochem,1986,158(2):265-269.
    [212]Yoshida M, Kashiwagi K, Shigemasa A, et al. A unifying model for the role of polyamines in bacterial cell growth, the polyamine modulon [J]. J Biol Chem,2004,279(44):46008-46013.
    [213]Igarashi K, Kashiwagi K. Polyamine Modulon in Escherichia coli:genes involved in the stimulation of cell growth by polyamines [J].J Biochem,2006,139(1):11-16.
    [214]Higashi K, Kashiwagi K, Taniguchi S, et al. Enhancement of+1 frameshift by polyamines during translation of polypeptide release factor 2 in Escherichia coli [J]. J Biol Chem,2006,281(14): 9527-9537.
    [215]Denelavas A, Weibel F, Prummer M, et al. Real-time cellular impedance measurements detect Ca(2+) channel-dependent oscillations of morphology in human H295R adrenoma cells [J]. Biochim Biophys Acta,2011,1813(5):754-762.
    [216]梁英,吴伟忠,李薇薇,等.靶向Arnt的RNAi慢病毒载体的构建及其在HCCLM6中对Arnt基因表达的影响[J].中国临床医学,2008,15(6):879-882.
    [217]Diemert S, Dolga AM, Tobaben S, et al. Impedance measurement for real time detection of neuronal cell death [J]. J Neurosci Methods,2012,203(1):69-77.
    [218]Tobin C, Mandava CS, Ehrenberg M, et al. Ribosomes lacking protein S20 are defective in mRNA binding and subunit association [J]. J Mol Biol,2010,397(3):767-776.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700