用户名: 密码: 验证码:
垂直腔面发射激光器的慢光特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着慢光技术在光存储、光通信、信号处理和相控阵天线等领域发挥着越来越重要的作用,控制光波在介质中的传输速度已然具有广阔的应用前景。目前已经证实有多种物理机制可以实现慢光延时,包括电磁感应透明、相干布局数振荡、受激布里渊散射以及光子晶体波导等。其中,垂直腔面发射激光器(VCSEL)因低功率损耗、易于集成、室温工作等和低成本等优点,近年来已成为慢光领域的研究热点。本论文立足于全光存储及全光信息处理领域的重大需要和国际前沿热点,围绕VCSEL的慢光延时特性展开研究,旨在探索利用VCSEL产生慢光延时的机理和方法,及分析信号在延时过程中的影响因素和限制条件,在此基础上设计实用化的级联VCSEL结构或新型的耦合腔VCSEL结构方案,用以优化器件的延时带宽,从而扩展了VCSEL在高速光网络和光缓存领域的潜在应用。
     本文以VCSEL的慢光延时特性为对象,主要从以下几个方而展开研究:首先利用F-P腔结构分析法和传输矩阵法分别从不同角度分析了信号在VCSEL中延迟的过程,深入剖析了VCSEL作为放大器工作时产生慢光延时的物理机理;其次,研究了VCSEL的特征参数对延时和带宽特性的影响,并通过理论和实验共同证明了VCSEL的延时-带宽积受器件物理结构的限制;随后,探讨VCSEL的增益饱和特性对慢光延时信号的影响,探讨了慢光信号的延迟时间和误码率随信号功率的变化情况;最后,提出利用级联VCSEL和新型耦合腔VCSEL结构扩展器件带宽的方案。本文创新性工作具体包括:
     (1)分别利用法布里-珀罗腔(F-P)结构分析方法和传输矩阵法研究了信号在VCSEL中的慢光延时。首先利用光场传输表达式结合F-P腔边界条件,模拟了信号在VCSEL腔内传输的过程,并推导得到信号延时的解析表达式;随后利用薄膜特征矩阵结合菲涅尔公式,构造VCSEL的整体传输矩阵,在此基础上得到了器件的延时响应曲线。理论和实验结果表明信号延迟时间受VCSEL顶部和底部反射率及注入电流的影响,实验中利用1550nm的VCSEL放大器可对2.5-Gbit/s的二进制伪随机序列(PRBS)产生了98ps的可控慢光延时。
     (2)通过理论推导和实验验证,揭示了VCSEL延时-带宽积的影响因素和限制条件。根据慢光模型推导得到延时-带宽积的解析表达式,深入分析了VCSEL延时-带宽积随VCSEL特征函数的变化规律,揭示了最大延时-带宽积仅受顶部DBR反射率和单程增益的影响,而与底部反射率无关;由于实际中VCSEL器件对端面高反射率的要求(>90%),导致最大延时-带宽积基本为定值,约0.64。同时实验结果表明VCSEL的延时-带宽积随注入电流的增加而减小,测量得到最大延时-带宽积约为0.62,与理论结果基本吻合。
     (3)通过理论和实验共同分析了VCSEL的饱和效应对慢光延时的影响。首先利用传输矩阵分析法结合速率方程,建立了信号功率与延迟时间之间的联系;随后实验研究了在、VCSEL逐渐达到饱和状态过程中,PRBS信号的延时时间和眼图的变化规律。理论和实验结果表明VCSEL的增益饱和效应会引起信号延迟时间的下降、延时带宽的扩展和VCSEL峰值波长的漂移。通过适当的调节注入电流,并改变信号波长以追踪峰值增益波长的变化,实验中测量得到延时信号的误码率(BER)随信号功率的变化曲线,与背靠背情况相比得到约1dB的低功率罚。
     (4)提出利用级联VCSEL结构扩展器件的增益和延时带宽的方案。首先将VCSEL级联,通过适当调节单个器件的峰值增益和波长,能够实现峰值波长之间增益和延时谱分量的匹配叠加,进而得到顶部平坦的宽带增益和延时谱轮廓。随后利用双级联VCSELs结构进行慢光延时实验,测量结果表明级联VCSEL可以有效的将5-Gbit/s的PRBS信号延时135ps,相比于单腔VCSEL结构,其延时量提高了约35%,并且信号质量得到了明显的改善。
     (5)通过改变VCSEL中有源区一侧DBR的结构,构造无源腔与有源腔相耦合的耦合腔结构,用于优化VCSEL的增益和延时带宽。首先利用薄膜光学理论结合菲涅尔公式对构成VCSEL的量子阱、势垒、基层和DBR膜层分别建立特征矩阵,得到VCSEL器件的整体传输矩阵。详细分析了无源腔结构扩展器件带宽的原因,以及改变腔结构对器件增益和延时谱的影响;随后建立评价函数,用于比较不同结构耦合腔VCSEL慢光性能的优劣,为耦合腔结构的选择提供了实用的量化标准。数值计算结果表明:与单腔VCSEL相比,在峰值增益和最大延时量相同的情况下,耦合腔VCSEL的增益带宽扩展为单腔结构的3.4倍,同时延时带宽提高为单腔结构的8倍。利用该耦合腔VCSEL进行慢光延时,可以将20-Gbit/s的超高斯脉冲低失真的延迟13ps。
Recently, slow light has attracted lots of interest for its significant applications ranging from optical communication, signal processing, to phase-array antenna systems. Varieties of physical mechanisms for slow light have been demonstrated including electromagnetically induced transparency (EIT), coherent population oscillations (CPO), stimulated Brillouin scattering (SBS), vertical-cavity surface-emitting laser (VCSEL), and photonic-crystal waveguide. In particular, tunable slow light using the VCSEL is very attractive since it has the advantages of low power consumption, effective integration, working at room temperature, and low cost in production. We present a detailed analysis for the slow light based on the VCSELs in the thesis. Our caiculations and experimental measurements show that VCSELs are promising to achieve a controllable optical memory that is reasonably useful for future optical buffers and all-optial information processing systems.
     The thesis is structured as fllows. Section I discusses the physical mechanisms and appliciations for slow light in different materials, especially in VCSELs, and considers their fundamental physical limitations for group delay. Section II concentrates on the models of slow light in VCSELs which are developed using F-P cavity analytical method and transfer matrix method. Section Ⅲ considers the group delay, bandwidth and delay-bandwidth product of slow light inVCSELs. Section IV is devoted to the analysis of the saturation effect on the slow light using VCSELs. Section V analyses the new schemes of cascaded VCSELs to improve the bandwidth for slow light. Section VI presents a new coupled-cavity structure to realize slow light in VCSELs. Section Ⅶ summarizes the main conlusions of the thesis.
     The main contributions of this dissertation are listed as follows:
     (1) The models for slow light in VCSEL are developed by F-P cavity method and transfer matrix method. Based on the F-P cavity analysis, by combining the boundary conditions and the optical field distribution in VCSELs, the delay expression is derived. Then on the basis of the multilayer dielectric films theory, a model of VCSEL using transfer matrix equation is established. The response function of the VCSEL is obtained. The theoretical results show that the group delay is dependent on the DBR reflectivities and single-pass gain. To verify our calculations, a tunable slow light of2.5-Gbit/s Pseudo-Random Binary Sequence (PRBS) signal is demonstrated using a1550nm VCSEL. By tuning the bias current to the threshold, a tunable delay as large as98ps has been experimentally achieved.
     (2) It is theoretically and experimentally investigated the capability and limitations for slow light in VCSELs. An analytical expression for the delay-bandwidth product of slow light is derived, which reflects the dependence of the delay-bandwidth product on the DBR reflectivities and single-pass gain. The theoretical calculations show that the delay-bandwidth product has a maximum, which is only dependent on the front facet reflectivity. For a practical VCSEL with required front facet reflectivity exceeding90%, the resulting maximum DBP is close to a fixed value of0.64. This result has also been verified in the experiment. With increased biased current, the delay-bandwidth product rolls down quickly. The maximum delay-bandwidth product of0.62is obtained, which agrees well with the theoretical results.
     (3) The dependence of slow light on the saturation effect of VCSELs is theoretically and experimentally demonstrated. Conbining the transfer matrix method with the rate equation, the relationship between the signal power and the group delay is developed. After that, we experimentally show the variations of group delay and the eye diagrams of slow light with the increased signal power. The results indicate that the gain saturation leads to the decreased group delay, enhanced bandwidth, and the peak gain wavelength variation. By tuning the input signal to track the peak gain wavelength of the VCSEL, slow light of a power penalty as low as1dB is achieved.
     (4) A novel scheme of bandwidth improvement for slow light using cascade VCSELs is proposed and experimentally demonstrated. In such scheme, a proper adjustment to the gain peaks of VCSELs enables the generation of the desired composite gain spectrum which has flat-top gain and delay profiles with enhanced peak values. By using double cascade VCSELs in the experiment, a tunable group delay up to135ps for5-Gbit/s PRBS signal is demonstrated. Compared with the single VCSEL, the time delay is enlarged by35%, and the signal distortion is relatively lower.
     (5) A new structure of coupled-cavity VCSEL is proposed to broaden the bandwidths of gain and delay spectra. In this structure, the couple cavity is formed by constructing a passive cavity coupled with the active cavity of VCSEL. By rendering the strength of these two resonant cavities, the gain and delay bandwidth are largly increased by340%and by800%as compared with the signal-cavity VCSEL case. Measnwhile, the achieved spectra present more square-like profiles which are highly expected in slow light system. Utilizing this configurtation for slow light performance, a tuable delay about13ps for20-Gbit/s super Gaussian signal is achieved with very desirable signal quality. After that, the dependence of gain and delay on the coupled-cavity structures is further investigated. A new expression is proposed to evaluate the performances of slow light in different structures of coupled-cavity VCSELs.
引文
[1]R. W. Boyd and D. J. Gauthier. Controlling the velocity of light pulses. Science, 2009,326(5956):1074-1077.
    [2]T. F. Krauss. Why do we need slow light? Nature Photon.,2008,2(8):448-450.
    [3]A. Dogariu, A. Kuzmich and L. J. Wang. Transparent anomalous dispersion and superluminal light-pulse propagation at a negative group velocity. Phys. Rev. A, 2001,63(20):053806-1-053806-12.
    [4]M. D. Stenner, D. J. Gauthier and M. A. Neifeld. The speed of information in a 'fast-light'optical medium. Nature,2003,425(6959):695-698.
    [5]A. E. Willner. The optical network of the future:can optical performance monitoring enable automated, intelligent and robust systems? Opt. Photon. News, 2006,17(3):30-35.
    [6]D. K. Hunter, M. C. Chia and I. Andonovic. Buffering in optical packet switches. J. Lightw. Technol.,1998,16(12):2081-2094.
    [7]P. Green. Progress in optical networking. IEEE Commun. Mag.,2001,39(1): 54-61.
    [8]M. C. Cardakli, S. Lee, A. E. Willner, et al. Reconfigurable optical packet header recognition and routingusing time-to-wavelength mapping and tunable fiber Bragg grating for correlation decoding. IEEE Photon. Technol. Lett.,2000,12(5): 552-554.
    [9]T. Miya, Y. Terunuma, T. Hosaka, et al. Ultra-low-loss single-mode fibers at 1.55um. Electron. Lett.,1979,15(4):106-110.
    [10]K. K. Chow, C. Shu, C. Lin, et al. All-optical wavelength multicasting with extinction ratio enhancement using pump-modulated fourwave mixing in a dispersion-flattened nonlinear photonic crystal fiber. IEEE J. Sel. Topics Quantum Electron.,2006,12(4):838-842.
    [11]A. E. Willner, D. Gurkan, A. B. Sahin, et al. All-optical address recognition for optically-assisted touting in next generation optical networks. IEEE Commun. Mag., 2003,41(5):S38-S44.
    [12]R. W. Boyd, D. J. Gauthier and A. L. Gaeta. Applications of slow-light in telecommunications. Optics & Photonics News,2006,17(4):18-23.
    [13]R. W. Boyd and D. J. Gauthier.'Slow'and'fast'light. Progress in Optics, 2002,43(2):497-530.
    [14]R. W. Boyd, D. J. Gauthier, A. L. Gaeta, et al. Maximum time delay achievable on propagation through a slow-light medium. Phys. Rev. A,2005,71(2): 023801-1-023801-4.
    [15]J. D. LeGrange, J. E. Simsarian, P. Bernasconi, et al. Demonstration of an integrated buffer for an all-optical packet router. IEEE Photon. Technol. Lett.,2009,21(12): 781-783.
    [16]C. Y. Tian, C. Q. Wu, Z. Y. Li, et al. Dual-wavelength packets buffering in dual-loop optical buffer. IEEE Photon. Technol. Lett.,2008,20(8):578-580.
    [17]R. Geldenbuys, Z. Wang, N. Chi, et al. Multiple recirculations through crosspoint switch fabric for recirculating optical buffering. Electron. Lett.,2005,41(20): 1136-1138.
    [18]X. M. Lu and B. L. Mark. Performance modeling of optical-burst switching with fiber delay lines. IEEE Transactions on Communications,2004,52(12):2175-2183.
    [19]L. Brillouin. Wave propagation and group velocity. New York, Academic Press, 1960,14(62):1-3.
    [20]A. Yariv and P. Yeh光子学—现代通信光电子学.陈鹤鸣,施伟华,汪静丽等译.电子工业出版社,北京,2009.
    [21]J. K. S. Poon, J. Scheure, S. Mookherjea, et al. Matrix analysis of microring coupled-resonator optical waveguides. Opt. Express,2004,12(1):90-103.
    [22]J. Scheuer, J. K. S. Poon, G T. Paloczi, et al. Coupled resonator optical waveguide (CROWs). Advanced Optical and Quantum Memories and Computing II,2005, 5735:52-59.
    [23]J. Scheuer, G. T. Paloczi, J. K. S. Poon, et al. Coupled resonator optical waveguides: toward the slowing & storage of light. Optics & Photonics News,2005,16(2): 36-40.
    [24]K. J. Boiler, A. Imamogiu and S. E. Harris. Observation of electromagnetically induced transparency. Phys. Rev. Lett.,1982,48(20):738-741.
    [25]S. E. Harris, J. E. Field and A. Imamoglu. Nonlinear optical processes using electromagnetically induced transparency. Phys. Rev. Lett.,1990,64(10): 1107-1110.
    [26]S. E. Harris, J. E. Field and A. Kasapi. Dispersive properties of electromagnetically induced transparency. Phys. Rev. A,1992,46(1):29-32.
    [27]L. V. Hau, S. E. Harris and Z. Dutton. Light speed reduction to 17 metres per second in an ultracold atomic gas. Nature,1999,397(594):594-598.
    [28]M. M. Kash, V. A. Sautenkov, A. S. Zibrov, et al. Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas. Phys. Rev. Lett.,1999,82(26):5229-5232.
    [29]D. Budker, D. F. Kimball, S. M. Rochester, et al. Nonlinear magneto-optics and reduced group velocity of light in atomic vapor with slow group state relaxation. Phys. Rev. Lett.,1999,83(9):1767-1770.
    [30]S. Y. Lin, E. Chow, S. G. Johnson, et al. Demonstration of highly efficient waveguiding in a photonic crystal slab at the 1.5-um wavelength. Opt. Lett.,2000, 25(17):1297-1299.
    [31]O. Kocharovskaya, Y. Rostovtsev and M. O. Scully. Stopping light via hot atoms. Phys. Rev. Lett.,2001,86(4):628-631.
    [32]A. V. Turukhin, V. S. Sudarshanam and M. S. Shahriar. Observation of ultraslow and stored light pulses in a solid. Phys. Rev. Lett.,2002,88(2):02601-1-02601-4.
    [33]A. K. Patnaik, J. Q. Liang and K. Hakuta. Slow light propagation in a thin optical fiber via electromagnetically induced transparency. Phys. Rev. A,2002,66(6): 063808-1-063808-10.
    [34]X. Song, L. Wang, Z. Kang, et al. Optical signal storage and switching between two wavelengths. Appl. Phys. Lett.,2007,91(7):071106-1-071106-4.
    [35]S. E. Schwartz and T. Y. Tan. Wave interactions in saturable absorbers. Appl. Phys. Lett.,1967,10(1):4-7.
    [36]L. W. Hillman, R. W. Boyd, J. Krasinski, et al. Observation of a spectral hole due to population oscillations in a homogeneously broadened optical line. Opt. Commun., 1983,45(6):416-420.
    [37]M. S. Bigelow, N. N. Lepeshkin and R. W. Boyd. Observation of ultraslow light propagation in a ruby crystal at room temperature. Phys. Rev. Lett.,2003,90(11): 113903-113906.
    [38]M. S. Bigelow, N. N. Lepeshkin and R. W. Boyd. Superluminal and slow light propagation in a room-temperature solid. Science,2003,301(5630):200-202.
    [39]N. N. Lepeshkin, A. Schweinsberg, M. S. Bigelow, et al. Slow and fast light propagation in erbium-doped fiber. In Proc. QELS 2005, paper QTuC3.
    [40]R. W. Boyd. Slow light in bulk materials and optical fiber. OFC 2006, paper OTuAl.
    [41]P. Palinginis, S. Crankshaw, F. Sedgwick, et al. Ultraslow light (< 200m/s) propagation in a semiconductor nanostructure. Appl. Phys. Lett.,2005,87(17): 171102-171105.
    [42]P. C. Ku, F. Sedgwick and C. J. Chang-Hasnain. Slow light in semiconductor quantum wells. Opt. Lett.,2004,29(19):2291-2293.
    [43]P. K. Kondratko and S. L. Chuang. Slow-to-fast light using absorption to gain switching in quantum-well semiconductor optical amplifier. Opt. Express,2007, 15(16):9963-9969.
    [44]Y. D. Zhang, B. H. Fan and P. Yuan. Observation of slow light propagation in solid state material. Acta Phys. Sin.,2004,24(12):1688-1690.
    [45]掌蕴东,范保华,袁萍等.固体材料中慢光现象的实验观察.中国激光,2004,31(z1):175~176.
    [46]B. H. Fan, Y. D. Zhang and P. Yuan. Ultra slow light propagation in a solid. Acta Phys. Sin.,2005,54(10):4692^695.
    [47]邱巍,掌蕴东,叶建波等.损耗条件下掺铒光纤中光速减慢现象的研究.物理学报,2008,57(4):2242~2247.
    [48]W. Qiu, Y. Zhang, J. Ye, et al. Slowdown of group velocity of light using coherent population oscillation. Chin. Phys. Lett.,2004,25(2):489-492.
    [49]D. J. Gauthier. Physics and application of slow light.2nd Annual summer school, July 27,2004.
    [50]K. Y. Song, M. G Herraez and L. Thevenaz. Observation of pulse delaying and advancement in optical fibers using stimulated Brillouin scattering. Opt. Express, 2005,13(1):82-88.
    [51]Y. Okawachi, M. S. Bigelow, J. E. Sharping, et al. Tunable all-optical delay via Brillouin slow light in an optical fiber. Phys. Rev. Lett.,2005,94(15): 153902-1-153902-4.
    [52]M. G Herrzez, K. Y. Song and L. Thevenaz. Arbitrary-bandwidth Brillouin slow light in optical fibers. Opt. Express,2006,14(4):1395-1400.
    [53]Z. Zhu, A. M. C. Dawes, D. J. Gauthier, et al.12-GHz-bandwidth SBS Slow light in optical fiber. OFC 2006, paper PDP1.
    [54]V. I. Kovalev, N. E. Kotova and R. G. Harrison.'Slow light'in stimulated Brillouin scattering:on the influence of the spectral width of pump radiation on the group index. Opt. Express,2009,17(20):17317-17323.
    [55]Z. W. Lu, Y. K. Dong and Q. Li. Slow light in multi-line Brillouin gain spectrum. Opt. Express,2007,15(4):1871-1877.
    [56]L. Xing, L. Zhan, L. L. Yi, et al. Storage capacity of slow-light tunable optical buffers based on fiber Brillouin amplifiers for real signal bit streams. Opt. Express, 2007,15(16):10189-10195.
    [57]L. Xing, L. Zhan, S. Luo, et al. High-power low-noise Brillouin amplifier for tunable slow-light delay buffer. IEEE J. Quantum Electron.,2008,44(12): 1133-1138.
    [58]Z. Y. Zhang, X. J. Zhou, R. Liang, et al. Influence of third-order dispersion on delay performance in broadband Brillouin slow light. J. Opt. Soc. Am. B,2009,26(12): 2211-2217.
    [59]Z. Y. Zhang, X. J. Zhou, R. Liang, et al. Numerical investigation on buffer performance based on acoustic excitation by stimulated Brillouin scattering in an As2Se3 fiber. Opt. Commun.,2009,282(14):2746-2751.
    [60]Z. Y. Zhang, X. J. Zhou, Z. Sui, et al. Numerical analysis of stimulated inelastic scatterings in ytterbium-dope double-clad fiber amplifier with multi-ns-duration and multi-hundred-kW peak-power output. Opt. Commun.,2009,282(6):1186-1190.
    [61]Y. Dong, Z. Lu, Q. Li, et al. Long optical delay lines enhanced by ring configuration in optical fiber. Chin. Phy. Lett.,2007,24(6):1586-1588.
    [62]Y. Dong, Z. Lu, Q. Li, et al. Controllable optical delay line using a Brillouin optical fiber ring laser. Chin. Phy. Lett.,2006,4(11):628-630.
    [63]郑狄,潘炜.非线性光纤环境在SBS慢光级联系统中的可行性研究.物理学报,2011,60(6):064210-1~064210-6.
    [64]D. Zheng, W. Pan, L. S. Yan, et al. Numerical investigation and optimization of SBS-Based slow-light using filtered incoherent pump. Chin. Phy. Lett.,2009, 26(12):124202-124204.
    [65]郑狄,潘炜,闫连山等.基于一种优化的梳状布里渊增益谱实现对任意周期信号的零展宽快慢光.物理学报,2011,60(6):064210-1~064210-6.
    [66]G. P. Agrawal非线性光纤光学原理及应用.贾东方,余震虹等译.电子工业出版社,北京,2002.
    [67]R. W. Hellwarth. Analusis of stimulated Raman scattering of a giant laser pulse. Appl. Opt,1963,2(8):847-853.
    [68]E. Garmire, F. Pandarese and C. H. Townes. Coherently driven molecular vibrations and light modulation. Phys. Rev. Lett.,1963,11(4):160-163.
    [69]Y. R. Shen and N. Bloembergen.Theory of stimulated Brillouin and Raman scattering. Phys. Rev. A,1965,137(6):1786-1805.
    [70]J. E. Sharping, Y. Okawachi and A. L. Gaeta. Wide bandwidth slow light using a Raman fiber amplifier. Opt. Express,2005,13(16):6092-6098.
    [71]G. Qin, R. Jose and Y. Ohishib. Stimulated Raman scattering in tellurite glasses as a potential system for slow light generation. J. Appl. Phys.,2007,101(9): 093109-1-093109-3.
    [72]J. Q. Liang, M. Katsuragawa, F. L. Kien, et al. Slow light produced by stimulated Raman scattering in solid Hydrogen. Phys. Rev. A,2002,65(3): 031801-1-031801-4.
    [73]S. Blair and K. Zheng. Intensity-tunable group delay using stimulated Raman scattering in silicon slow-light waveguides. Opt. Express,2006,14(3):1064-1069.
    [74]D. Dahan and G. Eisenstein. Tunable all optical delay via slow and fast light propagation in a Raman assisted fiber optical parametric amplifier:a route to all optical buffering. Opt. Express,2005,13(16):6234-6249.
    [75]L. L. Yi, Y. K. Su and W. S. Hu. Propagation of 10-Gb/s RZ data through a slow-light fiber delay-line based on parametric process. OFC 2006, paper OFH3.
    [76]F. F. Liu, Y. K. Su and L. V. Paul. Optimal operating conditions and modulation format for 160 GB/s signals in a fiber parametric amplifier used as a slow-light delay line element. OFC 2007, paper OWB5.
    [77]T. F. Krauss. Slow light in photonic crystal waveguides. J. Phys. D:Appl. Phys., 2007,40(9):2666-2670.
    [78]A. Imhof, W. L. Vos, R. Sprik, et al. Large dispersion effects near the band edges of photonic crystals. Phys. Rev. Lett.,1999,83(15):2942-2945.
    [79]M. Notomi, K. Yamada, A. Shinya, et al. Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs. Rev. Lett.,2001,87(25): 25902-1-25902-4.
    [80]Y. A. Vlasov, M. O. Boyle, M. Hamann, et al. Active control of slow light on a chip with photonic crystal waveguides. Nature,2005,438(7064):65-69.
    [81]T. Baba, T. Kawasaki, H. Sasaki, et al. Large delay-bandwidth product and tuning of slow light pulse in photonic crystal coupled waveguide. Opt. Express,2008,16(12): 9245-9253.
    [82]J. Ma and C. Jiang. Flatband slow light in asymmetrical line-defect photonic crystal waveguide featuring low group velocity and dispersion. IEEE J. Quantum Electron., 2008,44(8):763-769.
    [83]R. Hao, E. Cassan, X. L. Roux, et al. Novel slow light waveguide with controllable delay-bandwidth product and utra-low dispersion. Opt. Express,2010,18(6): 5942-5950.
    [84]F. C. Leng, W. Y. Liang, B. Liu, et al. Wideband slow light and dispersion control in oblique lattice photonic crystal waveguides. Opt. Express,2010,18(6):5707-5712.
    [85]J. Hou, H. Wu, D. S. Citrin, et al. Wideband slow light in chirped slot photonic-crystal coupled waveguides. Opt. Express,2010,18(10):10567-10580.
    [86]K. Totsuka, N. Kobayashi and M. Tomita. Slow light in coupled-resonator-induced transparency. Phys. Rev. Lett.,2007,98(21):213904-213907.
    [87]J. E. Heebner, V. Wong, A. Schweinsberg, et al. Optical transmission characteristics of fiber ring resonators. IEEE J. Quantum Electron.,2004,40(6):726-730.
    [88]J. T. Mok, C. M. D. Sterke, I. C. M. Littler, et al. Dispersionless slow light using gap solitons. Nature Phys.,2006,2(22):775-780.
    [89]J. T. Mok, C. M. D. Sterke and B. J. Eggleton. Delay-tunable gap-soliton-based slow-light system. Opt. Express,2006,14(25):11987-11996.
    [90J H. Soda, K. Iga, C. Kitahara, et al. GaInAsP/InP surface emitting injection lasers. Japanese J. Appl. Phys.,1979,18(6):2329-2330.
    [91]D. M. Kuchta, Y. H. Kwark, Y. H. Schuster, et al.120-Gb/s VCSEL-based parallel-optical interconnect and custom 120-Gb/s testing station. J. Lightw. Technol.,2004,22(9):2200-2212.
    [92]J. A. Hudging, S. F. Lim, G. S. Li, et al. Compact, integrated optical disk readout head using a novel bistable vertical cavity surface-emitting lasers. IEEE Photon. Technol. Lett.,1999,11(2):245-247.
    [93]H. Kosaka. Smart integration and packging of 2D VCSELs of high-speed parallel links. IEEE J. Sel. Top. Quantum Electron.,1999,5(2):184-192.
    [94]H. Soda, K. Iga, C. Kitahara, et al. GaInAsP/InP surface emitting injection lasers. Japanese J. Appl. Phys.,1979,18:2329-2330.
    [95]K. Iga, S. Kinoshita, F. Koyama, et al. Microcavity GaAlAs/GaAs surface-emitting laser with Ith=6mA. Electron. Lett.,1987,23(3):134-136.
    [96]F. Koyaka, S. Kinoshita and K. Iga. Room-temperature continuous wave lasing characteristics of GaAs vertical cavity surface-emitting laser. Appl. Phys. Lett., 1989,55(3):221-222.
    [97]J. L. Jewell, A. Scherer, S. L. McCall, et al. Low threshold electrically-pumped vertical-cavity surface-emitting microlasers. Electron. Lett.,1989,25(17): 1123-1124.
    [98]R. S. Geel, S. W. Corzine and L. A. Coldren. InGaAs vertical-cavity surface-emitting lasers. IEEE J. Quantum Electron.,1991,27(6):1359-1362.
    [99]T. Baba, Y. Yogo, K. Suzuki, et al. Near room temperature continous wave lasing characteristics of GaInAsP/InP surface emitting laser. Electron. Lett.,1993,29(10): 913-915.
    [100]D. I. Babic, K. Streubel, R. P. Mirin, et al. Room-temperature continous-wave operation of 1.54 μm vertical-cavity lasers. IEEE Photon. Technol. Lett.,1995, 7(11):1225-1227.
    [101]C. J. Chang-Hasnain. Tunable VCSEL. IEEE J. Sel. Top. Quantum Electron.,2000, 6(6):978-987.
    [102]J. F. Seurin, C. L. Chosh, V. Khalfin, et al. High-power vertical-cavity surface-emitting arrary. Proc. of SPIE,2008,6876:68760D-1-68760D-9.
    [103]C. Tombling, T. Saitoh, T. Mukai. Performance predictions for vertical-cavity semiconductor laser amplifiers. IEEE J. Quantum Electron.,1994,30(11): 2491-2499.
    [104]A. Karlsson and M. Hoijer. Analysis of a VCLAD:Vertical-cavity laser amplifier deector. IEEE Photon. Technol. Lett.,1995,7(11):1336-1338.
    [105]O. Kibar. VCSEL-based digital free-space optoelectronic interconnections. Ph. D. dissertation, Dept. Elect. Comput. Eng., Univ. Calif., San Diego, La Jolla,1999.
    [106]J. Piprek, E. S. Bjorlin and J. E. Bowers. Design and analysis of vertical-cavity seminconductor optical amplifiers. IEEE J. Quantum Electron.,2001,37(1): 127-134.
    [107]P. Royo, R. Koda and L. A. Coldren. Vertical cavity semiconductor optical amplifiers:comparison of Fabry-Perot and rate equation approaches. IEEE J. Quantum Electron.,2002,38(3):279-284.
    [108]E. S. Bjorlin, T. Kimura and J. E. Bowers. Carrier-confined vertical-cavity semiconductor optical amplifier for higher gain and efficiency. IEEE J. Sel. Top. Quantum Electron.,2003,9(5):1374-1385.
    [109]C. Y. Jin, Y. Z. Huang, L. J. Yu, et al. Detailed model and investigation of gain saturation and carrier spatial hole burning for a semiconductor optical amplifier with gain clamping by a vertical laser field. IEEE J. Quantum Electron.,2004,40(5): 513-518.
    [110]A. Hurtado, A. Gonzalez-Marcos and J. A. Mattin-Pereda. Modeling reflective bistability in vertical-cavity semiconductor optical amplifiers. IEEE J. Quantum Electron.,2005,41(3):376-383.
    [111]张善存,张延生,段晓峰等.垂直腔面发射激光器DBR结构反射特性分析.光电子·激光,2002,13(1):34~36.
    [112]夏光琼,吴正茂,林恭如.利用较完善模型研究半导体光放大器对皮秒光脉冲的放大.物理学报,2004,53(2):490~493.
    [113]洪伟,黄德修,孙军强等.重复脉冲注入下半导体光放大器皮秒增益和折射率非线性的数值模拟.光学学报,2003,23(4):459~464.
    [114]郭长志,陈水莲.分布反射发射垂直微腔半导体激光器的微腔效应.物理学报,1997,46(9):1731~1743.
    [115]潘炜,罗斌,吕鸿昌,陈建国.半导体环形腔激光器输出特性理论与实验.半导体激光,1999,1(1):131~136.
    [116]G. Wang, B. Luo, W. Pan, et al. A transfer matrix-based analysis of vertical-cavity seminconductor optical amplifiers. Chin. Phys. Lett.,2005,22(10):2561-2564.
    [117]秦张淼,罗斌,潘炜.垂直腔半导体光放大器增益的理论分析.激光技术,2006,30(5):452~454.
    [118]许江恒,罗斌,潘炜等.基于耦合腔VCSOAs增益带宽优化.激光技术,2006,30(1):60~63.
    [119]M. J. Adams, J. V. Collins and I. D. Henning. Analysis of semiconductor laser optical amplifier. Proc. IEEE J. Optoelectronics,1985,132(1):58-63.
    [120]M. Sanchez, P. Wen, M. Gross, et al. Nonlinear gain in vertical-cavity semiconductor optical amplifier. IEEE Photon. Technol. Lett.,2003,15(4): 507-509.
    [121]M. D. Sanchez, P. Wen, M. Gross, et al. Rate equations for modeling dispersive nonlinearity in Fabry-Perot semiconductor optical amplifiers. Opt. Express,2003, 11(21):2689-2696.
    [122]S. F. Lim and C. J. Chan-Hasnian. A proposal of broad-bandwidth vertical-cavity laser amplifier. IEEE Photon. Technol. Lett.,1995,7(11):1240-1242.
    [123]S. W. Corzine, R. H. Yan and L. A. Coldren. A tanh substitution technique for the analysis of abrupt and graded interface multilayer dielectric stacks. IEEE J. Quantum Electron.,1991,27(12):2086-2090.
    [124]D. I. Babic and S. W. Corzine. Analytic expressions for the reflection delay, penetration depth, and absorptance of quarter-wave dielectric mirrors. IEEE J. Quantum Electron.,1992,28(2):514-524.
    [125]C. J. Chang-Hasnain, P. C. Ku, J. Kim, et al. Variable optical buffer using slow light in seminconductor nanostrustures. Proceedings of the IEEE,2003,91(11): 1184-1198.
    [126]P. C. Ku, F. G. Sedgwick, C. J. Chang-Hasnain, et al. Slow-light in semiconductor quantum wells. IQEC 2004, paper IMO4.
    [127]A. V. Uskov and C. Chang-Hasnain. Slow and superluminal light in semiconductor optical amplifier. Electron. Lett.,2005,41(16):55-56.
    [128]C. J. Chang-Hasnain. Controlling light speed in semiconductors. ECOC 2005,5, pp: 5-6.
    [129]S. W. Chang, P. K. Kondratko, et al. Slow light based on coherent population oscillation in quantum dots at room temperature. IEEE J. Quantum Electron.,2007, 43(2):196-206.
    [130]X. Zhao, P. Palinginis, B. Pesala, et al. Room-temperature tunable ultraslow light in 1550 nm VCSEL. ECOC 2005,6, pp:35-36.
    [131]X. Zhao, P. Palinginis, B. Pesala, et al. Tunable ultraslow light in vertical-cavity surface-emitting laser amplifier. Opt. Express,2005,13(20):7899-7904.
    [132]F. G Sedgwick, C. J. Chang-Hasnain, P. C. Ku, et al. Storage-bit-rate product in slow-light optical buffers. Electron. Lett.,2005,41(24):1347-1348.
    [133]C. J. Chang-Hasnain. Slow and fast light in semiconductors. LEOS 2006, paper TuDD2.
    [134]R. S. Tucker, P. C. Ku and C. J. Chang-Hasnain. Delay-bandwidth product and storage density in slow-light optical buffers. Electron. Lett.,2005,41(4):208-209.
    [135]R. S. Tucker, P. C. Ku and C. J. Chang-Hasnain. Slow-light optical buffers: capabilities and fundamental limitations. J. Lightw. Technol.,2005,23(12): 4046-4066.
    [136]A. V. Uskov, F. G Sedgwick and C. J. Chang-Hasnain. Delay limit of slow light in semiconductor optical amplifier. IEEE Photon. Technol. Lett.,2006,18(6): 731-733.
    [137]C. J. Chang-Hasnain and S. L. Chuang. Slow and fast light in seminconductor quantum-well and quantum-dot devices. J. Lightw. Technol.,2006,24(12): 4642-4655.
    [138]N. Laurand, S. Calvez, M. D. Dawson, et al. Slow-light in a 1300nm GaInNAs vertical-cavity semiconductor optical amplifier. LEOS 2006, paper MA4.
    [139]S. Suda, G. Hirano, F. Koyama, et al. Tunable optical delay and nonlinear phase shift using 1.55-μm VCSEL. ISLC 2006, pp:121-122.
    [140]P. C. Peng, C. T. Lin, H. C. Kuo, et al. Tunable optical delay using quantum dot VCSEL by polarization control. ISLC 2006, pp:55-56.
    [141]P. C. Peng, C. T. Lin, H. C. Kuo, et al. Tunable optical group delay in quantum dot vertical-cavity surface-emitting laser at 10 GHz. Electron. Lett.,2006,42(18): 1036-1037.
    [142]X. Zhao, Y. Zhou, C. J. Change-Hasnain, et al. Slow and fast light using master-modulated injection-locked VCSELs. CLEO 2006, paper CWG5.
    [143]R. Xuan, J. Y. Chi, P. C. Peng, et al. Demonstration of slow light via population oscillation in quantum dot VCSEL. CLEO 2007, pp:1-2.
    [144]C. S. Chou, R. K. Lee, P. C. Peng, et al. Modeling of slow light in vertical cavity surface emission lasers. LEOS 2007, paper MB2.
    [145]P. C. Peng, F. M. Wu, J. T. Lin, et al. Tunable slow light in quantum well vertical-cavity surface-emitting laser at 40 GHz. CLEO 2008, paper:JThA2.
    [146]H. Dalir and F. Koyama. Modulation bandwidth enhancement of VCSELs with lateral optical feedback of slow light. ISLC 2010, pp:83-84.
    [147]Y. N. Ma, B. Luo, L. S. Yan, et al. Low power penalty tunable slow light using vertical-cavity surface-emitting laser amplifier. Chin. Opt. Lett.,2011,9(2): 051401-1-051401-3.
    [148]马雅男,罗斌,潘炜等.垂直腔面发射激光器的饱和效应对慢光延时影响的研究.物理学报.2012,61(1):014215-1~014215-7.
    [149]Y. N. Ma, B. Luo, W. Pan, et al. The improvement of slow light performance for vertical-cavity surface-emitting laser using coupled cavity structure. Optoelectron. Lett.,2012,8(6):0405-0409.
    [150]Y. N. Ma, B. Luo, L. S. Yan, et al. Bandwidth improvement for slow light using amplification characteristics of cascaded vertical-cavity surface-emitting lasers. Opt. Lett.,2013,38(3):308-310.
    [151]P. C. Peng, C. T. Lin, H. C. Kuo, et al. Tunable slow light using quantum dot VCSEL for subcarrier multiplexed system. OFC 2007, paper OTuT6.
    [152]K. Kouroki, A. Fuchida, T. Sakaguchi, et al. Miniature optical gate with VCSEL-based slow light Bragg reflector waveguide. OFC 2008, paper TuC3.
    [153]J. Yoshida, S. Suda and F. Koyama. Optical phase shifter based on VCSEL and slow light waveguide. Nano-Optoelectronics Workshop 2008, Session(2):235-236.
    [154]P. C. Peng, S. K. Yeh, F. M. Wu, et al. Tunable photonic microwave filter using slow light in vertical cavity surface emitting laser. OFC 2009, paper JWA58.
    [155]I. Gasulla, J. Sancho, J. Lloret, et al. Figures of merit for microwave photonic phase shifters based on coherent population oscillation slow and fast light effects. ICTON 2010, paper We.B3.2.
    [156]S. Sales, W. Xue, J. Mrok, et al. Slow and fast light effects and their applications to microwave photonics using semiconductor optical amplifiers. IEEE Trans. Microw. Theory Tech.,2010,58(11):3022-3039.
    [157]S. O. Duill, E. Shumakher and G. Eisenstein. Application of slow light:controllable microwave phase shifting using semiconductor optical amplifiers. ICTON 2011, paper Mo.B5.2.
    [158]J. Lloret, J. Sancho, I. Gasulla, et al. True time delays and phase shifters based on slow light technologies for microwave photonics applications. ICTON 2011, paper We.C5.1.
    [159]M. Nakahama, X. Gu and T. Shimada. Monolithic beam steering device employing slow-light waveguide and tunable MEMs VCSEL. CLEO 2012, paper JW2A.94.
    [160]J. Mrok, W. Xue, Y. Chen, et al. Controlling the speed of light in seminconductor waveguides:physics and application. CLEO 2009, paper JTuF4.
    [161]F. Koyama and H. Sano. VCSEL photonics-tuning, athermalization and slowing-down. CLEO 2009, paper ThD3.
    [162]T. Shimada, A. Fuchida and F. Koyama. Lateral integration of VCSEL and slow light modulator. ECOC 2011,37, pp:1-3.
    [163]R. W. Boyd and J. R. Lowell. Major accomplishments in 2009 on slow light. IEEE Photon. Journal,2010,2(2):229-231.
    [164]F. Koyama. Advances of VCSEL photonics. ISLC 2012, paper PLE3.
    [165]唐晋发,郑权.应用薄膜光学.上海科学技术出版社,上海,1984.
    [166]P. Royo, R. Koda and L. A. Coldren. Rate equations of vertical-cavity semiconductor optical amplifiers. Appl. Phys. Lett.,2002,80(17):3057-3059.
    [167]竺庆春,陈时胜.矩阵光学导论.上海科学技术文献出版社,上海,1991.
    [168]C. Y. J. Chu and H. Chafouri-Shiraz. Analysis of gain and saturation characteristics of a semiconductor laser optical amplifier using transfer matrices. J. Lightw. Technol.,1994,12(8):1378-1386.
    [169]王刚,罗斌,潘炜.理论研究垂直腔半导体光放大器脉冲放大特性.光电工程,2007,34(11):41-49.
    [170]Z. Shi, R. W. Boyd, R. Pant, et al. Design of a tunable time-delay element using multiple gain lines for increased fractional delay with high data fidelity. Opt. Lett., 2007,32(14):1986-1988.
    [171]A. Karim, E. S. Bjorlin, J. Piprek, et al. Long-wavelength vertical-cavity lasers and amplifiers. IEEE J. Sel. Top. Quantum Electron.,2000,6(6):1244-1254.
    [172]J. Piprek, E. S. Bjorlin and J. E. Bowers. Optical gain-bandwidth product of vertical-cavity laser amplifier. Electron. Lett.,2001,37(5):298-299.
    [173]M. Brunner and K. Gulden. Continuous-wave dual-wavelength lasing in a two-section vertical cavity laser. IEEE Photon. Technol. Lett.,2000,12(2): 1316-1318.
    [174]D. M. Grasso and K. D. Choquette. Threshold and modal characteristics of composite-resonator vertical-cavity laser. IEEE J. Quantum Electron.,2003,39(12): 1526-1530.
    [175]V. Badlilita, J. F. Carlin and M. Ilegems. Rate-equation model for coupled-cavity surface-emitting laser. IEEE J. Quantum Electron.,2004,40(12):1646-1656.
    [176]A. C. Lehman and K. D. Choquette. Threshold gain temperature dependence of composite resonator vertical-cavity lasers. IEEE J. Quantum Electron.,2005,11(5): 962-967.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700