用户名: 密码: 验证码:
引信用MEMS惯性开关技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微机电(MEMS)惯性开关是对加速度的变化敏感并提供开关闭合动作的MEMS执行器,也称阈值开关、加速度开关或者g值开关。MEMS惯性开关不但体积小、响应快、能够捕捉微弱的信号而且很容易和外接电路融合,尤其适用于弹药的特殊环境。引信用MEMS惯性开关要求具有较强的抗过载性能、通用性、万向性等特殊要求,普通开关难以满足要求,且开关在工作过程中受多物理场耦合作用,其工作机理复杂,相关的设计理论不能满足需求,严重制约了MEMS惯性开关在引信中的应用。本文深入研究开关系统的静电力场、弹性力场、惯性力场、阻尼力场等多种物理场及耦合的基本问题,设计了两种MEMS惯性开关,分别满足引信的通用性和万向性需求。
     分析悬臂梁式的MEMS惯性开关在弹性力场与静电场耦合作用下出现的吸合效应,并求解出吸合电压;分析静电力作用下悬臂梁系统的有效弹性系数减小的负弹簧效应。提出计算静电驱动悬臂梁结构变形的三种方法,等效刚度法、模态叠加法和有限元反馈法,分别应用等效刚度法和有限元反馈法求解静电力作用下悬臂梁的变形特性,并比较三种方法的优缺点和适用性;建立了惯性力、静电力和阻尼力耦合作用下悬臂梁开关的动态模型。引入表征流体性能的雷诺方程,建立了悬臂梁的流-固耦合的挤压膜阻模型,推导出了在静电力、惯性力耦合作用时,悬臂梁压膜阻尼系数的计算公式。
     针对引信用惯性开关的通用性要求,设计了一种具有阈值可调功能的悬臂梁开关,该开关能够通过调节偏置电压以调节加速度阈值。基于静电驱动原理,推导出开关加速度阈值和偏置电压的关系;建立多物理场耦合下开关的系统级模型,对开关的准静态特性和动态特性进行系统级分析,研究可变阈值开关的基本性能。以500g为一档,调节加速度阈值范围为:500g~2500g,开关响应时间小于载荷持续时间的10%,开关接触时间大于300μs。
     针对引信用惯性开关万向性的要求,提出了一种多弹性支撑的环形分布式万向惯性开关。建立了开关的动力学控制方程;对开关进行静态特性分析,基于能量法中的卡式定律和胡克定律,推导出S型悬臂梁刚度的计算公式并进行有限元仿真验证,结果表明理论推导计算值和有限元仿真值的相对误差小于3%,S型折叠悬臂梁的理论公式推导正确;对开关进行动态特性分析,研究多弹性支撑的环形万向惯性开关的基本性能。开关在700g加速度阈值作用下,响应时间为0.12ms,两电极接触时间为35μs。
     介绍了多弹性支撑环形分布式MEMS万向惯性开关的加工工艺流程,研究了开关的检测技术;应用相移显微干涉法测量开关尺寸,通过尺寸检测得出悬臂梁的线宽误差分布及开关中可动电极和固定电极的间隙尺寸的加工误差范围,分析了尺寸误差对阈值加速度的影响;设计了一种冲击台试验用以测试开关的加速度阈值,该冲击台能够通过增加缓冲垫达到增加加速度脉冲宽度的目的;对开关进行了马歇特落锤实验,结果表明30000g加速度的高过载条件下,开关没有发生形变和断裂现象,仍然能保持良好的工作性能。
The inertial MEMS switch is required to convert the acceleration signal which comes from the impact to the duration of the ON-state. The inertial MEMS switch is also called acceleration switch, threshold switch and G-switch. In particular, there is a need in the munitions fuze area for an ultra-miniature, fast-acting, inexpensive inertial switch that can be integrated with external circuit. The switch used in munitions fuze area need to follow some special conditions, against high overload, general-purpose, multi-directional sensing acceleration and so on, the general switch can not satisfy the conditions. At the time of the switch close, the MEMS switch worked in the multi-physics field, the work principle is complex, and the related design theoretics can not satisfy the devising demands yet, so the step of using MEMS switch in munitions fuze is slowed down badly. In this paper the theories of electrostatic field, elastic force field, inertial force field, damping field and the question of the multi-physics field are studied. Two kinds of switches are designed to satisfy the general-purpose and multi-directions sensing acceleration respectively in fuze.
     The pull-in effect is analyzed, which results from the coupling between the elastic force of micro-cantilever structure and the electrostatic force. The pull-in voltage is calculated. The negative spring effect is analyzed, that the effective spring constant will be decreased with the electrostatic force increasing. Three methods are presented for calculating the distortion of the micro cantilever under the electrostatic force, equivalent method, mode addition method and the finite element method with feed back. The advantages and disadvantages of the three methods are discussed, and the applicability of each method is analyzed. The distortion of the micro cantilever under the electrostatic force is simulated with equivalent method and the finite element method with feed back respectively.
     Combing the Renault equation which is used to describe the performance of the liquid with the micro-cantilever, the squeeze-film damping model is presented for the micro cantilever switch under the effect of electrostatic force, elastic force and inertial force coupling together. The squeeze-film damping coefficient formula for the cantilever switch is derived, and the analytical formula is presented to calculate the squeeze-film damping coefficient.
     To resolve the general-purpose question of the switch in fuze, a novel inertial switch with threshold adjusting is designed, the acceleration threshold can be adjusted by adjusting the bias voltage of the switch. Based on the electrostatic force driving, the liner relationship formula between the acceleration threshold and the bias voltage of the switch is derived. The systemic model of the cantilever MEMS switch is established in the coupled multi-physics fields and the static and the dynamic characteristic are researched based on the systemic model. The acceleration threshold is controlled from500g to2500g, adjusting500g every time, the response time is less than10%of the load duration, the contact time of the switch is greater than300μs
     To resolve the multi-directional sensing acceleration question of the switch in fuze, the multi-elastic supported, annular MEMS inertial switch is designed. The dynamic differential equation of the movable electrode in switch is established. The static characteristic is researched, based on Castigliano's2nd Theorem which is one of the energy methods and Hooke's law, the spring constants of the folded serpentine micro-cantilever are derived and computed. The spring constant of the folded serpentine micro-cantilever is calculated by Finite element analysis using ANSYS software to validate the theoretic calculation. Compared with the Finite element simulation, the relative errors of the folded serpentine micro-cantilever are all less than3%. The results show that the formula deduction of the folded serpentine micro-cantilever is logical. The dynamic characteristics of the switch are researched by using finite element method. The response time of the switch is0.12ms and the contact time is about35μs.
     The technics process of the multi-elastic supported, annular MEMS inertial switch is introduced and the measurement techniques of the switch are researched. Based on the phase-stepping microscopic interferometry, the width of the cantilever and the gap between the two electrodes are measured and the error distribution is obtained, and the reason that the error will be effect the acceleration threshold is analyzed. The drop test is designed to test the acceleration threshold of the switch and the duration time of the acceleration can be adjusted by using buffer cushion. To test the capability of the switch that against high overload, Maehete test is used to offer3000g high acceleration, the test results show that the plastic deformation does not occur in the switch under the30000g acceleration and it can keep work commendably.
引文
[1]高世桥,曲大成.微机电系统(MEMS)技术的研究与应用.科技导报.2004,4:17-21
    [2]温诗铸.微型机械与纳米机械学研究.现代科学仪器.1998,1(2):24-27
    [3]王培霞,贾育秦.从物理学发展看MEMS的跨学科研究.物理与工程.2005,15(5):39-50
    [4]Senturia S D Microsystem Design. Massachusetts:Kluwer Academic Publishers,2000.Chapter 1
    [5]http://www.wtec. org/loyola/mcc/mems_eu/
    [6]张海涛,张斌.微电子机械系统技术及其应用.电子元件与材料.2002,21(4):28-30
    [7]周鹏.MEMS器件综合技术的研究:[硕士学位论文].南京:东南大学微电子学与固体电子学专业,2005
    [8]MEMS重大专项总体组.努力打造中国MEMS机器人技术与应用.2003,(3):8-11
    [9]Fan L, Last H, Wood R, et al. SLIGA based underwater weapon safety and arming system. Micro-system Technologies,1998,4:168-171
    [10]黄庆安.硅微机械加工技术.北京:科学出版社.1996:1-10
    [11]Bustillo,J.M., R.T.Howe and R.S.Muller. Surface micromachining for microelectromechanical systems. Proceedings of the IEEE,1998,86(8):1552-1574
    [12]戴亚春,周建中,王匀,等.MEMS微细加工技术.机床与液压,2006,(5):15-19
    [13]Kovacs,GT.A.,N.I.Maluf, and K.E.Petersen. Bulk micromachining of silicon. Proceedings of the IEEE,1998,86(8): 1536-1551
    []4]张国炳,郝一龙,田大宇等.多晶硅薄膜应力特性研究.半导体学报.1999,20(6):263-269
    [15]林日乐,谢佳维,蔡萍等.体微加工技术在MEMS中的应用.压电与声光.2005,27(13):324-327
    [16]Mohamed Gad-el-Hak著,张海霞,赵小林等译.微机电系统设计与加工.北京:机械工业出版社,2010:58-75
    [17]Chang Liu著,黄庆安译.微机电系统基础.北京:机械工业出版社,2007:25-31
    [18]林鲁成.SOI:纳米技术时代的高端硅基材料.微电子学.2008,38(1):44-49
    [19]Madou M. Fundamentals of microfabrication:The science of miniaturization. New York:CRC Press,2002. Chapter 1
    [20]徐永青,杨拥军.硅MEMS器件加工技术及展望.MEMS器件与技术.2010,47(7):425-431
    [21]Guckel,H., High-aspect-ratio micromachining via deep x-ray lithography. Proceedings of the IEEE,1998,86(8): 1586-15793
    [22]章吉良,杨春生.微机电系统及其相关技术.上海:上海交通大学出版社,1999:58-65
    [23]Gobet J, Cardot F, Bergqvist J, et al. Electro deposition of 3D micro-structures on silicon. Micromech, Microeng, 1993,3:123-130
    [24]孟光,张文明.微机电系统动力学.北京:科学出版社,2008:2-3
    [25]Richard Feynman. There is Plenty of Room at the Bottom. Microelectromechanical System.1992,1(1):60-66
    [26]Richard Feynman. Infinitesimal Machinery. Microelectromechanical System.1993,2(1):4-14
    [27]Eddy,D.S., Sparks D.R.. Application of MEMS technology in automotive sensors and actuators. Proceedings of the IEEE,1998,86(8):1747-1755
    [28]崔大付.基于Bio-MEMS技术的DNA芯片研究.机械强度.2001,23(4):471-475
    [29]Gardeniers, H.J.GE., Luttge,R., Berenschot, E.J.W, et al.. Silicon micro machined hollow micro needles for transder-mal liquid transport. Journal of Microelectromechanical systems.2003,12(6):855-862
    [30]http://www.techonline.com/community/tech_topic/mems/
    [31]张文明.微机电系统(MEMS)动力学特性研究:[博士后学位论文].上海:上海交通大学机械与动力工程学院,2008
    [32]王立鼎,褚金奎,刘冲等.中国微纳制造研究进展.机械工程学报.2008,44(11):2-12
    [33]任风云,樊昊,付耐根.微米/纳米技术军事应用潜力巨大.现代物理知识.2004,(6):40-44
    [34]徐小云,颜国正,丁国清.微电子机械系统(MEMS)及其应用的研究.测控技术.2002,(8):1-5
    [35]高世桥,曲大成.微机电系统在武器中应用的发展战略研究.国防研究报告,2001
    [36]Chen F, Xie H, Fedder G K. A MEMS-based monolithic electrostatic micro-actuator for ultra-low magnetic disk head fly height control. IEEE Transactions on Magnetics.2001,37(4):1915-1918
    [37]Ruffin, Paul B. MEMS-based sensor arrays for military applications. The International Society for Optical Engineering.2002,4700:111-121
    [38]金磊,高世桥,李文杰.微加速度传感器硅微结构设计.传感器技术.2000,19(2):23-25
    [39]马保华.引信构造与作用.北京:国防工业出版社,1984
    [40]石庚辰.引信用微机电传感器.探测与控制学报.2000,22(4):31-35
    [41]赵剑,贾建援,王洪喜等.一种V形梁结构的双稳态惯性开关.航空学报.2008,29(5):1157-1162
    [42]Robinson. U.S. Patent 5705767.Jan.6,1998
    [43]Robinson C H,Wood R H, Hoang T Q. Development of inexpensive, ultra miniature MEMS based safety and arming (S &A) device for small-cabliber-munition fuzes. US:Army Tank Automotive Command (TACOM) Armament Research, Development and Engineering Center (ARDEC) Fuze Division,2002
    [44]Sandia National Laboratories Annual Report 2004-2005. USA:Sandia National Laboratories,2005
    [45]Joseph Lannon. ARDEC Fuzing Overview. The 50th Annual Fuze Conference. USA NDIA,2006
    [46]Maurer. US, Patent 7007606 B1.2006.
    [47]H Last,M Deeds, D Garvick,et al. Nano to Millimeter Scale Integrated Systems. IEEE Transactions on Components and Packaging Technologies.1999,22:138-142
    [48]曹成茂,张河,丁立波.MEMS技术在引信中的应用研究.测控技术.2004,23(10):6-7
    [49]李仁锋MEMS高g值加速度计设计技术研究:[硕士学位论文].四川:中国工程物理研究院物理电子专业,2003
    [50]石庚辰.微机械加速度传感器及应用.测控技术.2003,22(3):5-8
    [51]Jeung Sang Go,Young Ho Cho and Byung Man Kwak. Acceleration micro-switches with adjustable snapping threshold. In:Proc.of theTransducers'95,1995, Stockholm, Sweden
    [52]Jeung Sang Go, Young Ho Cho and Byung Man Kwak. Snapping micro-switches with adjustable acceleration threshold. Sensors and Actuators,1996(83):579-583
    [53]C.H. Robinson, U.S. Patent 6314887B1,2001
    [54]杨卓青,丁桂甫,蔡豪刚.微机电系统惯性电学开关的设计与制作.中国机械工程.2008,19(9):1033-1036
    [55]C.H. Robinson, U.S. Patent 006765160,2001
    [56]Dennis S. Greywall, U.S. Patent 2006/0033598A 1,2006
    [57]陈光焱,吴嘉丽,赵龙等.基于阿基米德螺旋线的低g值微惯性开关.光学精密工程,2009,17(6):1257-1261
    [58]Tadao Mastsunaga, Masayoshi Esashi. Acceleration switch with extended holding time using squeeze film effect for side airbag systems. Sensors and Actuators.2002,100:10-17
    [59]WANG H X, ZHAO Jian. Inertial switch with bistable permanent magnetic structure. Nanotechnology and Precision Engineering.2009,7(2):137-141
    [60]Michaelis S, Timme H J, Wycisk M, et al. Additive electroplating technology as a post-CMOS process for the production of MEMS acceleration-threshold switches for transportation applications. J. Micromech. Microeng.2000, 10 (2):120-123
    [61]沐方清.引信安全系统中高g值微加速度开关的设计与测试:[硕士学位论文].南京:南京理工大学机械电子工程专业,2006
    [62]Jenkins, U.S. Patent 3899649,1975
    [63]Lucey,Jr. et al, U.S. Patent 4174666,1979
    [64]Miller, et al, U.S. Patent 4789762,1988
    [65]Tetrault, U.S. Patent 4916266,1990
    [66]温诗铸,丁建宁.微型机械设计基础研究.机械工程学报,2000,36(7):39-42
    [67]Taher M, Saif A, Huang Yong gang. The strain gradient effect in microelectromechanical systems (MEMS). Journal of Micro-electromechanical Systems,2002,11 (2):27-35
    [68]温诗铸.微型机械与纳米机械学研究.现代科学仪器,1998,1(2):24-27
    [69]石然,裘安萍,苏岩.硅微谐振式加速度计的实现及性能测试.光学精密工程,2010,18(12):2583-2589
    [70]伞海生,宋子军,王翔等.适用于恶劣环境的MEMS压阻式压力传感器.光学精密工程,2012,20(3):550-555
    [71]C.H. Robinson. US, Patent 6314887B1,2001
    [72]C.H. Robinson. US, Patent 006765160,2001
    [73]高建忠,蒋庄德,赵玉龙MEMS微型柔性力-位移传动机构设计.中国机械工程.2006,17(10):1-5
    [74]Lin W Z. Proper orthogonal decomposition and component mode synthesis in macromodel generation for the dynamic simulation of a complex MEMS device 2003
    [75]王洪喜.微结构的静电驱动特性研究:[博士学位论文].西安:西安电子科技大学机械制造及其自动化专业,2006
    [76]Bao M H. Analysis And Design Principles of MEMS Device. Amsterdam:Elsevier Press,2005.Chapter 3
    [77]张文明,孟光,周健斌.微机电系统压膜阻尼特性分析.振动与冲击.2006,(4):41-46
    [78]王小静,刘永武,王敏等MEMS微平面构件的空气阻尼效应研究.中国机械工程,2005,16(14):1276-1278
    [79]孟光,张文明.微机电系统动力学.北京:科学出版社,2008:141-143
    [80]Blech J.J. On isothermal squeeze films. Journal of Lubrication Technology,1983,105:615-620
    [81]Griffin W.S, Richardson H. H, Yamanami S. A study of squeeze film damping. ASME Journal of Basic Engineering.1996,6:451-456
    [82]Minami K, Matsunaga Esashi M. Simple Modeling and Simulation of The Squeeze Film Effect and Transient Response of The MEMS Device. Micro Electro Mechanical Systems. In:Proceeding of IEEE MEMS'99.12th IEEE International Conference. USA:Orlando,1999:338-343
    [83]Kampen V. R, Wolffenbuttelr R.F. Modeling the behavior of bulk-micromachined silicon accelerometers. Sensors and Actuators.1998, A64:137-150
    [84]Ruth H., Michael K. Modeling squeeze film effects in a MEMS accelerometer with a levitated proof mass. Journal of Micromechanics and Micro engineering,2005,15(5):893-902
    [85]Kim E.S.,Youg-Ho Cho, Kim M.U.. Effect of holes and edges on the squeeze film damping of perforated. In: Proceeding of IEEE MEMS'99.12th IEEE International Conference. USA:Orlando,1999:296-301
    [86]Schrag G, Wachutka G. Accurate system-level damping model for highly perforated micro-mechanical devices. Sensors and Actuators A:Physical,2004,111:291-299
    [87]Zhang W M, Meng G. Nonlinear dynamical system of micro-cantilever under combined parametric and forcing excitations in MEMS, Sensors and Actuators A:Physical,2005,119:291-299
    [88]Chen C. S, Kuo W. J. Squeeze and viscous damping in micrOel ectrostatic comb drives. Sensors and Actuators A, 2003,107:193-203
    [89]Yang Y. J, Gretillat M. A, Senturia S. Defect of air damping on the dynamics of non-uniform deformations of microstructures. In:International Conference on Solid-State Sensors and Actuators, USA:Chicago,1997:1093-1096
    [90]Li G, Aluru N. R. Linear, nonlinear and mixed regime analysis of electrostatic MEMS. Sensors and Actuators A.2001,91:278-291
    [91]Zhang C G, Xu G, Jiang Q. Characterization of the squeeze film damping effect on the quality factor of a micro-beam resonator. Journal of Micromechanics and Micro engineering.2004,14:1302-1306
    [92]Darling R.B, Hivick C, Xu J. Compact analytical modeling of squeeze film damping with arbitrary venting conditions using a Green's function approach. Sensors and Actuators A.1998,70:32-41
    [93]李普,胡如夫,尹矗.弹性悬臂微梁谐振系统挤压膜阻尼新解析模型.振动与冲击,2008,27(3):1-4
    [94]贾孟军,硅微机械加速度开关技术研究:[博士学位论文].上海:中国科学院上海微系统与信息技术研究所微电子学与固体电子学,2007.
    [95]李伟剑.微机电系统的多域耦合分析与多学科设计优化:[博士学位论文].西安:西北工业大学机械工程专业,2004.
    [96]张健,李伟华,聂萌.基于力学描述的MEMS器件行为模拟方法.电子器件,2006,29(4):1182-1186
    [97]戎华.机电耦合MEMS器件等效电路宏模型及相关理论的研究:[博士学位论文].南京:东南大学电子工程系,2003
    [98]Nayfeh A, Younis M, Abdel-Rahman E. Reduced-order models for MEMS applications nonlinear dynamics.2005, 41(1):211-236
    [99]Evgenii B Rudnyi, Jan G Korvink.. Review:Automatic model reduction for transient simulation of MEMS-based devices. Sensors Update.2002,11(1):3-33
    [100]吕湘连.面向器件行为的MEMS宏建模方法研究:[硕士学位论文].西安:西北工业大学机械制造及其自动化专业,2005
    [101]孟光,张文明.微机电系统动力学.北京:科学出版社,2008:96-110
    [102]孟为民.等效电路方法建立MEMS器件宏模型:[硕士学位论文].南京:东南大学微电了学与固体电子学专业,2003
    [103]闫子健MEMS CAD器件级宏模型获取技术:[硕士学位论文].西安:西北工业大学微机电系统与纳米技术专业2007
    [104]陈广文.基于MEMS的微机械射频开关的研究和设计:[硕士学位论文].厦门:厦门大学测试计量技术及仪器,2002
    [105]郭方敏,赖宗声,朱自强等.悬臂梁式RF MEMS开关的设计与研制.半导体学报.2003,24(11):1190-1194
    [106]蔡豪刚,杨卓青,丁桂甫等.基于非硅衬底的微机电系统惯性开关的研制机械工程学报.2009,45(3):156-161
    [107]吝海锋,何洪涛,卜玉民等.一种新型无源MEMS万向碰撞开关MEMS器件与技术.2009,46(6):358-361
    [108]刘鸿文.材料力学Ⅱ(第四版).北京:高等教育出版社,2007:38-44
    [109]苏才均,吴吴,郭占社等.微构件材料力学性能测试方法.实验力学.2005,20(3):441-447
    [110]陈隆庆,赵明嗥,张统一.薄膜的力学测试技术.机械强度.2001,23(4):413-429
    [111]Osterberg P.M, Senturia S.D. M-TEST:A test chip for MEMS material property measurement using electro-statically actuated test structures. J Microelectromech S,1997,6(2):107-118
    [112]黄玉波MEMS力学特性测试及可靠性分析中若干关键问题的研究:[博士学位论文].天津:天津大学精密仪器与光电子工程学院,2008.
    [113]孙屹博,王晓东,余东生.基于虚拟仪器的高载条件下MEMS动态测试系统.仪器仪表学报.2009,30(1):29-34
    [114]王涛,王晓东,王立鼎.MEMS中微结构动态测试技术与进展.中国机械工程.2005,16(1):83-88
    [115]惠梅,牛憨笨,李庆祥等,相移干涉显微术测量表面微观形貌,光学技术,2003,29(1):2-4
    [116]李岩,井文才,周革等,纳米检测轮廓仪相移干涉图处理,纳米技术与精密工程,2005,3(1):13-18

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700