用户名: 密码: 验证码:
高速切削航空铝合金变形理论及加工表面形成特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高速切削加工技术是先进制造技术的一项全新的共性实用技术,已成为现代切削加工技术的重要发展方向,具有广阔的市场应用前景。高速切削技术具有的高的生产效率、加工精度、表面质量和生产成本低等优点,已成为先进制造技术的重要组成部分,自20世纪90年代进入工业化应用后,取得了巨大的经济效益。航空制造业是高速切削加工的应用最早,最为广泛的行业,其中主承力结构件多数为整体坯料“掏空”的整体结构件,代替传统的拼接结构。因此高速切削技术在对材料去除率大、加工质量要求高、加工周期长的整体结构件加工中更能体现其独特的优势。但我国高速切削技术的研究起步较晚,对高速切削基础工艺理论及切削机理深入研究还不足,在理论研究和实际生产推广应用中存在许多问题,不能充分发挥高速切削的优越性。
     高速切削加工过程是导致工件表面层产生高应变速率的高速切削变形和刀具与工件之间的高速切削摩擦学行为形成的为热、力耦合不均匀强应力场的制造工艺。与传统的切削加工相比,加工中工件材料的力学性能、切屑形成、切削力学、切削温度和已加工表面形成等都有其不同的特征和规律。论文针对高速铣削航空铝合金7050-T7451加工变形理论和表面特征形成进行了系统的理论和实验研究,为航空制造业高速切削加工的推广和应用提供重要的理论依据和技术支撑。
     建立准确的高速切削加工工件材料动态力学性能是研究切削变形理论和切削过程模拟仿真的重要基础,然而仅依赖单纯的材料实验很难获得其符合切削加工过程的动态力学性能。根据常规动态压缩(SHPB)材料实验研究应变、应变率、温度对流动应力的影响趋势,证明经验Johnson-Cook本构模型对铝合金7050-T7451力学性能具有较好的适应性。针对高速切削加工“高温”、“高应变”、“高应变率”的特点,提出正交切削实验法对铝合金7050-T7451高速切削加工中的变形行为、剪切流动应力、应变、应变率等特性及相互影响规律进行研究;对实验结果进行回归计算,建立高速切削加工铝合金7050-T7451的本构方程。以主切削力为目标,实验与模拟结果验证了正交切削实验法建立高速切削加工材料本构方程的可行性和可靠性。
     研究了高速铣削铝合金7050-T7451时的切屑形成机理、切削变形关系、切削力学、摩擦系数等切削基础理论,主要包括:1)利用位错理论研究了切屑形成微观机理,从微观角度对变形区进行了更精确的重新划分,增加了刃前变形区和位错压缩变形区;2)建立不同刀具铣削加工的铣削力经验模型,研究切削参数对铣削力的影响,结果证明900m/min为7050-T7451进入高速切削的临界速度;3)利用正交直角车削实验获得切削分力计算得到前刀面的平均摩擦系数,研究切削速度对摩擦系数和摩擦角的影响趋势。最后,基于快速落刀实验和有限元仿真结果对高速切削剪切角模型的进行修正,综合考虑工件材料和切削速度对剪切角的影响,建立适用于铝合金7050-T7451的高速切削加工的切削方程式。
     建立了高速铣削加工过程的三维几何模型,基于有限变形理论的热力耦合理论方程和模拟中的关键技术,对铝合金7070-T7451的三维斜角切削加工进行模拟仿真。对切削过程中切屑形成过程和应力场、应变场、温度场等物理量分析和研究,证明了高速切削加工中在工件表面形成的不均匀、高强度的热-力耦合应力场。利用切削力实验,与模拟切削过程中初始阶段和稳态过程中的切削力变化规律进行了对比,验证了三维斜切削加工有限元模型的准确性,为课题后续实验研究和理论分析提供量化的依据。
     高速铣削航空铝合金时,已加工表面形成的宏观和微观特征与普通铣削有较大不同。以高速铣削实验为依据,建立高速铣削铝合金7050-T7451的加工表面表面粗糙度模型,研究切削参数对表面粗糙度的影响;基于加工表面硬化形成机理,结合表面显微硬度实验,研究材料的硬化程度与硬化层深度,建立铝合金7050-T7451表面硬化程度与硬化层深度的模型;分析了残余应力的产生机理和热-力耦合对工件表层残余应力的影响;通过摩擦磨损实验,研究不同切削参数得到的加工表面的摩擦与磨损特性,证明了高速切削加工不仅可以获得优于低速加工表面质量,零件的耐磨性等性能也有显著提高。
     利用显微观察方法(SEM、TEM)对铝合金7050-T7451高速铣削加工的工件表面断面和不同深度的表层的微观形貌特征进行系统的研究,确定了高速切削加工铝合金7050-T7451的表面变质层深度为30~35μm;应用位错能量研究了高速铣削加工过程的热力耦合对变质层的影响机理,并通过微观形貌观察证明:与普通切削相比,高速铣削表层塑性变形的能量和位错密度更高;建立了位错密度的加工硬化的动力学模型,研究了加工硬化的热-力耦合形成机理;对微观裂纹的形成机理进行了理论分析,证明位错密度高的高速切削过程中较低速加工更容易产生明显的微裂纹,从分子级乃至原子级的水平进一步揭示高速切削加工表面变质层的形成特征。
     本课题得到国家自然科学基金重点项目“大型航空整体结构件加工变形机理及精度保障技术(50435020)”的支持。
High speed machining (HSM) is one of the advanced manufacturing technologies and has been become the important trend of modern manufacture technology and has wide application prospects because of higher production efficiency, higher machining accuracy, higher surface finish, and lower production cost. Since the industrialization and generalization of HSM in the end of 20 century, it has already been widely applied in aviation, automobile, dies and molds industries etc. and obtains enormous economic effects. Aviation manufacture industry is the earliest and comprehensive industry in applying high speed machining technology. Instead of conventional welding components, many main frame parts are the large-scale integrated parts to get excellent rigidity, which need high material removal rate, high surface finish and long machining period. So the application of HSM will perfect meet these requirements and improve the efficiency and machined quality in the machining of large-scale integrated parts with thin-walled, complicated structures and high machining accuracy in aircraft. However basic theories of machining, deformation theory and surface formation characteristics of high speed machining are different with those in conventional machining. In practical operations, there are numerous new problems arising for both technical and theoretical aspects which need to be urgently solved.
     The non-uniform thermo-mechanical coupling intense stress fields are occurred in workpieces adjacent to machining region due to the action of the deformation of high strain rate speed and teratology in high speed machining between tool and workpiece in HSM. The characteristics of flow stress, chip formation, cutting mechanics, cutting temperature and machined surface formation are different with conventional machining. The theoretical, experimental and application researches on deformation theories and surface characteristic of high speed machining aluminum alloy 7050-T7451 were carried out systematically in order to provide reliable and important theoretical and practical methods.
     Accurately mechanical characteristic model of workpiece in high speed machining is important foundation for machining simulation and analyzing machining formation process with analytical or FEM methods. However the mechanical characteristic model with high strain rate and large strain in high speed machining is very difficult to be obtained just by means of only conventional material method. The empirical Johnson-Cook constitutive model is proved to be much adaptable and compatible than other empirical models for aluminum alloy by the results of high temperature split Hopkinson pressure bar compression test. The orthogonal machining methods was proposed to build constitutive model and research the relationship of shear flow stress, shear strain and strain rate in high speed machining. The constitutive model for aluminum alloy 7050-T7451 was established and input to FEM simulation software as material model. The output values of cutting force between experiment and simulation are compared, the results prove that the proposed model with orthogonal cutting technique is valid and reliable.
     Investigations on the basic theory of deformation for high speed machining 7050-T7451 aluminum alloy are conducted, including chip formation, cutting mechanics, friction coefficient, etc. The contents mainly includes: 1) The microcosmic mechanics of chip formation has been studied, and the deformation zones of front edge and compression of dislocation are added after the deformation are re-divided into five zones with dislocation theory in order to describing deformation accurately in machining. 2) By theoretical analysis and experimental approaches, the milling force empirical models of three kinds of tools have been established. The milling parameters effect on milling force was studied, the results prove that the critical value of high speed for 7050-T7451 is 900m/min. 3) The average friction coefficient was obtained by the orthogonal cutting force tests, in high speed machining the various tendency of frication coefficient and frication angle with cutting speed have been studied. At last considering the effect of work piece and cutting speed the new shear angle model of aluminum alloy 7050-T7451 was established and proved to be more suitable for expressing the variety of shear angle in high speed cutting process.
     Based on three-dimensional cutting geometric models, and the key techniques of large deformation thermo-mechanical coupling theory, high speed machining aluminum alloy 7050-T7451 process is simulated with Deform-3D software. The simulations of chip formation, field of stress, strain, temperature are analyzed and researched, the stress field in high speed machining, which is formed non-uniform thermo-mechanical coupling intense stress fields is very different with that in conventional machining. In initial and stable stage of machining process, the cutting force of simulation output are compared with those obtained by cutting experiments, and the precision of the above simulation is also verified. These investigations provided a foundation for the subsequent works in analysis and research of high speed mechanisms.
     The characteristics of machined layer formation are researched systematically based on high speed machining experiments and theoretical analysis. The empirical model of surface roughness in high speed milling is established and the effects of cutting parameters on surface roughness are studied comprehensively. Based on micro hardness experiments and the thermo-mechanical coupling deformation theory, the work-hardening ability and depth of hardness of surface in high speed machining aluminum alloy 7050-T7451 are researched. In different cutting conditions the experimental results of frictional wear performance of surface show that the machined surface in high speed milling has higher surface quality and better performance of wear-resisting than that in conventional machining.
     The characteristic of machined surface of high speed machining aluminum alloy 7050-T7451 is researched by micrographic experiments (SEM and TEM) and analysis. The formation mechanics of machined metamorphism layer has been analyzed and studied. The dislocation-energy model in machined metamorphism layer was established and applied to explain the micrographic mechanics work-hardening using the thermo-mechanical coupling deformation theory and dislocation theory. The experimental results show that the interaction of high dislocation density effect on hardening is more remarkable than that of thermal stress in high speed machining.
     The project is supported by National Natural Science Foundation of China (Grant number 50435020)
引文
1.H.Schulz.高速加工发展概况.机械制造与自动化,2002(1):4~8.
    2.艾興,高速切削加工技術的现状和發展,兩岸機電暨産學合作學術研討會論文集 ISBN986-80917-1-3,2005:1-11
    3.Noaker P.M.高速铣削加工的发展.国外金属加工,1999(2):23-28
    4.周正干,王美清,李和平等.高速加工中心的核心部件及其关键技术.机床与液压,2000(6):53~56
    5.张伯霖,夏红梅,黄晓明.高速主轴设计制造中若干问题的探讨.制造技术与机床.2001,(7):12~14.
    6.艾兴.高效加工技术及其应用研究.中国工程科学.2000,11(2):40-51
    7. S.-GLee,S.-H. Yang. CNC Tool-Path Planning for High-Speed High-Resolution Machining Using a New Tool-Path Calculation Algorithm. The International Journal of Advanced Manufacturing Technology. 2002,(20):326~333.
    8. Hector Dominguez, Rogelio Alvarez, Juan Carlos Jauregui. Development of A High Speed Machiniing CNC. Proceedings of the 2001 IEEE International Conference on Control Applications. September 5~7,2001 ,Mexico City, Mexico. 224~229.
    9.邓建新,赵军.数控刀具材料选用手册.北京:机械工业出版社,2005.4:142~144.
    10. Hideharu Kato, Kazuhiro Shintani, Hitoshi Sumiya. Cutting Performance of A Binder-less Sintered Cubic Boron Nitride Tool in High-speed Milling of Gray Cast Iron. Journal of Materials Processing Technology. 2002,(127): 217~221
    11.刘战强,艾兴,高速切削刀具的发展现状.工具技术.2001,vol.25(3):3~8.
    12.张伯霖,杨庆东,陈长年等.高速切削技术及应用[M].北京:机械工业出版社.2002.9.
    13.王树林,王贵成.高速加工及其工具系统的研究进展.江苏理工大学学报(自然科学版),2001,22(4):49~53
    14.梁彦军,高峰.我国高速切削加工技术现状及发展趋势.工具技术.2002,36(1):16~20.
    15. JEONG-DU KIM and YOU-HEE KANG. High-speed Machining of Aluminium using Diamond Endmills. Int. J. Mach. Tools Manufact. 1997,37(8): 1155~1165.
    16. Norihiko Narutaki. High-Speed Machining of Titanium Alloy. Annals of the CIRP. 1997,Vol. 46(1):3~7.
    17.宋智勇.高速加工机床在国外航空加工中的应用.航空制造技术,2004.6:50~53
    18.付敏.高速铣削铝合金加工技术的研究.哈尔滨理工大学硕士论文,2004.
    19.于信汇,赵仲义,诸乃雄.铝合金材料的超高速铣削.机械工艺师.1994,(2):9~12
    20.姜金三.超高速加工在航空制造中的应用.CAD/CAM与制造业信息化.2004,(4):101~103.
    21.张曙.加工飞机结构件的加工中心.航空制造技术.2005(4):30~33.
    22.梁锡昌,郑小光,徐国斌.超高速铣削的理论研究.机械工程学报.2001,Vol.37(3):109~112.
    23.刘战强.高速切削技术的研究与应用.山东大学.博士后出站报告.2001.
    24.陈日曜.金属切削原理.北京:机械工业出版社.1993.
    25.李沪曾,郭重庆,林建平等.高速铣削加工技术在汽车模具制造中的应用.机械与电子.2003,(1):26~28.
    26.王西彬,解丽静.超高速切削技术及其新进展.中国机械工程,2000,1-2(11):190-194.
    27.何宁.高速切削技术.工具技术.2003,37(11):8-11
    28.刘战强,艾兴,宋世学.高速切削技术的发展与展望.制造技术与机床,2001(7):5~7.
    29.艾兴等.高速切削加工技术[M].北京:国防工业出版社,2003.
    30. G. Poulachon, A.Moisan. Contribution to the Study of the Cutting Mechanisms during High Speed Machining of Hardened steel. Annals of the CIRP. 1995,Vol.47(1): 73~76.
    31. R. F. Recht. A dynamic analysis of high-speed machining. High Speed Machining. Edited by R.Komanduri, K. Suvramanian et al. ASME, U.S.A, 1984:83-93.
    32.刘永强.高速切削及其关键技术的发展现状.航空精密制造技术.2001,37(2):1-5.
    33.李沪曾,郭重庆.浅谈HSM技术的发展.现代制造工程.2004,6:115~118.
    34.艾兴,刘镇昌,赵军.高速切削技术研究和应用.全国生产工程第8届学术大会暨第3界青年学术会议论文集.北京:机械工业出版社,1999:146-149.
    35. Dai Call Lee, Jung Do Suh, Hak Sung Kim et al. Design and Manufacture of Composite High Speed Machine Tool Structures. Composites Science and Technology. 2004,(64):1523~1530.
    36.张伯霖,黄晓明,李志英.高速加工中心及其应用.机电工程技术.2001,Vol.30(5):11~14.
    37.邵传伟.电主轴与高速加工机床.世界制造技术与装备市场(WMEM)2002,(5):24~26.
    38.张伯霖,张志润,肖曙红.超高速加工机床与机床的零传动.中国机械工程.1997,(5):37~41.
    39. S.-G.Lee,S.-H. Yang. CNC Tool-Path Planning for High-Speed High-Resolution Machining Using a New Tool-Path Calculation Algorithm. The International Journal of Advanced Manufacturing Technology. 2002,(20):326~333.
    40.艾兴,刘战强,黄传真等.高速切削综合技术.航空制造技术,2002.3:20~23.
    41.陈明,袁人炜,严隽琪等.推动我国高速切削工艺发展若干问题的探讨.中国机械工程,1999,10(11):1296~1297.
    42.顾诵芬.航空航天科学技术(航空卷).济南:山东教育出版社.1998.
    43.刘静安,谢水生等.铝合金材料的应用与技术开发.北京:冶金工业出版社.2004.
    44.陈小明.飞机零件的高速高效加工.航空制造技术.2004,4:44~47
    45.郭旺,翟建军.飞机结构件的数控加工技术研究.机械制造与自动化.2005,Vol.34(1):52~55.
    46.林胜.HSM在航空制造业中的应用.航空制造技术.2003.3:25~29.
    47. N. A. Abukhshim, P. T. Mativenga, M. A. Sheikh. An investigation of the tool-chip contact length and wear in high-speed turning of EN19 steel. Proceedings of the Institution of Mechanical Engineers (Part B) Engineering Manufacture, 2004, 218(8): 889-1004
    48.周泽华,于启勋.金属切削原理.上海科学技术出版社.1994.
    49. Schulz H, Abele E et al. Material Aspects of chip Formation in Metal Cutting, Journal of Manufacturing Science and Engineering, May 1999, Vol. 121: 165~172.
    50.仇启源,庞思勤.现代金属切削技术.北京:机械工业出版社,1992.
    51. S. Lei, Y. C. Shin, F. P. Incropera. Material constitutive modeling under high strain rates and temperatures through orthogonal machining tests [J], Journal of Manufacturing Science and Engineering, 1999.121(11): 577-584
    52. Shatla M, Kerk C, Altan T. Process modeling in machining (part Ⅰ): determination of flow stress data [J]. International Journal of Machine Tools & Manufacture, 2001,41 (9): 1511-34
    53.林高用,张辉,郭武超等.7075铝合金热压缩变形流变应力[J].中国有色金属学报,2001.6(11):412-415
    54. Shen J. Xie S S. Dynamic Recovery and Dynamic Recrystallization of 7075 Aluminum Alloy During Hot Compression [J]. Acta Metallurgica, 2000,11(13): 379-386
    55.刘文娟,韩冰,袁鸽成.7075铝合金高温等温变形的流变应力特征.广东有色金属学报.2004.5,.14:44-47
    56. Songwon Soo, Oakkey Min and Hyunmo Yang. Constitutive equation for Ti-6Al-4V at high temperatures measured using the SHPB technique.Internatioual Journal of Impact Engineering, Vol. 31 (2005):735-754
    57.高玉华.铝合金LC4和LY12CZ在高应变率拉伸和压缩下的本构关系.材料科学与工艺.1994.6(2):24-29
    58.杨勇,柯映林,董辉跃.金属切削加工中航空铝合金板材的本构模型.2005,15(6):854-859
    59.夏开文,程经毅,胡时胜.SHPB装置应用于测量高温动态力学性能的研究.实验力学.1998,9.Vol.3(13):307-313
    60.彭建祥,李英雷,李大红.纯钽动态本构关系的实验研究.爆炸与冲击.2003,2(23):183-187
    61.刘培德等,切削力学新篇.大连:大连理工大学出版社,1991.
    62.王敏杰.动态塑性试验技术.力学进展,1988,18(1):70-78
    63. Durham D R, Von Turkovich B F. Material deformation characterization at moderate strains and high strain rates from metal cutting data. Proc. 11th NAMRC Conference, 1983:323-331
    64. Kececioglu D. Shear-strain rate in metal cutting and its effects on shear-flow stress. Trans. ASME(B), 1985,80:158-165
    65. Oxley P L B. Stevenson M G Measuring stress/strain properties at very high strain rates using a machining test, J. Inst. Metals. 1967
    66.王敏杰,胡荣生,刘培德.从正交切削试验法获得金属材料的动态力学性能[J].科学通报,1989,34(18):1249-1232
    67. Wang M J, Wright P K. Dynamic plasticity: a comparison between results from mechanical testing and machining. Mater. Sci. Eng.,1981,51:81-92
    68.王敏杰.金属动态力学性能与热塑剪切失稳的正交切削方法研究[博士学位论文].大连:大连理工大学,1988
    69. H.Takuda, H.Fujimoto, Modeling on flow stress of Mg-Al-Zn alloys at elevated temperatures, Journal of Materials Processing Technology, 1998:513-516
    70. King P I, Vaughn R L. A syuaptic view of high-speed machining from salmon to the present. High Speed Machining. Edited by Komanduri, Subramanian K et.al. ASME, U.S.A,1984:1-13
    71. Kahles J F, Field M, Harvey S M. High speed machining possibilities and needs, Annals of CIRP, 1978, 27(2):551-558
    72. Karinna M.Vernaza Pena. Thermal measurements during high speed machining. University of Notre Dame,Doctorial dissertation, 2002
    73.胡家国,杨志刚,李迎.高速切削铝合金切削力的研究.工具技术,2003.37(11):33-36
    74. Balkrishna Rao, Yung C.Shin. Analysis on High-speed Face-milling of 7075-T6 Using Carbide and Diamond cutters. International Journal of Machine Tools & Manufacture 2001,(41): 1763~1781
    75. GList, M.Nouari, D.Ghin, et al. Wear Behaviour of Cemented Tools in Dry Machining of Aluminium Alloy. Wear. 2005 (259):1177~1189
    76. M.Nouari,G.List.F.Girot et al. Effect of Machining Parameters and Coating on Wear Mechanisms in Dry drilling of Aluminium alloys. International Journal of Machine Tools and Manufacture. 2005,(45): 1436~1442
    77.万熠.高速铣削航空铝合金刀具失效机理及刀具寿命研究[博士学位论文].济南:山东大学,2006.4
    78. Z.Q.Liu,Y.Wan and X.Ai, Recent Developments in Tool Materials for High Speed Machining. Advances in Materials Manufacturing Science and Technology, 2004,Vol. 471~472:438~442
    79. Y.Wan, Z.T.Tang, Z.Q.Liu and X.Ai, The Assessment of Cutting Temperature Measurements in High-speed Machining. Advances in Materials Manufacturing Science and Technology. Materials Science Forum, 2004,Vol. 471~472:162~166
    80.赵新,朱承元,易克平等.铝合金高速铣削切屑温度实验研究.电子机械工程.2004,20(1):37~39
    81.唐艳芹,王玉兴,王立江.PCD刀具超精切削表面质量的研究.工具技术.2001,7(35):26-28
    82.王立江,蔡绍勤,骆红云.PCD刀具断续切削铝合金时力学特性的试验研究.汽车工艺与材料.2001,(2):4~7
    83. Ernst H, Merchant M E. Chip formation, friction and finish. Cincinnati milling machine Company. Cincinnati. 1941
    84. Stabler G V. The fundamental geometry of cutting Tools. Proc. Instn. Mech. Engrs. 1951,(165):24-28
    85. Lee E H, Shaffer B W. The theory of plasticity applied to a problem of machining. ASME Journal of Applied Mechanics. 1951,18(4):211-214
    86. Shaw M C. Metal cutting principles. Clarendon Press (Oxford),1984
    87. Shaw M C, Cook N H, Finnie I. Trans. ASME. Series B, 1953,75:273-281
    88. Usui E. Shirakashi T. Mechanics of machining from Descriptive to Predictive Theory. On the Art of cutting Metals, ASME Publication PED. 1982,7.
    89. Oxley P L B, Welsh M J M. An explanation of the apparent bridgman effect in Merchant's Orthogonal curing results. Trans. ANISE. Series B,1967,89.
    90. Chiffre L De. What can we do about chip formation mechanics. Annals of the CIRP. 1985, 34(1):117-124
    91.李世杰,房京.三元剪切角新模型的研究,河北工业大学学报.1999,28(6):81-86
    92.李世杰,于思远,林兵等.三元剪切角新模型的研究,天津大学学报.1999,32(1):23-26
    93.谢峰,赵吉文,张崇高等.剪切角理论研究有限元新方法探索.中国机械工程.2003,14(18):1539-1541
    94.周泽华.刀—屑摩擦面上摩擦温度的分布.机械工程学报,1964,12(1):54~64
    95.刘战强,万熠,艾兴.高速铣削中切削力的研究冲国机械工程.2003.5 Vol.14(9):734-737
    96.张伯霖主编,高速切削技术及应用,机械工业出版社,2002.8;
    97.何宁.博士学位论文.难加工材料高效切削理论与应用研究.1996.12.
    98.陈森灿,叶庆荣.金属塑性加工原理.北京:清华大学出版社.1991.
    99.汪大年编著.金属塑性成形原理.北京:机械工业出版社.1996.
    100.黄克坚,包忠诩,陈泽中等.关于挤压变形规律理论研究方法的一些探讨.塑性工程学报.2003,10(4):45-48
    101.袁哲俊.金属切削实验技术.机械工业出版社,1988
    102.臼井英治著.高希正译.切削磨削加工学.北京:机械工业出版社.1982.12.
    103. M. Hashimura, K. Ueda, D. Dornfeld, K. Manabe. Analysis of Three Dimensional Burr Formation in Oblique Cutting. CIRP Annals. 1995, 44(1):27-33.
    104. M. Hashimura, Y. P. Chang, D. A. Dornfeld. Analysis of Burr Formation Mechanism in Orthogonal Cutting. Trans. ASME. J. Eng. Industry. 1999, 121 (1):1-7.
    105. Lajczok M R A study of some aspects of metal cutting by the finite element method. [Ph D dissertation]. NC State University 1980
    106. Strebjiwsjum H S, Carroll J T. A finite element model of orthogonal metal cutting. In: Proceedings of the North American Manufacturing Research Conference, Bethlehem, Pennsylvania, 1987:506-509
    107. Strenkowsld J S, Moon K J. Finite element prediction of chip geometry and tool/workpiece temperature distribution in orthogonal metal cutting. Tran ASME J Eng Ind, 1990, 112(4): 313-318
    108. Komvopoulos F K, Erpenbeck S A. Modeling of ortbogonal metal cutting.Trans ASME J Eng Ind, 1991, 113 (3): 253-267
    109. Furukawa Y, Moronuld N, Effect of material properties on ultra-precise cutting process.Ann CIRP,1988, 37(1): 113-120
    110. Tyan, T., Yang, W. H., Analysis of orthogonal metal cutting processes, International Journal for Numerical Methods in engineering, 1992, 34(1): 365-389
    111. Ceretti E, Fallbohmer P, Wu W T, Altan T. Application of 2D FEM to chip formation in orthogonal cutting. Journal of Materials Processing Technology, 1996, 59(2): 169-180
    112. Ceretti E, Lucchi M, Altan T. FEM simulation of orthogonal cutting: serrated chip formation. Journal of Materials Processing Technology, 1999, 95(1): 17-26
    113. Ceretti E,Lazzaroni C, Menegardo L,Altan T.Turning simulation using a three-dimension FEM code. Journal of Materials Processong Technology, 2000, 98(1): 99-103
    114. Ceretti E, Taupin E, Altan T. Simulation of metal flow and fracture application in orthogonal cutting, blanking and cold extrusion. Annal of CIRP, 1997, 46(1): 187-190
    115. Shet, C., Deng, X., Finite element analysis of the orthogonal metal cutting process, Journal of Material Processing Technology, 2000, 105(1): 95-110
    116. McDill, J.M.J., Lindgren, Lars-Erik, Reed, r.C., Oddy, A.S., Continuous improvement in thermal-mechanical finite element analysis. International Conference on Processing and Manufacturing of Advanced Materials, Lasvegas, USA, 2000, 4-8
    117. Lei, S., Shih, Y.C., Incropera, F.P. Thermo-mechanical modeling of orthogonal machining process by finite element analysis. International Journal of Machine Tools and Manufacture, Design, Research and Application, 1999, 39(5): 731-770,
    118.王立涛,柯映林,黄志刚.航空结构件铣削残余应力分布规律的研究.航空学报,2003,24(3):286-288
    119.黄志刚,柯映林.飞机整体框类结构件铣削加工的模拟研究.中国机械工程,2004,15(11):991-995
    120.方刚,曾攀.切削加工过程数值模拟的研究进展.力学进展.2001,31(3):394~404
    121.方刚,曾攀.金属正交切削工艺的有限元模拟.机械科学与技术.2003,22(4):641-645
    122.王志刚,何宁,张兵,等.航空薄壁零件加工变形的有限元分析.航空精密制造技术,2000,36(6):7-11.
    123. S.Y.Wang, J.Zhao, H.Meng, X.Ai, Z.L.Li. A numeric investigation of the cutting temperature fields on the rake face in orthogonal machining. Material science forum. 2004, 471-472: 547-551
    124. Van luttervelt C.A., Childs T.H.C., Jawahir I.S. et al. Present situation and future trends in modeling of machining operations, Ann. CIRP, 1998, 47 (2): 587-626.
    125. K.Y.Lee, et al. Simulation of surface roughness and profile in high-speed end milling. J. Mater. Process. Technol. 2001(113): 410-415.
    126. Y.Mizugaki, M.Hao, K.Kikkawa. Geometric generating mechanism of machined surface by ball-nosed end milling. Ann. CIRP. 2001,50(1): 69-72.
    127. X.L.Liu, D.H.Wen, Z.J.Li, L.Xiao, F.G.Yan. Experimental study on hard turning hardened GCr15 steel with PCBN tool. J. Mater. Process. Technol. 2002(129): 217-221.
    128.刘献礼.聚晶立方氮化硼刀具切削性能及制造技术的研究.哈尔滨工业大学.Ph.D.,1999.3: 100-124.
    129. U.Heisel, A.Feinauer. Dynamic influence on workpiece quality in high speed milling. Ann. CIRP. 1999,48(1): 321-324.
    130. S.C.Lin M.F.Chang. A study on the effects of vibrations on the surface finish using a surface topography simulation model for turning. Int. J. Mach. Tools Manuf. 1998 (38): 763-782.
    131.刘战强,万熠,艾兴.高速铣削过程中表面粗糙度变化规律的试验研究.现代制造工程.2002(3):8-10.
    132.王素玉,赵军,艾兴.高速切削表面粗糙度理论研究综述.机械工程师.2004,10:3-5.
    133.张雷.高速铣削表面粗糙度的研究.组合机床与自动化加工技术.2002(12):31-34.
    134.吕彦明.球头刀高速铣削残留高度研究.模具技术.2002(6):15-19.
    135.贾春德,姜春辉.正交车铣运动的矢量建模及表面粗糙度的理论研究.机械工程学报.2001,37(3):152-159.
    136. N.Zlatin, M.E.Merchant. Hardness distributionb in chips and machined surfaces. The Iron Age. 1947, 5.
    137. E.K.Henriksen. Residual stresses in machined surfaces. Transactions of the ASME. 1951, 73(1)
    138. Palmer W B, Oxley P L B. Mechanics of orthogunal machining [J ]. Proc. Inst. Mech. Engrs, 1959, 173:623
    139. P L B.Oxley. Shear angle solutions in orthogonal machining [J]. International of Journal of Machine Tool Design Research. 1965, 2:219
    140. C.R.Liu, M.M.Barash. The mechanical state of the sublayer of a surface generated by chip-removal process. Tran. ASME J. Engng. Ind., 1976, 98(11):1192-1208
    141.杨继昌,刘伟成.工件表面层加工硬化深度的数值模拟.机械工程学报,1995,31(3):102-106;
    142.杨继昌,刘伟成.低速正交金属切削中工件表层加工硬化深度的预报.应用科学学报.1995,13(3):363-367;
    143.刘菊东,王贵成等.非淬硬钢磨削表面硬化层的试验研究.中国机械工程.2005,16(11):1013-1017
    144.刘菊东,王贵成等.45钢磨削硬化的试验研究.材料科学与工艺.2005,13(3):326-333
    145.李德宝.金属切削中工件表层加工硬化模拟.工具技术.2004,38(4):14-16
    146.陈立国,刘献礼等.PCBN刀具切削淬硬GCr15已加工表面完整性的试验研究.哈尔滨理工大学学报.1999,4(4):42-46
    147. M.M.Barash, W.J.Schoech. A semi-analytical model of the residual stress zone in orthogonal machining. Proc. 11th international M.T.D.R.Conf., London, Pergamon Press. September 1970
    148. C.R.Liu, M.M.Barash. The mechanical state of the sublayer of a surface generated by chip removal process, part 1: cutting with a sharp tool. J. Eng. Industry. 1976,98(4)
    149. Zienkiewicz O C. Analysis of the mechanism of orthogonal machining by the finite element method. J. Japan Soc. Prec. Eng.. 1971, 37(7): 503-508
    150. J.A.Bailey, S.Jeelani, S.E.Becker. Surface integrity in machining AISI 4340 steel. J. Eng. Industry. 1976(8)
    151. H.Sasahara. The effect on fatigue life of residual stress and surface hardness resulting from different cutting conditions of 0.45%C steel. International Journal of Machine Tools & Manufacture 45 (2005) 131-136
    152. H.Sasahara. T.Obikawa b, T.Shirakashi. Prediction model of surface residual stress within a machined surface by combining two orthogonal plane models. International Journal of Machine Tools & Manufacture 44 (2004) 815-822
    153. T.Segawa, H.Sasahara, M.Tsutsumi. Development of a new tool to generate compressive residual stress within a machined surface. International Journal of Machine Tools & Manufacture 44 (2004) :215-1221
    154. Z.C.Lin, W.L.Lai, H.Y.Lin, C.R.Liu. Residual stresses with different tool flank wear lengths in the ultra-precision machining of Ni-P alloys. J. Mater. Process. Technol. 1997(65): 116-126
    155. Z.C.Lin, Y.Y.Lin. Fundamental modeling for oblique cutting by thermo-elastic -plastic FEM. Int. J. Mech. Sci. 1999(41): 941-965
    156. Z.C.Lin, B.Y.Lee. An investigation of the residual stress of a machined workpiece considering tool flank wear. J. Mater. Process. Technol. 1995(51): 1-24
    157.王祝堂,田荣璋.铝合金及其加工手册.长沙:中南大学出版社,2000
    158.舒滢,曾卫东,周军等.BT2合金高温变形行为的研究.材料科学与工艺.2005.2,13(1):66-69
    159.史宝军等,建立材料塑性本构方程的实验分析方法.山东建筑工程学院学报.1998.6,13(1):65-71
    160.彭建祥,李英雷,李大红.纯钽动态本构关系的实验研究.爆炸与冲击.2003,3
    161. Andrade UR, Meyers MA, Vecchio KS and Chokshi AH: Acta. Metal Mater, Vol. 42 (1994), pp. 3183-3195.
    162. N. Fang. A new quantitative sensitivity analysis of the flow stress of 18 engineering materials in machining. Transactions of the ASME, 2005, 127(4): 192-196;
    163. Y.B. Guo and C.R. Liu, Mechanical properties of hardened AISI 52100 steel in hard machining, ASME J Manuf Sci Eng, 2002(124):1-9
    164. Partchapol Sartkulvanich, Frank Koppka and Taylan Altan, Determination of flow stress for metal cutting simulation-a progress report, Journal of Materials Processing Technology, 2004(146): 61-71
    165.谭美田.金属切削微观研究[M].上海:上海科学技术出版社,1988.4
    166. Recht R F. A Dynamic Annalysis of High Speed Machining. Edited by R.Komanduri,K. Suvramanian et al. ASME, U. S. A, 1984:83-93
    167.任彩亮,郭江伟.机械加工中切削力预报分析.机械研究与应用,2005.vol.18(6):5-6
    168.龙震海,王西彬,刘志兵.高速铣削高强度钢时切削力影响因素析因与偏回归研究.航空制造技术.2005.9:77-80
    169.倪正顺等,热挤压模具热力耦合三维数值分析,中南大学学报(自然科学版),2004.35(2),86-90
    170.蔡旺,叶片精锻过程三维热力耦合有限元模拟[硕士学位论文],西北工业大学,2002.3
    171.李海峥,赵晓平,黎维芬等.基于Lagrange法的金属切削加工过程数值模拟,中国机械工程,Vol.15(12):2245-2247
    172.孙宝军,谭光宇,吴明阳.波形刃铣刀片温度场和应力场的耦合分析,哈尔滨理工大学学报. 2006,11(1):150-154
    173.谢峰,刘正士,杨海东.金属切削刀具前后刀面摩擦状况的数值模拟,应用科学学报.2004,22(2):223-227
    174.董丽华,袁哲俊,李振加等,铣刀片的应力场分析,工具技术,1999,13(3):8-11
    175.王素玉,赵军,艾兴.高速切削表面粗糙度理论研究综述.机械工程师.2004,10:3-5
    176.张铁茂,金属切削学[M].北京:兵器出版社出版.1991,4.
    177.克拉盖尔斯基等.摩擦磨损计算原理[M].北京:机械工业出版社.1982,10
    178.杨桂通.弹性力学[M].北京:高等教育出版社,2005.2
    179.王素玉.高速铣削加工表面质量的研究.山东大学博士学位论文.2006.4
    180.曹同坤.自润滑陶瓷刀具的设计开发及自润滑机理研究.山东大学博士学位论文 2005.4
    181.范继美,万光珉.位错理论及其在金属切削加工中的应用[M].上海:上海交通大学出版社.1991.5
    182.杨德庄,位错与金属强化机制,哈尔滨:哈尔滨工业大学出版社.1991.3
    183.王祖堂,关廷栋 等.金属塑性成形理论[M].北京:冶金工业出版社,1989,9
    184.赵志业,王国栋.现代塑性加工力学[M].沈阳:东北工学院出版社.1986.11
    185. Youngsik Choi and C. Richard Liu, Roiling contact fatigue life of finish hard machined surfaces Past 1. Model development. Wear.2006,261:485-491
    186. E.Bormetti, G.Donzella, A. Mazzu, Surface and subsurface cracks in rolling contact fatigue of hardened components, Tribol. Trans.45(3)(2002):274-283
    187.D.赫尔 D.J.培根,丁树深,李齐译,位错导论.北京:科学出版社,1990.8

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700